JPS6319462A - Centrifugal hydraulic pressure correcting device for belt type continuously variable transmission - Google Patents
Centrifugal hydraulic pressure correcting device for belt type continuously variable transmissionInfo
- Publication number
- JPS6319462A JPS6319462A JP16302786A JP16302786A JPS6319462A JP S6319462 A JPS6319462 A JP S6319462A JP 16302786 A JP16302786 A JP 16302786A JP 16302786 A JP16302786 A JP 16302786A JP S6319462 A JPS6319462 A JP S6319462A
- Authority
- JP
- Japan
- Prior art keywords
- hydraulic pressure
- centrifugal
- chamber
- continuously variable
- balance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 18
- 238000003825 pressing Methods 0.000 claims abstract description 6
- 239000000843 powder Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Transmissions By Endless Flexible Members (AREA)
Abstract
Description
本発明は、車両用ベルト式ベルト式無段変速機において
、高回転域でセカンダリプーリのシリンダ内に生じる遠
心油圧を補正する遠心油圧補正装置に関するものである
。
この種のベルト式無段変速機は、エンジン側のブライマ
リブーりと車輪側のセカンダリプーリに駆動ベルトを巻
付け、各プーリの可動ブーりには ′油圧サーボ機
構を装備しである。そして、可動ブーりを油圧で軸方向
に移動してブーり間隔を調整し、ベルトのブライマリブ
ーりに対するセカンダリプーリの巻付は径の比を変えて
、無G変速する構成になっている。
このため、変速が高速段別に進むにつれてセカンダリプ
ーリは増速し、オーバドライブ時はプライマリ回転数に
対し最大2〜3倍増速する。従って、かかるセカンダリ
プーリのシリンダ内部の油圧も同様に高速で回されるこ
となり、このとき遠心油圧が発生してこれがセカンダリ
プーリにセカンダリ油圧とは別個に付加的に作用する。
かくしてこの遠心油圧が、8速段側への変速時に逆にセ
カンダリプーリを低速段側に戻すように動き、オ−バド
ライブ時には過大なブーり押付力を生じるという問題が
ある。The present invention relates to a centrifugal hydraulic pressure correction device for correcting centrifugal hydraulic pressure generated in a cylinder of a secondary pulley in a high rotation range in a belt-type continuously variable transmission for a vehicle. This type of belt-type continuously variable transmission has a drive belt wrapped around a brake pulley on the engine side and a secondary pulley on the wheel side, and each pulley's movable pulley is equipped with a hydraulic servo mechanism. Then, the movable boot is hydraulically moved in the axial direction to adjust the boob spacing, and the diameter ratio of the winding of the secondary pulley around the briny pulley of the belt is changed to achieve non-G speed shifting. Therefore, the secondary pulley speeds up as the gear shift progresses to higher speed stages, and during overdrive, the speed increases by a maximum of 2 to 3 times the primary rotation speed. Therefore, the hydraulic pressure inside the cylinder of the secondary pulley is similarly rotated at high speed, and at this time, centrifugal hydraulic pressure is generated, which additionally acts on the secondary pulley separately from the secondary hydraulic pressure. Thus, there is a problem in that this centrifugal oil pressure moves the secondary pulley back to the low speed side when shifting to the 8th speed side, and generates an excessive boob pressing force during overdrive.
そこで従来、上記遠心油圧の問題の対策としてその補正
装置が提案されている。これは、セカンダリプーリのシ
リンダ内部においてプランジャの片側の油圧室に対しそ
の反対側にバランス室を設ける。そして、プランジャに
オリフィスを設け、油圧室のセカンダリ油圧の一部をリ
ークしてバランス室に供給したり、または特開昭60−
104848号公報に示すように、導油板や油通路によ
りバランス室に各別に給油づる。こうして、高回転域で
油圧室に生じる遠心油圧を、バランス室の遠心油圧で相
殺するようになっている。Conventionally, correction devices have been proposed as a countermeasure to the problem of centrifugal hydraulic pressure. This is done by providing a hydraulic chamber on one side of the plunger and a balance chamber on the opposite side inside the cylinder of the secondary pulley. Then, an orifice is provided in the plunger to leak part of the secondary hydraulic pressure from the hydraulic chamber and supply it to the balance chamber, or
As shown in Japanese Patent No. 104848, oil is supplied to each balance chamber separately by an oil guide plate or an oil passage. In this way, the centrifugal hydraulic pressure generated in the hydraulic chamber in the high rotation range is offset by the centrifugal hydraulic pressure in the balance chamber.
