JPH0250137B2 - - Google Patents

Info

Publication number
JPH0250137B2
JPH0250137B2 JP56025642A JP2564281A JPH0250137B2 JP H0250137 B2 JPH0250137 B2 JP H0250137B2 JP 56025642 A JP56025642 A JP 56025642A JP 2564281 A JP2564281 A JP 2564281A JP H0250137 B2 JPH0250137 B2 JP H0250137B2
Authority
JP
Japan
Prior art keywords
parts
weight
component
polymer
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56025642A
Other languages
Japanese (ja)
Other versions
JPS57139135A (en
Inventor
Kazumasa Kamata
Yoshihisa Oosaka
Masahiro Kaneda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2564281A priority Critical patent/JPS57139135A/en
Publication of JPS57139135A publication Critical patent/JPS57139135A/en
Publication of JPH0250137B2 publication Critical patent/JPH0250137B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は良好な加工性を有する塩化ビニル樹脂
組成物に関する。 ポリ塩化ビニル樹脂は良好な化学的、物理的性
質を有し、広く用いられているが、種々の意味で
加工性が悪いという欠点を有している。即ち溶融
粘度が高く流動性が悪く、加工温度が熱分解温度
に近い為に成形加工領域が狭く、ゲル化速度が遅
い為にロール混練操作等で速かに粉体から均一に
溶融物となり難く、溶融成形物の表面状態が劣悪
になる場合が多い。可塑剤の添加がこれらの欠点
の一部を解決することは良く知られているが、可
塑剤の揮発逃散等の問題がある他に機械的性質の
低下をもたらし、硬質ポリ塩化ビニル用途の全面
的解決にはほど遠い。一方塩化ビニル樹脂の成形
加工時に樹脂のゲル化速度を速めたり、成形機の
金属面への粘着性を低下させることによつて、生
産性を向上させかつ成形品の表面を平滑にし、長
時間連続成形しても成形品に変らぬ光沢を付与さ
せたり、ブローボトル成形時のいわゆるドローダ
ウン防止、大型射出成形機での流動性の改良等の
加工性の向上を目的として、塩化ビニル樹脂と相
溶性を有する共重合体のいくつかが加工助剤とし
て検討され、一部の用途では大きな成果を得てい
るが、現在市場で使用されている主なものはメチ
ルメタクリレートを主成分とする共重合体であ
る。これらを混合した塩化ビニル樹脂は、ゲル化
速度の促進効果が大きく、又高温での引張り伸度
が増大するなど、二次加工性が大巾に改善される
が、一方では押出フイルムの光沢の欠如、未ゲル
化物の発生(フイツシユ・アイとも呼ばれる)等
の成形品の商品価値を落とすような欠点をも有し
ている。又上記メチルメタクリレート共重合体は
本質的に金属面への粘着性が大きく、その上溶融
粘度が高いため、メチルメタクリレートを主成分
とする共重合体を添加した塩化ビニル系樹脂組成
物の成形加工時にはトルク(混練抵抗)が著しく
増大するという、生産性に関連した欠点が見出さ
れている。これらの欠点を改善する目的で種々の
滑剤の併用も検討されているが、塩化ビニル系樹
脂組成物の物理的性質の保持面から使用量に上限
があるうえ、この範囲内でも滑性の持続性の欠
除、成形品の表面へのブルーム、加工成形時の金
型等への滑剤の付着(プレート・アウトともい
う)等の欠点がさらに生起するため、一般的な解
決法とはなりえていない。 上記の問題点を一挙に解決する組成物として、
すなわち、塩化ビニル樹脂の透明性を保持し、ド
ローダウン等の加工性の改良、成形時の流動性の
向上、高温での伸度の改良、カレンダーリングの
際のロール面からの離型性など、滑性の長期持続
性に極めて優れた特性を有する組成物も考案さ
れ、かなりの効果を上げているが、生産性の向
上、品質の向上、省エネルギー等の見地から塩化
ビニル樹脂の加工時に流動性が良好で、さらに滑
性の持続性の大きい加工助剤が求められており、
上記の組成物では限界がある。又配合によつては
成形加工時に金型等への付着物の増加(プレー
ト・アウト)が見られることもあり、市場の要求
を充分に満足しているとはいえない状態である。 本発明者らは以上の点を考慮して、広範囲な検
討を行つた結果、前記ポリメチルメタクリレート
が有する優れた加工性を有しながら優れた流動性
と滑性の持続性をも有し、しかもプレートアウト
現象のない組成物を得ることに成功し、本発明に
到達した。 本発明は()少くとも80重量%が塩化ビニル
であるポリ塩化ビニル重合体および/又は共重合
体99.95〜90重量部と、()(A)メチルメタクリレ
ート5〜100重量%と、それと共重合可能なモノ
マー95〜0重量%とからなるモノマー又はモノマ
ー混合物を重合して得られる、100mlのクロロホ
ルム中に0.1gの重合体を溶解した溶液について、
25℃で測定した還元粘度(ηsp/C)が2以下で
ある非ゴム状重合体又は共重合体5〜45重量部の
存在下に、(B)アルキル基の炭素数が1〜18のアク
リル酸アルキル100〜30重量%とアルキル基の炭
素数が1〜18のメタクリル酸アルキル70〜0重量
%とからなるモノマー又はモノマー混合物40〜70
重量部を、(B)成分の重合体のηsp/Cが1以下に
なるような条件で重合し、得られた(A)、(B)両成分
を含む重合体の存在下に、(C)メチルメタクリレー
ト50〜100重量%とそれと共重合可能なモノマー
50〜0重量%とからなるモノマー又はモノマー混
合物5〜40重量部を重合して得られる三段重合物
0.05〜10重量部とからなる、良好な加工性を有す
る塩化ビニル樹脂組成物であり、ポリメチルメタ
クリレートの有する、加工性改良効果を具備した
まま、優れた加工性と滑性の持続性を有し、しか
も成形加工時にブリードやプレートアウトのない
透明な新規な塩化ビニル系樹脂組成物を提供する
ものである。 本発明の特徴は()成分において、低分子量
のアクリル酸エステルの重合体あるいはアクリル
酸エステルとメタクリル酸エステルの共重合体
((B)成分)という、いわゆる滑性を左右する成分
を用い、さらにこの成分の内側と外側に塩化ビニ
ル樹脂を相溶性の良好な比較的分子量の小さな、
メタクリレート系重合体(A)(C)成分を配置した、い
わゆるサンドイツチ構造をとらせることにある。
このサンドイツチ構造は少くとも5%がメチルメ
タクリレートである重合体で、かつ、ηsp/Cが
2以下である非ゴム状重合体又は共重合体ラテツ
クス((A)成分)の存在下に、メタクリル酸エステ
ルと、アクリル酸エステルの混合物又はアクリル
酸エステル((B)成分)を(B)成分の重合体のηsp/
Cが1.0以下になるような条件下で添加重合し、
次いでこのラテツクスの存在下に(C)成分として、
メチルメタクリレート又は、これを共重合可能な
モノマー成分50%以下を含む混合物を添加重合す
ることによつて得られる特に乳化系の三段重合法
を適用することにより容易に得られる。このサン
ドイツチ構造を形成するためには、二段目以降の
存在下重合に於て、乳化剤を新たに添加せずに重
合を行い、(B)成分、(C)成分単独のポリマーの形成
を実質的に抑えるのが好ましい。高重合度のポリ
メチルメタクリレートはその軟化温度が高いため
に、通常の塩化ビニル樹脂の加工条件では、分散
が充分になされず、未ゲル化物を多く残してしま
う。又加工条件を強めて分散させ、未ゲル化物を
なくするまで加工を続けると、塩化ビニル樹脂と
の混練で未ゲル化物は消失するが、熱劣化のた
め、実用に向かなくなる。そのために分散性の良
好な、ηsp/Cが小さいメチルメタクリレート系
成分(A)を核とし、その周囲に滑性効果の大なる(B)
成分を極めて密に重合させ、更にその外側に塩化
ビニル樹脂と相溶性が良好であるメチルメタクリ
レート系モノマーを重合させることによつて得た
組成物を塩化ビニル樹脂に配合した本発明組成物
は、塩化ビニル樹脂の加工性改良に優れた効果を
発揮するのみでなく、(B)成分中にも塩化ビニル樹
脂と相溶性の良好なメタクリル酸エステルを含ん
でいるため、ブリード、プレートアウトの発生と
いう成形加工時の難問を解消出来、その上に塩化
ビニル樹脂の透明性を損わないという優れた性質
をもつている。しかも(B)成分中に含まれたメタク
リル酸エステルは金属面への付着性が大きいと考
えられるにもかかわらず、加工性と滑性の持続性
を阻害せず、むしろ加工性と滑性の持続性を高め
るという驚くべき効果をも有しており、以下の効
果は従来の公知の組成物では達成することが出来
ない。例えばサンドイツチ構造の中身に当る(B)成
分に塩化ビニル樹脂と相溶性の悪い、スチレンを
加えた場合ブリード、プレートアウト等を起しや
すくなり成形加工時に金型等への付着物が増加す
るのみでなく、滑性の長期持続性にも限界があ
る。 本発明は三段重合法によるサンドイツチ構造と
各成分特に(B)成分であるメタクリル酸エステルと
アクリル酸エステルとの相剰効果によつてすぐれ
た滑性と加工特性を合せ持つた組成物を提供し、
このような組成と構造によつて、目的とする組成
物が得られる。このサンドイツチ構造組成物は、
塩化ビニル樹脂の加工性と滑性あるいは、金属面
からの離型性、金属面でのブリード、プレートア
ウトの解消に極めて重要な要件であり、(A)成分、
(B)成分、(C)成分をそれぞれ単独で用いても、又(A)
(B)(C)成分に使用されるモノマーを同時に一段で重
合させても優れた滑性は得られない。又(B)成分よ
りなる重合体を核として、その外側に(A)成分又は
(C)成分よりなる重合体を設けた二層構造(例えば
(B)成分をまず重合し、ついで(B)成分の存在下で(A)
成分を重合する二段重合で得られる)の場合でも
サンドイツチ構造と異り、金属面からの離型性や
滑性の長期持続性が劣る。更に(C)成分が存在せ
ず、(A)成分を芯とし、(B)成分を外層に有する場
合、(B)成分のTgが低いため凝固、乾燥工程でブ
ロツク化され、塩化ビニル樹脂に分散できるよう
な粉体として工業的に得ることが困難である。 本発明の組成物に用いられる三段重合物100重
量部中(A)成分は5〜45部、好ましくは20〜40部で
ある、45部をこえると滑性が損われ、また5部未
満では加工性が損われ、且つ滑性の持続性も悪く
なる。(A)成分の分子量が小であることが本発明の
一つの特徴であり、少くともηsp/Cが2以下で
あるような分子量であることが優れた塩化ビニル
樹脂との分散性を示し、又加工性と滑性の持続性
を発揮するために必要である。2を越える場合で
も滑性の持続性は得られるが、塩化ビニル樹脂へ
の分散性は低下し、フイツシユアイ等を発生しや
すくなる。(A)成分は、ポリメチルメタクリレート
もしくは5重量%以上のメチルメタクリレートを
含む共重合体であるが、メチルメタクリレートの
共重合の相手モノマーには特に制限はなく、最終
目的に応じて適当な単量体を用いることが出来
る。例えば芳香族ビニル、不飽和ニトリル、ビニ
ルエステル、アクリル酸エステル、又はメチルメ
タクリレート以外のメタクリル酸エステル等のう
ち一種又は二種以上が用いられるが使用量が95%
をこえると、本発明の特徴が損われてくるので好
ましくない。更にジビニルベンゼン、アリルメタ
クリレート等の多官能性単量体を(A)成分に用いる
ことも可能であるが、この場合使用量は2.0%以
下が好ましい。 三段重合物100重量部中の(B)成分の含量は40〜
70部、好ましくは50〜60部である。40部未満では
滑性が損われ、又70部をこえると、表面特性(光
沢)が損われる、(B)成分の大きな特徴は分子量を
極めて低く保つことであり、(B)成分重合体の
ηsp/Cが1.0以下にすることが優れた滑性の持続
性を得るために必要であり、好ましくはηsp/C
は0.5前後である。ηsp/Cが1.0を越えると滑剤
的効果が損われ、最終的に三段重合物は優れた滑
性を示さなくなる。(B)成分を構成するモノマー
中、メタクリル酸エステルは70〜0重量%、アク
リル酸エステルは100〜30重量%である。アクリ
ル酸エステルが70%を越えると、最終生成物のゲ
ル化挙動が遅れるが、金属面からの離型性、流動
性など滑性への効果は良好である。しかし30%よ
り少ない場合、滑性効果が極端に悪くなる。(B)成
分で用いられるアクリル酸エステルとしては、例
えばエチルアクリレート、ブチルアクリレート、
イソブチルアクリレート、2−エチルヘキシルア
クリレート等が使用出来、メタクリル酸エステル
としては、例えばメチルメタクリレート、エチル
メタクリレート、ブチルメタクリレート、2−エ
チルヘキシルメタクリレート等が使用出来、アク
リル酸エステル、メタクリル酸エステル共に、ガ
ラス転移温度の低い重合体を与える単量体例えば
ブチルアクリレート、2エチルヘキシルアクリレ
ート、ブチルメタクリレート、2−エチルヘキシ
ルメタクリレート等を用いた場合に効果が大き
い。又その成果を発揮させるためには、(B)成分中
のメタクリル酸エステルとアクリル酸エステルが
ランダム共重合の形をとらせることが必要であ
り、メタクリル酸エステルにアクリル酸エステル
をグラフトさせたり、又はその逆にした結合様式
をとらせることは好ましくない。即ち、生成物の
中に例えばブチルアクリレート等の結合がブロツ
ク的に存在すると、最終生成物を塩化ビニル樹脂
に混合した組成物は透明性を失うことになる。 三段重合物100重量部中の(C)成分の含量は5〜
40部である。5部未満では優れた加工性を充分に
発揮出来ず、又凝固、脱水、乾燥等の後工程で二
次凝集をおこしやすくなり、生産性の面で問題が
ある。又40部をこえると、滑性の長期持続性を失
うことになる。(C)成分は50%以下量のメチルメタ
クリレートと共重合可能なモノマーを含むことが
出来るが、最終的に優れた加工性を有効に付与す
るためには、メチルメタクリレート単独モノマー
の方が好ましい。又(C)成分のηsp/Cは特に規制