ところで、バランス室への給油方法に関し、先行技術の
オリフィスによるものは、アイドリングや低回転域のオ
イルポンプ効率の最も低い状態でもオイル洩れを止じる
ので、その分ポンプ容量をアップしなければならない、
また先行技術の後者によると、構造が複准になり、軸の
軸方向、径方向に専用の孔加工を施すので、加工性9強
度上好ましくない。
このことから、セカンダリプーリの遠心油圧の影響が大
きくなる高回転域で適確にバランス室に給油し、かつそ
の給油手段は他に影響を及ぼさないように簡素化するこ
とが望まれる。
本発明は、このような点に鑑みてなされたもので、バラ
ンス室への給油を、簡単な構成でポンプ容量のアップを
生じないように高回転域でのみ行うようにしたベルト式
無段変速機の遠心油圧補正装置を提供することを目的と
している。By the way, regarding the method of supplying oil to the balance chamber, the prior art method using an orifice stops oil leakage even when the oil pump is at its lowest efficiency, such as when idling or in the low rotation range, so the pump capacity must be increased accordingly. ,
Further, according to the latter prior art, the structure is double-sided and dedicated holes are formed in the axial and radial directions of the shaft, which is unfavorable in terms of workability and strength. For this reason, it is desirable to accurately supply oil to the balance chamber in the high rotation range where the influence of the centrifugal oil pressure of the secondary pulley becomes large, and to simplify the oil supply means so as not to affect other parts. The present invention has been made in view of these points, and is a belt-type continuously variable transmission that has a simple configuration and performs oil supply to the balance chamber only in a high rotation range so as not to increase the pump capacity. The purpose is to provide a centrifugal hydraulic correction device for machines.
上記構成に基づき、アイドリンクや低回転域ではバラン
ス弁が閉じてオイル洩れを生じなくなり、所定のせカン
ダリ回転数以上の高回転域でのみバランス弁が開いてバ
ランス室に給油し、遠心油圧を補正するようになる。
こうして本発明では、遠心油圧の影響の小さいアイドリ
ンクや低回転域でオイル洩れを生じないので、この場合
の油量に余裕ができてポンプ容量の増大を防ぐことが可
能となる。Based on the above configuration, the balance valve closes in idle link and low speed ranges to prevent oil leakage, and opens only in high speed ranges above the predetermined secondary rotation speed to supply oil to the balance chamber and correct centrifugal oil pressure. I come to do it. In this way, in the present invention, oil leakage does not occur in the idle link and low rotation ranges where the influence of centrifugal oil pressure is small, so there is a surplus in the amount of oil in this case, and it is possible to prevent an increase in pump capacity.
以下、図面を参照して本発明の一実施例を具体的に説明
する。第1図において、本発明が適用されるベルト式無
段変速機の一例について説明すると、符号1は電磁粉式
クラッチ、2は無段変速機であり、無段変速機2は大別
すると、入力側からにj後進の切換部3.ブーり比変換
部4および終減速部5が伝動構成されて成る。そして、
クラッチハウジング6の一方にm !4に粉式クラッチ
1が収容され、そのクラッチハウジングθの他方と、そ
こに接合されるメインケース7、更にメインケース7の
クラッチハウジング6と反対の側に接合されるサイドケ
ース8の内部に、無段変速機2の切換部3.ブーり比変
換部4および終減速部5が組付けられている。
電磁粉式クラッチ1は、エンジンからのクランク軸10
にドライブプレート11を介して一体結合するリング状
のドライブメンバ12.変速機入力軸13に回転方向に
一体的にスプライン結合するディスク状のドリブンメン
バ14を有する。そして、ドリブンメンバ14の外周部
側にコイル15が内蔵されて両メンバ12.14の間に
円周に沿いギャップ16が形成され、このギャップ16
はその内側の電磁粉を有するパウダ室17と連通してい
る。また、コイル15を具備するドリブンメンバ14の
ハブ部のスリップリング18には給電用ブラシ19が摺
接し、スリップリング18から更にドリブンメンバ14
内部を通りコイル15に結線されてクラッチ電流回路が
構成されている。
こうして、コイル15にクラッチ電流を流すと、ポ 、
ブ16を介してドライブおよびトリブンメンバ12.1
4の間に生じる磁力線により、そのギャップ16に電磁
粉が鎖状に結合して集積し、これによる結合力でドライ
ブメンバ12に対しドリブンメンバ14が滑りながら一
体結合して、クラッチ接続状態になる。一方、クラッチ
電流をカットすると、電磁粉によるドライブおよびドリ
ブンメンバ12゜14の結合力が消失してクラッチ明所
状態になる。
そして、この場合のクラッチ電流の制御を無段変速R2
の切換部3の操作に連動して行うようにすれば、P(パ
ーキング)またはNにュートラル)レンジから前進のD
(ドライブ)、Ds<スポーティドライブ)または後退
のR(リバース)レンジへの切換時に自動的にクラッチ
1が接際して、クラッチペダル操作が不要になる。
次いで無段変速機2において、切換部3は上記クラッチ
1からの入力軸13とこれに同軸上に配置された主軸2
0との間に設けられる。即ち、入力軸13に前進被検金
側を兼ねた後進ドライブ用のギヤ21が形成され、主軸
20には後進被係合側のギヤ22が回転自在に嵌合して
あり、これらのギヤ21.22が軸23で支持されたカ
ウンタギA724、軸25で支持されたアイドラギヤ2
6を介して噛合い構成される。
そして、主軸20とギヤ21および22との間に切換機
MA27が設けられる。ここで、常時噛合っている上記
ギヤ21.24.26.22はクラッチ1のコイル15
を有するドリブンメンバ14に連結しており、クラッチ
切断時のこの部分の慣性マスが比較的大きい点に対応し
て、切換機v821は主軸20のハブ28にスプライン
嵌合するスリーブ29が、シンクロ機構30゜31を介
して各ギヤ21.22に噛合い結合するように構成され
ている。
これにより、PまたはNレンジの中立位置では切換機構
27のスリーブ29がハブ28とのみ嵌合して、主軸2
0が入力軸13から切離される。次いで、スリーブ29
をシンクロ機構30を介してギヤ21側に噛合わすと、
入力軸13に対し主軸20が直結してDまたはDδレン
ジの前進状態になる。一方、スリーブ29を逆にシンク
ロ機構31を介してギヤ22側に噛合わせると、入力軸
13はギヤ21.24.26.22を介し主軸20に連
結され、エンジン動力が減速逆転して、Rレンジの後進
状態になる。
ブーり比変換部4は、上記主軸20に対しn1軸35が
平行配置され、これらの両輪20.35にそれぞれプラ
イマリプーリ36.セカンダリプーリ37が8ゎブられ
、且つ両プーリ36.37の間にエンドレスの駆動ベル
ト34が掛は波しである。プーリ36.37はいずれも
2分割に構成され、一方の固定プーリ36a。
37aに対し、他方の可動プーリ36b、37bがプー
リ間隔を可変にすべ(移動可能にされ、可動プーリ36
b、37bにはそれ自体ピストンを兼ねた油圧サーボ装
置38.39が付設され、更にセカンダリプーリ37の
可動プーリ37bにはブーり間隔を狭くする方向にスプ
リング40が付勢されている。
また、油圧制御系として作動源のオイルポンプ41がプ
ライマリプーリ36の隣りに設置される。このオイルポ
ンプ41は高圧用のギA2ポンプであり、ポンプ駆動軸
42がプライマリプーリ36.主軸20および入力!?