しなくても本発明の特徴である、良好な加工性と
持続滑性を損なうことはないが、ドローダウン防
止効果等の加工性を重視する場合は、2以上に、
また分散性を重視し、フイツシユアイ等をきらう
場合には2以下にすることが好ましい。この場合
でも高重合度のポリメチルメタクリレートは軟化
温度が高いため、塩化ビニル樹脂の加工条件にお
いては、分散性が充分になされず、未ゲル化物を
多く残してしまうために、製造する際には、生成
を極力押えなければならない。三段重合物の合成
は特に乳化重合で行われることが好ましいが、そ
れに用いる乳化剤は通常知られているものが、又
重合開始剤としては、水溶性、油溶性の単独系又
はレドツクス系が用いられる。又重合体のηsp/
Cは、連鎖移動剤、重合温度等の一般の方法で任
意に調節される。以上の要領で合成された三段重
合物()を塩化ビニル樹脂()と混合する方
法は一般に行われている方法に従い、特に制限は
ない。得られた塩化ビニル樹脂組成物には、必要
により安定剤、滑剤、可塑剤、耐衝撃強化剤、着
色剤、充填剤、発泡剤等を加えることも出来る。
下記実施例中、部は重量部を示す。 実施例 1 撹拌機および環流冷却器つき反応容器にイオン
交換水280部、ジオクチルスルホコハク酸ソーダ
1.5部、過硫酸アンモニウム2.0部、(A)成分のメチ
ルメタクリレート30部、n−オクチルメルカプタ
ン0.05部の混合物を仕込み、容器内を窒素にて置
換したのち撹拌下で反応容器を65℃に昇温して、
2時間加熱撹拌した。つづいて、(B)成分のn−ブ
チルメタクリレート25部、n−ブチルアクリレー
ト25部、n−オクチルメルカプタン0.5部の混合
物を1時間かゝつて滴下し、添加終了後、更に2
時間撹拌した。しかる後、この反応系に(C)成分の
メチルメタクリレート20部、n−オクチルメルカ
プタン0.03部の混合物を30分間かゝつて添加し、
更に2時間撹拌し、重合を終了した。得られたエ
マルジヨンは冷却後、塩化アルミニウムを用いて
塩析し、過、洗浄、乾燥して重合物を製造し
た。 比較例 1 実施例1で用いた反応容器にイオン交換水280
部、ジオクチルスルホコハク酸ソーダ1.5部、過
硫酸アンモニウム20部、(B)成分のブチルメタクリ
レート25部、ブチルアクリレート25部、n−オク
チルメルカプタン0.5部の混合物を仕込み、容器
内を窒素置換した後、撹拌下で反応容器を65℃に
昇温して2時間加熱撹拌する。つづいて(C)成分の
メチルメタクリレート50部とn−オクチルメルカ
プタン0.08部との混合物を30分かけて添加し、更
に2時間撹拌して重合を終了し、以下実施例1と
同様にして重合物を製造した。 比較例 2 比較例1における(C)成分を本比較例の(A)成分と
して用い、(B)成分を添加重合し、実施例1と同様
にして重合物を製造した。 比較例 3 反応容器にイオン交換水280部、ジオクチルス
ルホコハク酸ソーダ1.5部、過硫酸アンモニウム
2.0部、メチルメタクリレート50部、n−ブチル
メタクリレート25部、ブチルアクリレート25部、
n−オクチルメルカプタン1.2部を仕込み、容器
内を窒素置換した後、撹拌下で反応容器を65℃に
昇温して、2時間加熱撹拌して、重合を終了し、
以下実施例1と同様にして重合物を製造した。上
記各例の重合物の適量をポリ塩化ビニル樹脂(平
均重合度−700)100部、ジブチル錫メルカプト
2.0部、エポキシ系助剤1.0部、ジブチル錫マレー
ト0.5部、滑剤0.3部と共にヘンシエルミキサーに
て混合して得られた塩化ビニル系樹脂組成物の加
工性の測定結果を表1にまとめて示した。なお比
較例4は、重合物を添加しないで評価したもので
ある。 表1から明らかなように、全ての成分を一段で
重合した比較例3は、滑性効果は全く認められ
ず、(A)成分、(B)成分からなる二段重合物の比較例
2は、本発明に比較し滑性が著しく劣り、未ゲル
化物が若干見られ、透明性も劣る。比較例1は、
ロール滑性は若干有るが、持続滑性(スチツクネ
ス)が本発明の組成物より著しく劣り、その上未
ゲル化物が見られる。これに対し本発明例はすべ
ての面で優れている。 なお、表中の測定条件は下記の通りである。 1 ロール滑性:6インチロールを用い、ロール
混練温度200℃×195℃、ロール間隔1mm、試料
100gにて混練し5分後にロール表面からの剥
離性を比較した。評価は5点法で5が剥離最
高、1が剥離最低、数値の5に近い程滑性が大
になることを示す。なおphrは、ポリ塩化ビニ
ル100部に対する重合物の部数である。 2 スチツクネス:ロール滑性に用いた配合と同
一で、ロール混合温度205℃×200℃、間隔1
mm、試料100gにて混練(但し、重合物添加量
は塩化ビニル樹脂に対して1.0phr)し、ロール
面にシートが粘着し、はがれなくなる時間を測
定する。この時間が長い程高温での滑性持続性
が優れている。 3 未ゲル化物;プレートアウト:ロール滑性に
用いた配合と同一で重合物添加量は塩化ビニル
樹脂に対して20phrの試料を用いて、180℃×
175℃で5分混練し、0.3mmのシートを作成し、
未ゲル化物の有無を判定した。又その時ロール
表面の付着物の有無でプレートアウトを判定し
た。プレートアウトの判定は上記と同じ条件で
10分間混練した場合についても行つた。 4 透明性:ロール滑性に用いた配合と同一で重
合物添加量は塩化ビニル樹脂に対し20phrの試
料を用いて、5分混練した試料を185℃で加圧
プレスし、厚さ2mmのプレス板を作成後、積分
球式ヘーズメーターで測定した(JIS−6714に
準ず)。 5 ブローボトル成形性:塩化ビニル樹脂(平均
重合度720)100部にジブチル錫メルカプト20
部、ジブチル錫マレートポリマー0.5部、滑剤
1.0部、各例の重合物1.0部を配合した試料を用
いて、ブロー成形機(40mmφ)で押出し、5秒
時点でのバリソンの重さを測り流動性、長さを
測りドローダウン性、太さを測りダイスウエル
挙動とし、重合物を含まない試料を標準とし、
総合的にブランクよりすぐれているもの◎ブラ
ンク〇ブランクより劣るもの△非常に劣るもの
×とした。
The present invention relates to a vinyl chloride resin composition having good processability. Although polyvinyl chloride resin has good chemical and physical properties and is widely used, it has the drawback of poor processability in various ways. In other words, the melt viscosity is high and the fluidity is poor, the processing temperature is close to the thermal decomposition temperature, so the forming processing area is narrow, and the gelation rate is slow, so it is difficult to quickly and uniformly