!!113の内部を貫通してクランク軸1oに直結し、
エンジン運転中宮に油圧を生じるようになっている。そ
して、このオイルポンプ41の油圧を制御して各油圧サ
ーボ装置38.39に給排油し、プライマリプーリ36
とセカンダリプーリ37のプーリ開隔を逆の関係に変化
して、駆動ベルト34のプーリ36.37におけるプー
リ比を無段階に変換し、無段変速した動力を副軸35に
出力する。
終減速部5は、上記ブーり変換部4の高速段側最小ブー
り比が例えば、0.5と非常に小さく、このためDJ軸
35の回転数が大きい点に鑑み、副軸35に対し1組の
中間減速ギヤ43を介して出力N144が連結される。
そして、この出力軸44のドライブギヤ45にファイナ
ルギヤ4Gが噛合い、ファイナルギヤ46かう差動機構
47を介して左右の駆動軸の車軸48、49に伝動構成
される。
第2図(2)において、セカンダリプーリ37の油圧サ
ーボ装置39について詳記すると、可動プーリ37bが
副軸35にボールスプライン50で軸方向移動可能に嵌
合し、この可動プーリ37bに段付の筒状を成すシリン
ダ51の一端が取付けられる。また、段付の筒状を成す
プランジ1−52の一端が取付具53により副軸35に
一体的に固定され、このプランジャ52の他端がシリン
ダ51の内部に0リング54でシールして液密に嵌合し
ている。そしてシリンダ51の内部において、プランジ
t−52のブーり側に油圧室55が、その反対側にバラ
ンス室56がそれぞれ形成され、油圧室55に、副軸3
5.可動プーリ37bの通′ti557によりライン圧
が供給されるようになっている。更に、プランジャ52
の垂直部52aにバランス弁60が取付けられる。
第2図Φ)にσ5いて、バランス弁60について説明す
ると、段付の弁本体61がプランジャ52の孔e2に圧
入して取付けられる。弁本体61の内部には孔63を有
し、テーバ部63aが油路64に連通している。
このテーバ部63aの部分には重錘を兼ねた弁体のチェ
ックボール65が設けられ、孔63に扱は止めリング6
6、波形のスプリング67が取付けられている。
次いで、このように構成された遠心油圧補正装置の作用
について説明する。
先ず、セカンダリプーリ37の油圧室55には、常にラ
イン圧が供給されてブーり押付は作用をしており、アイ
ドリングや低回転域ではプライマリ油圧が小さいことで
ベルト34は、第1図のように巻イ」いて低速段になる
。このとぎ、伝達トルクに対応して第3図のようにライ
ン圧が高く設定されており、このライン圧が油圧室55
でバランス弁60のチェックボール65にも作用して閉
じ易くしている。
また、低速段の変速比によりセカンダリプーリ37の回
転速度が低いことで、チェックボール65に作用する遠
心力も小さい。このため、チェックボール65はテーバ
部63aの中心に位置して閉じ、バランス室56には給
油しなくなる。
次いで、車速の上界によりプライマリ油圧が^くなると
、セカンダリプーリ37において可動プーリ37bを後
退移動しながらその内部に向ってベルト34は巻付くよ
うになり、こうして高速段側にシフトする。そこで、セ
カンダリプーリ37の回転数も高くなり、油圧室55の
給油に遠心油圧を生じ始める。一方、変速比が高速段側
に移行するに従って第3図のようにライン圧が低下する
ことで、バランス弁60のチェックボール65は開き易
くなり、そのチェツクボール65自体の遠心力も増大す
る。
そこで、所定のセカンダリ回転数でチェックボール65
は遠心力によりライン圧の押付力に打ち勝って、第2図
■)の−点鎖線のようにテーバ部63aの中心から外側
へ移動して油路64を開く。
このため、油圧室55のオイルの一部が直ちにバランス
室56に供給されて、油圧室55の遠心油圧と略等しい
遠心油圧を同様に生じる。そして、この油圧をシリンダ
51のセカンダリプーリ37と反対の方向に作用するこ
とで、油圧室55の遠心油圧が相殺されるのである。
一方、このときチェックボール65は波形のスプリング
67に押付けられるため、セカンダリ回転数が低下する
とこのスプリング67の復元力も加わってチェックボー
ル65は再び閉動作する。
第4図にd3いて、バランス弁60の他の実施例につい
て説明すると、貫通した孔63′が油路64に対し直角
の径方向に設けられ、この孔63−に中実の弁体65−
が油路64を開閉すべく挿入されている。
弁体65−の径方向外側にスプリング67−が付勢され
、その内側の閉位置がビン68で規ar11されており
、こうして上述と同様に遠心力により開閉動作する。
弁体65−のかわりにチェックボール70.70を2個
使用しても同様の効果が得られる。
以上、本発明の実施例について述べたが、これのみに限
定されるものではない。Hereinafter, one embodiment of the present invention will be specifically described with reference to the drawings. In FIG. 1, an example of a belt type continuously variable transmission to which the present invention is applied will be described. Reference numeral 1 is an electromagnetic powder clutch, 2 is a continuously variable transmission, and the continuously variable transmission 2 can be broadly classified into: J reverse switching section 3 from the input side. The boolean ratio converting section 4 and the final reduction section 5 are configured in a transmission configuration. and,
m on one side of the clutch housing 6! A powder type clutch 1 is housed in 4, and inside the other side of the clutch housing θ, a main case 7 joined thereto, and a side case 8 joined to the side opposite to the clutch housing 6 of the main case 7, Switching section 3 of continuously variable transmission 2. A boolean ratio conversion section 4 and a final reduction section 5 are assembled. The electromagnetic powder clutch 1 is connected to the crankshaft 10 from the engine.