transform the powder from a powder into a molten product by roll kneading operations, etc. , the surface condition of the melt-molded product often becomes poor. It is well known that the addition of plasticizers solves some of these drawbacks, but in addition to problems such as plasticizer volatilization and escape, it also causes a decrease in mechanical properties, making it difficult to fully utilize rigid polyvinyl chloride. This is far from a solution. On the other hand, by increasing the gelation rate of the resin during molding processing of vinyl chloride resin and reducing the adhesion to the metal surface of the molding machine, productivity can be improved and the surface of the molded product can be smoothed, allowing for a long time. With the aim of improving processability, such as giving the molded product a gloss that does not change even when continuously molded, preventing so-called drawdown during blow bottle molding, and improving fluidity in large injection molding machines, we have developed vinyl chloride resin and Although several compatible copolymers have been investigated as processing aids and have achieved great success in some applications, the main ones currently in use on the market are methyl methacrylate-based copolymers. It is a polymer. PVC resin mixed with these has a large effect of accelerating the gelation rate and has a large improvement in secondary processability, such as an increase in tensile elongation at high temperatures, but on the other hand, the gloss of extruded film is It also has drawbacks that reduce the commercial value of molded products, such as defects and the occurrence of ungelled substances (also called gelatinized eyes). In addition, since the above-mentioned methyl methacrylate copolymer inherently has high adhesiveness to metal surfaces and high melt viscosity, it is difficult to mold a vinyl chloride resin composition to which a copolymer containing methyl methacrylate as a main component is added. A productivity-related drawback has been found in that sometimes the torque (kneading resistance) increases significantly. The use of various lubricants in combination is being considered in order to improve these drawbacks, but there is an upper limit to the amount used in order to maintain the physical properties of the vinyl chloride resin composition, and even within this range, it is difficult to maintain lubricity. This method cannot be a general solution because it has additional drawbacks such as lack of stability, blooming on the surface of the molded product, and adhesion of lubricant to the mold during processing and molding (also called plate-out). not present. As a composition that solves the above problems all at once,
In other words, it maintains the transparency of vinyl chloride resin, improves processability such as drawdown, improves fluidity during molding, improves elongation at high temperatures, and releasability from the roll surface during calendering. Compositions with extremely long-lasting lubricity properties have also been devised, and have been highly effective. There is a need for processing aids with good properties and long-lasting lubricity.
The above compositions have limitations. Furthermore, depending on the formulation, an increase in deposits on molds, etc. (plate-out) may be observed during molding, and it cannot be said that market demands are fully satisfied. Taking the above points into consideration, the present inventors conducted extensive studies and found that while having the excellent processability of the polymethyl methacrylate, it also has excellent fluidity and long-lasting lubricity. Furthermore, we succeeded in obtaining a composition free from the plate-out phenomenon, and arrived at the present invention. The present invention comprises () 99.95 to 90 parts by weight of a polyvinyl chloride polymer and/or copolymer of which at least 80% by weight is vinyl chloride; () 5 to 100% by weight of (A) methyl methacrylate; For a solution of 0.1 g of polymer in 100 ml of chloroform obtained by polymerizing a monomer or monomer mixture consisting of 95-0% by weight of possible monomers:
In the presence of 5 to 45 parts by weight of a non-rubber-like polymer or copolymer having a reduced viscosity (ηsp/C) of 2 or less as measured at 25°C, (B) acrylic whose alkyl group has 1 to 18 carbon atoms. 40 to 70% monomer or monomer mixture consisting of 100 to 30% by weight of alkyl acid and 70 to 0% by weight of alkyl methacrylate whose alkyl group has 1 to 18 carbon atoms
Part by weight is polymerized under conditions such that ηsp/C of the polymer of component (B) becomes 1 or less, and in the presence of the obtained polymer containing both components (A) and (B), ) 50-100% by weight of methyl methacrylate and monomers copolymerizable with it
A three-stage polymer obtained by polymerizing 5 to 40 parts by weight of a monomer or monomer mixture consisting of 50 to 0% by weight.
It is a vinyl chloride resin composition with good processability, consisting of 0.05 to 10 parts by weight, and has excellent processability and long-lasting lubricity while maintaining the processability improvement effect of polymethyl methacrylate. Moreover, the present invention provides a new transparent vinyl chloride resin composition that does not cause bleed or plate-out during molding. The feature of the present invention is that, in component (), a low molecular weight acrylic ester polymer or a copolymer of acrylic ester and methacrylic ester (component (B)), which affects so-called lubricity, is used. Inside and outside of this component, vinyl chloride resin is a relatively small molecular weight resin with good compatibility.
The purpose is to form a so-called Sanderch structure in which the methacrylate polymer (A) and (C) components are arranged.
This sandwich structure is made of a polymer containing at least 5% methyl methacrylate, and methacrylic acid Mixture of ester and acrylic ester or acrylic ester (component (B)) to ηsp/ of the polymer of component (B)
Addition polymerization is carried out under conditions such that C becomes 1.0 or less,
Then, in the presence of this latex, as component (C),
It can be easily obtained by addition polymerization of methyl methacrylate or a mixture containing 50% or less of a monomer component copolymerizable with methyl methacrylate, especially by applying a three-stage emulsion polymerization method. In order to form this sandwich structure, in the second and subsequent stages of polymerization, the polymerization is carried out without adding any additional emulsifier, and the formation of a polymer consisting of components (B) and (C) alone is substantially prevented. It is preferable to keep it to a minimum. Since polymethyl methacrylate with a high degree of polymerization has a high softening temperature, it is not sufficiently dispersed under normal vinyl chloride resin processing conditions, leaving a large amount of ungelled material. Furthermore, if the processing conditions are strengthened for dispersion and the processing is continued until the ungelled matter is eliminated, the ungelled matter will disappear by kneading with the vinyl chloride resin, but it will be unsuitable for practical use due to thermal deterioration. For this purpose, the methyl methacrylate component (A) with good dispersibility and low ηsp/C is used as the core, and the surrounding material (B) has a large slipping effect.