A ring-shaped drive member 12 is integrally connected to the drive plate 11 via the drive plate 11. It has a disk-shaped driven member 14 that is integrally spline-coupled to the transmission input shaft 13 in the rotational direction. A coil 15 is built into the outer peripheral side of the driven member 14, and a gap 16 is formed along the circumference between both members 12.14.
communicates with a powder chamber 17 containing electromagnetic powder inside thereof. Further, a power feeding brush 19 is in sliding contact with a slip ring 18 of the hub portion of the driven member 14 including the coil 15, and from the slip ring 18, the driven member 14 is further attached.
A clutch current circuit is configured by passing through the inside and being connected to the coil 15. In this way, when the clutch current is passed through the coil 15, the po,
Drive and Tribe member 12.1 via
4, electromagnetic powder is combined and accumulated in the gap 16 in a chain shape, and the resulting binding force causes the driven member 14 to slide and integrally connect to the drive member 12, resulting in a clutch connected state. . On the other hand, when the clutch current is cut, the drive by electromagnetic powder and the coupling force between the driven members 12 and 14 disappear, resulting in the clutch being in a bright state. Then, the control of the clutch current in this case is controlled by continuously variable speed R2.
If this is done in conjunction with the operation of the switching unit 3, it is possible to switch from P (parking) or N to neutral) range to forward D.
(Drive), Ds<Sporty Drive) or when switching to the R (Reverse) range for reverse, clutch 1 is automatically engaged, eliminating the need for clutch pedal operation. Next, in the continuously variable transmission 2, the switching section 3 connects the input shaft 13 from the clutch 1 and the main shaft 2 disposed coaxially therewith.
0. That is, the input shaft 13 is formed with a reverse drive gear 21 that also serves as a forward inspection target side, and a reverse drive engaged side gear 22 is rotatably fitted to the main shaft 20. .22 is the counter gear A724 supported by the shaft 23, and the idler gear 2 supported by the shaft 25.
They are meshed through 6. A switching machine MA27 is provided between the main shaft 20 and the gears 21 and 22. Here, the gears 21, 24, 26, 22 that are always engaged are the coil 15 of the clutch 1.
The switching device v821 has a sleeve 29 spline-fitted to the hub 28 of the main shaft 20, which is connected to the driven member 14 having a synchronizing mechanism. 30° 31 to mesh with each gear 21, 22. As a result, in the neutral position of the P or N range, the sleeve 29 of the switching mechanism 27 is fitted only with the hub 28, and the main shaft 2
0 is disconnected from the input shaft 13. Next, the sleeve 29
When meshed with the gear 21 side via the synchronization mechanism 30,
The main shaft 20 is directly connected to the input shaft 13, resulting in a forward movement state in the D or Dδ range. On the other hand, when the sleeve 29 is reversely engaged with the gear 22 side via the synchro mechanism 31, the input shaft 13 is connected to the main shaft 20 via the gears 21, 24, 26, 22, the engine power is decelerated and reversed, and the R The range will move backwards. In the boolean ratio conversion unit 4, an n1 shaft 35 is arranged parallel to the main shaft 20, and primary pulleys 36. The secondary pulley 37 is twisted by 8°, and the endless drive belt 34 is looped between both pulleys 36 and 37. The pulleys 36 and 37 are each divided into two parts, one of which is a fixed pulley 36a. With respect to 37a, the other movable pulleys 36b and 37b are made movable so that the pulley interval is variable (the movable pulley 36
Hydraulic servo devices 38 and 39 that also serve as pistons are attached to the movable pulleys 37b and 37b of the secondary pulley 37, and a spring 40 is applied to the movable pulley 37b of the secondary pulley 37 in the direction of narrowing the boe spacing. Further, as a hydraulic control system, an oil pump 41 as an operating source is installed next to the primary pulley 36. This oil pump 41 is a high-pressure gear A2 pump, and the pump drive shaft 42 is connected to the primary pulley 36. Spindle 20 and input! ?
! ! 113 and is directly connected to the crankshaft 1o,
Hydraulic pressure is generated during engine operation. Then, the oil pressure of this oil pump 41 is controlled to supply and drain oil to each hydraulic servo device 38, 39, and the primary pulley 36
By changing the pulley opening distance of the secondary pulley 37 to the opposite relationship, the pulley ratios of the pulleys 36 and 37 of the drive belt 34 are changed steplessly, and steplessly variable power is output to the subshaft 35. The final reduction unit 5 has a high-speed stage side minimum boolean ratio of the boolean conversion unit 4 that is very small, for example, 0.5, and therefore the rotation speed of the DJ shaft 35 is high. Output N144 is connected via one set of intermediate reduction gears 43. A final gear 4G meshes with the drive gear 45 of the output shaft 44, and transmission is configured to be transmitted to the axles 48 and 49 of the left and right drive shafts via the final gear 46 and the differential mechanism 47. In FIG. 2 (2), the hydraulic servo device 39 of the secondary pulley 37 will be described in detail.A movable pulley 37b is fitted onto the subshaft 35 so as to be movable in the axial direction via a ball spline 50. One end of a cylindrical cylinder 51 is attached. Further, one end of the plunger 1-52, which has a stepped cylindrical shape, is integrally fixed to the subshaft 35 by a fitting 53, and the other end of the plunger 52 is sealed inside the cylinder 51 with an O-ring 54, and the liquid is Closely fitted. Inside the cylinder 51, a hydraulic chamber 55 is formed on the boob side of the plunger t-52, and a balance chamber 56 is formed on the opposite side.
5. Line pressure is supplied through the passage 557 of the movable pulley 37b. Furthermore, the plunger 52
A balance valve 60 is attached to the vertical portion 52a. The balance valve 60 will be described with reference to σ5 in FIG. The valve body 61 has a hole 63 inside, and a tapered portion 63 a communicates with an oil passage 64 . A check ball 65, which is a valve body and also serves as a weight, is provided in the tapered portion 63a, and a stop ring 6 is provided in the hole 63.
6. A wave-shaped spring 67 is attached. Next, the operation of the centrifugal hydraulic pressure correction device configured as described above will be explained. First, line pressure is always supplied to the hydraulic chamber 55 of the secondary pulley 37, and the boob is pressed.In idling or low rotation range, the primary hydraulic pressure is small, so the belt 34 is forced to move as shown in Fig. 1. It turns into low gear. At this point, the line pressure is set high as shown in FIG. 3 in accordance with the transmitted torque, and this line pressure is applied to the hydraulic chamber 55.
This also acts on the check ball 65 of the balance valve 60 to make it easier to close. Furthermore, since the rotational speed of the secondary pulley 37 is low due to the gear ratio of the low speed stage, the centrifugal force acting on the check ball 65 is also small. Therefore, the check ball 65 is located at the center of the tapered portion 63a and closed, and the balance chamber 56 is no longer supplied with oil. Next, when the primary oil pressure decreases due to the upper limit of the vehicle speed, the belt 34 begins to wrap around the movable pulley 37b in the secondary pulley 37 while moving backward, thereby shifting to the high speed side. Therefore, the rotational speed of the secondary pulley 37 also increases, and centrifugal oil pressure starts to be generated in the oil supply of the hydraulic chamber 55. On the other hand, as the gear ratio shifts to the high speed side, the line pressure decreases as shown in FIG. 3, so that the check ball 65 of the balance valve 60 opens more easily, and the centrifugal force of the check ball 65 itself increases. Therefore, the check ball 65 is rotated at a predetermined secondary rotation speed.
overcomes the pressing force of the line pressure due to centrifugal force and moves outward from the center of the tapered portion 63a as shown by the dashed line in FIG. Therefore, a portion of the oil in the hydraulic chamber 55 is immediately supplied to the balance chamber 56, and a centrifugal hydraulic pressure approximately equal to the centrifugal hydraulic pressure in the hydraulic chamber 55 is similarly generated. By applying this hydraulic pressure in the opposite direction to the secondary pulley 37 of the cylinder 51, the centrifugal hydraulic pressure in the hydraulic chamber 55 is offset. On the other hand, since the check ball 65 is pressed against the wave-shaped spring 67 at this time, when the secondary rotation speed decreases, the restoring force of the spring 67 is also added, and the check ball 65 is again closed. Referring to d3 in FIG. 4, another embodiment of the balance valve 60 will be described. A through hole 63' is provided in the radial direction perpendicular to the oil passage 64, and a solid valve body 65- is inserted into the hole 63'.