The composition of the present invention is obtained by blending a composition obtained by polymerizing the components extremely densely and then polymerizing a methyl methacrylate monomer having good compatibility with the vinyl chloride resin on the outside of the polymer with the vinyl chloride resin. Not only does it have an excellent effect on improving the processability of vinyl chloride resin, but component (B) also contains methacrylic acid ester, which has good compatibility with vinyl chloride resin, resulting in the occurrence of bleed and plate-out. It has the excellent property of solving difficult problems during molding and not impairing the transparency of vinyl chloride resin. Moreover, although the methacrylic acid ester contained in component (B) is thought to have a high adhesion to metal surfaces, it does not impede the sustainability of processability and lubricity, but rather improves processability and lubricity. It also has the surprising effect of increasing sustainability, and the following effects cannot be achieved with conventional known compositions. For example, if styrene, which has poor compatibility with vinyl chloride resin, is added to component (B), which is the content of the sandwich structure, bleed, plate-out, etc. will easily occur, and the amount of deposits on the mold etc. will increase during the molding process. Moreover, there is a limit to the long-term sustainability of the slipperiness. The present invention provides a composition that has excellent lubricity and processability due to the Sanderutsch structure obtained by a three-stage polymerization method and the mutual effect of each component, especially component (B), methacrylic ester and acrylic ester. death,
With such a composition and structure, a desired composition can be obtained. This sandwich structure composition is
These are extremely important requirements for the processability and lubricity of vinyl chloride resin, releasability from metal surfaces, bleeding on metal surfaces, and eliminating plate-out.
Even if component (B) and component (C) are used alone, or (A)
Even if the monomers used for components (B) and (C) are simultaneously polymerized in one step, excellent lubricity cannot be obtained. In addition, the polymer consisting of component (B) is used as a core, and the component (A) or
A two-layer structure with a polymer consisting of component (C) (e.g.
Component (B) is first polymerized, and then (A) is polymerized in the presence of component (B).
Even in the case of two-stage polymerization (obtained by two-stage polymerization of components), unlike the Sanderch structure, the mold releasability from the metal surface and the long-term sustainability of lubricity are inferior. Furthermore, if component (C) is not present, component (A) is the core, and component (B) is the outer layer, component (B) has a low Tg and is blocked during the coagulation and drying process, making it difficult to convert into vinyl chloride resin. It is difficult to obtain it industrially as a powder that can be dispersed. The amount of component (A) in 100 parts by weight of the three-stage polymer used in the composition of the present invention is 5 to 45 parts, preferably 20 to 40 parts. If it exceeds 45 parts, the lubricity will be impaired, and if it is less than 5 parts. In this case, the processability is impaired and the durability of the lubricity is also deteriorated. One of the characteristics of the present invention is that the molecular weight of component (A) is small, and the molecular weight such that ηsp/C is at least 2 or less indicates excellent dispersibility with the vinyl chloride resin. It is also necessary to maintain processability and lubricity. Even if it exceeds 2, sustained lubricity can be obtained, but the dispersibility in the vinyl chloride resin is lowered and fish eyes are more likely to occur. Component (A) is polymethyl methacrylate or a copolymer containing 5% by weight or more of methyl methacrylate, but there is no particular restriction on the partner monomer for copolymerization of methyl methacrylate, and an appropriate monomer may be used depending on the final purpose. You can use your body. For example, one or more of aromatic vinyl, unsaturated nitriles, vinyl esters, acrylic esters, methacrylic esters other than methyl methacrylate, etc. are used, but the amount used is 95%.
Exceeding this is not preferable because the features of the present invention will be impaired. Furthermore, it is also possible to use polyfunctional monomers such as divinylbenzene and allyl methacrylate as component (A), but in this case, the amount used is preferably 2.0% or less. The content of component (B) in 100 parts by weight of the three-stage polymer is 40~
70 parts, preferably 50-60 parts. If it is less than 40 parts, the lubricity will be impaired, and if it exceeds 70 parts, the surface properties (gloss) will be impaired.The major feature of component (B) is to keep the molecular weight extremely low; It is necessary for ηsp/C to be 1.0 or less in order to obtain excellent sustainability of slipperiness, and preferably ηsp/C
is around 0.5. When ηsp/C exceeds 1.0, the lubricant effect is impaired, and ultimately the three-stage polymer no longer exhibits excellent lubricity. Among the monomers constituting component (B), methacrylic acid ester accounts for 70 to 0% by weight, and acrylic acid ester accounts for 100 to 30% by weight. If the content of acrylic ester exceeds 70%, the gelation behavior of the final product will be delayed, but the effect on lubricity such as mold releasability from metal surfaces and fluidity will be good. However, if it is less than 30%, the lubricity effect becomes extremely poor. Examples of the acrylic ester used in component (B) include ethyl acrylate, butyl acrylate,
Isobutyl acrylate, 2-ethylhexyl acrylate, etc. can be used. As the methacrylic ester, for example, methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, etc. can be used. Both acrylic ester and methacrylic ester have a glass transition temperature. The effect is great when monomers that give a low polymer content, such as butyl acrylate, 2-ethylhexyl acrylate, butyl methacrylate, 2-ethylhexyl methacrylate, etc. are used. In addition, in order to achieve this result, it is necessary for the methacrylic ester and acrylic ester in component (B) to take the form of random copolymerization, such as grafting an acrylic ester to a methacrylic ester, Or, it is not preferable to have the binding mode reversed. That is, if a bond such as butyl acrylate is present in the product as a block, the composition obtained by mixing the final product with a vinyl chloride resin will lose its transparency. The content of component (C) in 100 parts by weight of the three-stage polymer is 5~
There are 40 copies. If it is less than 5 parts, excellent workability cannot be fully exhibited, and secondary agglomeration is likely to occur in post-processes such as coagulation, dehydration, and drying, resulting in problems in terms of productivity. Moreover, if it exceeds 40 parts, the long-term sustainability of the slippery property will be lost. Component (C) can contain a monomer copolymerizable with methyl methacrylate in an amount of 50% or less, but methyl methacrylate alone is preferred in order to effectively impart excellent final processability. In addition, even if the ηsp/C of component (C) is not particularly regulated, it will not impair the good workability and sustained slipperiness that are the characteristics of the present invention, but when emphasis is placed on workability such as drawdown prevention effect. is more than 2,
Further, when emphasis is placed on dispersibility and fisheye etc. are to be avoided, it is preferable to set the number to 2 or less. Even in this case, polymethyl methacrylate with a high degree of polymerization has a high softening temperature, so it does not have sufficient dispersibility under the processing conditions of vinyl chloride resin, leaving a large amount of ungelled material. , generation must be suppressed as much as possible. The synthesis of the three-stage polymer is preferably carried out by emulsion polymerization, and the emulsifier used therein may be any commonly known emulsifier, and the polymerization initiator may be a water-soluble, oil-soluble single system or redox system. It will be done. Also, the polymer ηsp/
C can be arbitrarily adjusted using common methods such as chain transfer agents and polymerization temperature. The method of mixing the three-stage polymer () synthesized in the above manner with the vinyl chloride resin () is not particularly limited and may be carried out in accordance with a commonly used method. Stabilizers, lubricants, plasticizers, impact-strengthening agents, colorants, fillers, foaming agents, and the like can be added to the obtained vinyl chloride resin composition, if necessary.