is inserted to open and close the oil passage 64. A spring 67- is biased on the radially outer side of the valve body 65-, and its inner closed position is set by a pin 68, and thus opens and closes by centrifugal force in the same manner as described above. A similar effect can be obtained by using two check balls 70 and 70 instead of the valve body 65-. Although the embodiments of the present invention have been described above, the present invention is not limited thereto.
以上述べたように、本発明によれば、
セカンダリプーリの油圧室とバランス室との間のプラン
ジャにバランス弁を設け、所定のセカンダリ回転数以上
の場合にのみバランス室に給油して、遠心油圧を補正す
る構成であるから、ポンプ効率の最も低いアイドリンク
等のポンプ容量不足を招くことがなくなる。
油圧室のオイルをバランス室にリークさせる方式である
から、複雑な給油手段が不要である。
バランス弁は遠心力とライン圧の押付力関係で開閉する
構成であるから、バランス弁が開くセカンダリ回転数を
適確に定めて、高回転域の遠心油圧を充分補正できる。As described above, according to the present invention, a balance valve is provided in the plunger between the hydraulic chamber and the balance chamber of the secondary pulley, and the balance chamber is supplied with oil only when the number of rotations of the secondary pulley is higher than or equal to a predetermined number of revolutions, thereby increasing the centrifugal hydraulic pressure. Since the configuration corrects for this, it is possible to avoid insufficient pump capacity in idle links, etc., which have the lowest pump efficiency. Since the system leaks oil from the hydraulic chamber to the balance chamber, there is no need for complicated oil supply means. Since the balance valve is configured to open and close based on the pressing force relationship between centrifugal force and line pressure, the secondary rotation speed at which the balance valve opens can be appropriately determined to sufficiently compensate for centrifugal oil pressure in the high rotation range.
第1図は本発明が適用されるベルト式無段変速機の一例
を示す縦断面図、第2図(2)は本発明の遠心油圧補正
装置の実施例を示す断面図、第2図(b)は同拡大断面
図、第3図はライン圧の特性図、第4図および第5図は
本発明の他の実施例を示す断面図である。
2・・・無段変速機、4・・・ブーり比変換部、37・
・・セカンダリプーリ、39・・・油圧サーボ装置、5
1・・・シリンダ、52・・・プランジャ、55・・・
油圧室、56・・・バランス交、60・・・バランス弁
、61・・・弁本体、64・・・油路、65、65−・
・・弁体、67、67−・・・スプリング。
特許出願人 富士重工業株式会社代理人 弁理士
小 橋 信 浮
量 弁理士 村 井 進
嘉3 タ
高4図 第5図FIG. 1 is a longitudinal sectional view showing an example of a belt type continuously variable transmission to which the present invention is applied, FIG. b) is an enlarged sectional view of the same, FIG. 3 is a line pressure characteristic diagram, and FIGS. 4 and 5 are sectional views showing other embodiments of the present invention. 2...Continuously variable transmission, 4...Boot ratio conversion section, 37.
...Secondary pulley, 39...Hydraulic servo device, 5
1...Cylinder, 52...Plunger, 55...
Hydraulic chamber, 56...Balance exchange, 60...Balance valve, 61...Valve body, 64...Oil passage, 65, 65--
... Valve body, 67, 67-... Spring. Patent Applicant Fuji Heavy Industries Co., Ltd. Agent Patent Attorney Nobu Kobashi Ukiyo Patent Attorney Shinyoshi Murai 3 Takashi 4 Fig. 5
Claims (2)
ンジャの片側の油圧室に対し、その反対側に遠心油圧補
正用のバランス室を設けた構成において、 上記プランジャに、遠心力とライン圧の押付力の関係で
開閉するバランス弁を設けるベルト式無段変速機の遠心
油圧補正装置。(1) In a configuration in which a hydraulic chamber on one side of the plunger that fits inside the cylinder of the secondary pulley is provided with a balance chamber for centrifugal hydraulic pressure correction on the opposite side, the pressing force of centrifugal force and line pressure is applied to the plunger. A centrifugal hydraulic correction device for a belt-type continuously variable transmission that is equipped with a balance valve that opens and closes depending on the relationship.