In the following examples, parts indicate parts by weight. Example 1 280 parts of ion-exchanged water and sodium dioctyl sulfosuccinate were placed in a reaction vessel equipped with a stirrer and a reflux condenser.
A mixture of 1.5 parts of ammonium persulfate, 2.0 parts of ammonium persulfate, 30 parts of methyl methacrylate as component (A), and 0.05 parts of n-octyl mercaptan was charged, and after purging the inside of the container with nitrogen, the temperature of the reaction container was raised to 65°C while stirring. hand,
The mixture was heated and stirred for 2 hours. Next, a mixture of component (B), 25 parts of n-butyl methacrylate, 25 parts of n-butyl acrylate, and 0.5 parts of n-octyl mercaptan, was added dropwise over 1 hour, and after the addition was completed, 2 more parts of n-butyl methacrylate were added.
Stir for hours. Thereafter, a mixture of 20 parts of methyl methacrylate and 0.03 parts of n-octyl mercaptan as component (C) was added to the reaction system over 30 minutes.
The mixture was further stirred for 2 hours to complete the polymerization. The obtained emulsion was cooled, then salted out using aluminum chloride, filtered, washed and dried to produce a polymer. Comparative Example 1 In the reaction vessel used in Example 1, 280% ion-exchanged water was added.
1.5 parts of sodium dioctyl sulfosuccinate, 20 parts of ammonium persulfate, 25 parts of component (B) butyl methacrylate, 25 parts of butyl acrylate, and 0.5 parts of n-octyl mercaptan. The reaction vessel was heated to 65°C and stirred for 2 hours. Subsequently, a mixture of 50 parts of methyl methacrylate and 0.08 parts of n-octyl mercaptan as component (C) was added over 30 minutes, and the polymerization was completed by further stirring for 2 hours. was manufactured. Comparative Example 2 Component (C) in Comparative Example 1 was used as component (A) in this comparative example, component (B) was added and polymerized, and a polymer was produced in the same manner as in Example 1. Comparative Example 3 In a reaction vessel, 280 parts of ion-exchanged water, 1.5 parts of sodium dioctyl sulfosuccinate, and ammonium persulfate were added.
2.0 parts, 50 parts of methyl methacrylate, 25 parts of n-butyl methacrylate, 25 parts of butyl acrylate,
After charging 1.2 parts of n-octyl mercaptan and purging the inside of the container with nitrogen, the temperature of the reaction container was raised to 65°C under stirring, and the polymerization was completed by heating and stirring for 2 hours.
Thereafter, a polymer was produced in the same manner as in Example 1. Appropriate amounts of the polymers in each of the above examples were mixed with 100 parts of polyvinyl chloride resin (average degree of polymerization -700), dibutyltin mercapto.
Table 1 summarizes the processability measurement results of a vinyl chloride resin composition obtained by mixing 2.0 parts of vinyl chloride, 1.0 parts of epoxy auxiliary, 0.5 parts of dibutyltin malate, and 0.3 parts of lubricant in a Henschel mixer. Ta. Note that Comparative Example 4 was evaluated without adding any polymer. As is clear from Table 1, Comparative Example 3, in which all the components were polymerized in one step, showed no slippery effect at all, and Comparative Example 2, in which the two-stage polymerization consisted of component (A) and component (B), Compared to the present invention, the lubricity is significantly inferior, some ungelled substances are observed, and the transparency is also inferior. Comparative example 1 is
Although there is some roll slippage, the sustained slippage (stickiness) is significantly inferior to that of the composition of the present invention, and moreover, ungelled substances are observed. In contrast, the examples of the present invention are superior in all aspects. The measurement conditions in the table are as follows. 1 Roll slipperiness: using 6-inch rolls, roll kneading temperature 200°C x 195°C, roll spacing 1mm, sample
After 5 minutes of kneading with 100 g, the peelability from the roll surface was compared. The evaluation is on a 5-point scale, with 5 being the highest peeling and 1 being the lowest peeling, and the closer the value is to 5, the greater the slipperiness. Note that phr is the number of parts of the polymer relative to 100 parts of polyvinyl chloride. 2 Stiffness: Same as the formulation used for roll slipperiness, roll mixing temperature 205℃ x 200℃, interval 1
mm, 100 g of sample is kneaded (however, the amount of polymer added is 1.0 phr based on the vinyl chloride resin), and the time required for the sheet to stick to the roll surface and not peel off is measured. The longer this time, the better the durability of slipperiness at high temperatures. 3 Ungelled material; Plate out: The same formulation as that used for roll slippage, the amount of polymer added was 20 phr of vinyl chloride resin, and the sample was heated at 180°C
Knead at 175℃ for 5 minutes to create a 0.3mm sheet.