本体、両室を連通する油路、重錘を兼ねて所定のセカン
ダリ回転数以上で油路を開く弁体、弁体の油路を閉じる
方向に付勢するリターンスプリングを具備する特許請求
の範囲第1項記載のベルト式無段変速機の遠心油圧補正
装置。(2) The balance valve mentioned above consists of a valve body attached to a plunger, an oil passage that communicates both chambers, a valve body that also serves as a weight and opens the oil passage at a predetermined secondary rotation speed or more, and a direction in which the oil passage of the valve body is closed. The centrifugal hydraulic correction device for a belt-type continuously variable transmission according to claim 1, further comprising a return spring that biases the centrifugal hydraulic pressure correction device for a belt type continuously variable transmission.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16302786A JPS6319462A (en) | 1986-07-11 | 1986-07-11 | Centrifugal hydraulic pressure correcting device for belt type continuously variable transmission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16302786A JPS6319462A (en) | 1986-07-11 | 1986-07-11 | Centrifugal hydraulic pressure correcting device for belt type continuously variable transmission |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6319462A true JPS6319462A (en) | 1988-01-27 |
Family
ID=15765795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16302786A Pending JPS6319462A (en) | 1986-07-11 | 1986-07-11 | Centrifugal hydraulic pressure correcting device for belt type continuously variable transmission |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6319462A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980057745A (en) * | 1996-12-30 | 1998-09-25 | 김영귀 | Pulley hydraulic cylinder for continuously variable transmission |
JP2006064008A (en) * | 2004-08-24 | 2006-03-09 | Toyota Motor Corp | Hydraulic control device for belt type continuously variable transmission for vehicle |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6243449B2 (en) * | 1980-07-29 | 1987-09-14 | Tokuyama Soda Kk |
-
1986
- 1986-07-11 JP JP16302786A patent/JPS6319462A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6243449B2 (en) * | 1980-07-29 | 1987-09-14 | Tokuyama Soda Kk |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980057745A (en) * | 1996-12-30 | 1998-09-25 | 김영귀 | Pulley hydraulic cylinder for continuously variable transmission |
JP2006064008A (en) * | 2004-08-24 | 2006-03-09 | Toyota Motor Corp | Hydraulic control device for belt type continuously variable transmission for vehicle |
JP4683323B2 (en) * | 2004-08-24 | 2011-05-18 | トヨタ自動車株式会社 | Hydraulic control device for belt type continuously variable transmission for vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4624153A (en) | Continuously variable transmission | |
CA1130112A (en) | Variable pulley transmission | |
US20080261766A1 (en) | Automatic Transmission | |
US5052990A (en) | Transmission using ball and screw mechanical actuators | |
EP0264970A2 (en) | Transmission system | |
KR19980047933A (en) | Stepless Transmission for Vehicles | |
JPH0526982B2 (en) | ||
US5846152A (en) | Continuously variable transmission | |
US5813933A (en) | Continuously variable transmission with bias springs on the drive and driven pulleys for setting a predetermined speed ratio when the cut is in neutral | |
JPH01169165A (en) | Pulley for continuously variable transmission | |
WO2020084937A1 (en) | Continuously variable transmission for vehicle | |
US20190293129A1 (en) | Frictional coupling device of vehicular power transmitting system | |
JPH0527781B2 (en) | ||
EP0147153B1 (en) | System for detecting the transmission ratio in an infinitely variable transmission including a lubricating means | |
JPH0535292B2 (en) | ||
US10989287B2 (en) | Power transmission device for vehicle | |
US4529393A (en) | Infinitely variable belt-drive transmission | |
JPS6319462A (en) | Centrifugal hydraulic pressure correcting device for belt type continuously variable transmission | |
JPH0546463B2 (en) | ||
JP3715055B2 (en) | Continuously variable transmission | |
JP3154760B2 (en) | Transmission control device for continuously variable transmission | |
JP2006250205A (en) | Gear device | |
JP2012102773A (en) | Belt-type continuously variable transmission | |
JP2004144139A (en) | Transmission | |
JPS6338747A (en) | Centrifugal hydraulic pressure correcting device for belt type continuously variable transmission |