The presence or absence of ungelled material was determined. At that time, plate-out was determined based on the presence or absence of deposits on the roll surface. Plate out is determined under the same conditions as above.
The test was also carried out in the case of kneading for 10 minutes. 4. Transparency: Using a sample with the same formulation as used for roll slippage, with the amount of polymer added being 20 phr for vinyl chloride resin, the sample was kneaded for 5 minutes and then press-pressed at 185°C, and pressed to a thickness of 2 mm. After creating the plate, it was measured using an integrating sphere haze meter (according to JIS-6714). 5 Blow bottle moldability: 20 parts of dibutyltin mercapto in 100 parts of vinyl chloride resin (average degree of polymerization 720)
part, dibutyltin malate polymer 0.5 part, lubricant
A sample containing 1.0 part of the polymer of each example was extruded using a blow molding machine (40 mmφ), and the weight of the balisong was measured at 5 seconds to determine flowability, the length was measured, and the drawdown property and thickness were measured. The swell behavior is measured by measuring the swell behavior, and a sample that does not contain polymers is used as the standard.
Comprehensively superior to the blank ◎ Blank 〇 Inferior to the blank △ Very inferior ×

【表】 実施例2〜5、比較例5〜6 実施例1で製造したと同様な条件で、但し(A)の
モノマー成分をメチルメタクリレート30部、(B)の
モノマー成分をエチルメタクリレート25部、ブチ
ルアクリレート25部、(C)のモノマー成分をメチル
メタクリレート20部とし、各成分のηsp/Cをn
−オクチルメルカプタンの量で調整し、表2に示
すような種々のηsp/Cを有する実施例2〜5な
らびに比較例5〜6の重合物を製造し、実施例1
と同様の配合で各塩化ビニル樹脂組成物をつく
り、その加工性を測定し結果を表−2に示した。
表2から明らかなように、(B)成分のηsp/Cが1.0
以上の場合滑性が劣ると同様に、未ゲル化物が見
られる、これら比較例に比べ、本発明例は加工性
の全てが優れている。
[Table] Examples 2 to 5, Comparative Examples 5 to 6 Under the same conditions as in Example 1, except that the monomer component (A) was changed to 30 parts of methyl methacrylate, and the monomer component (B) was changed to 25 parts of ethyl methacrylate. , 25 parts of butyl acrylate, 20 parts of methyl methacrylate as the monomer component (C), and ηsp/C of each component as n
- Polymers of Examples 2 to 5 and Comparative Examples 5 to 6 having various ηsp/C as shown in Table 2 were prepared by adjusting the amount of octyl mercaptan, and Example 1
Each vinyl chloride resin composition was prepared using the same formulation as above, and its processability was measured. The results are shown in Table 2.
As is clear from Table 2, ηsp/C of component (B) is 1.0
In the above cases, as well as poor lubricity, ungelled materials are observed, but the examples of the present invention are superior in all aspects of processability compared to these comparative examples.

【表】 実施例6〜10、比較例7 実施例1と同様な製造条件で、但し実施例6は
(B)成分のモノマーをブチルアクリレート50部、実
施例7は(B)成分モノマーをエチルメタクリレート
35部、ブチルアクリレート15部とし、実施例8は
(A)成分モノマーをメチルメタクリレート10部、エ
チルメタクリレート20部とし、実施例9は(A)成分
モノマーを実施例8と同様にし、(C)成分をメチル
メタクリレート10部、エチルメタクリレート10部
とし、実施例10は(B)成分のモノマーをエチルメタ
クリレート35部、ブチルアクリレート30部、比較
例7は(B)成分のモノマーをエチルメタクリレート
45部、ブチルアクリレート5部とし、各々の重合
物を製造し、実施例1と同様の配合で各塩化ビニ
ル樹脂組成物を作り、その加工性を測定し、結果
を表−3に示した。表−3から明らかなように(B)
成分のブチルアクリレート含量が30重量%以下に
なると滑性が劣る。本発明例の範囲内で有ればす
べての加工性が優れている。
[Table] Examples 6 to 10, Comparative Example 7 Same manufacturing conditions as Example 1, except for Example 6.
In Example 7, the monomer of component (B) was 50 parts of butyl acrylate, and the monomer of component (B) was ethyl methacrylate.
35 parts, butyl acrylate 15 parts, and Example 8
The (A) component monomers were 10 parts of methyl methacrylate and 20 parts of ethyl methacrylate, and in Example 9, the (A) component monomers were the same as in Example 8, and the (C) component was 10 parts of methyl methacrylate and 10 parts of ethyl methacrylate. In Example 10, the monomers of component (B) were 35 parts of ethyl methacrylate and 30 parts of butyl acrylate, and in Comparative Example 7, the monomer of component (B) was ethyl methacrylate.
45 parts of vinyl chloride and 5 parts of butyl acrylate, respectively, and prepared each vinyl chloride resin composition using the same formulation as in Example 1. The processability of the resin composition was measured, and the results are shown in Table 3. As is clear from Table 3 (B)
If the butyl acrylate content of the component is less than 30% by weight, the slipperiness will be poor. All workability is excellent within the range of the examples of the present invention.

【表】【table】

Claims (1)

【特許請求の範囲】 1 () 少くとも80重量%が塩化ビニルである
ポリ塩化ビニル重合体、および/又は共重合体
99.95〜90重量部と ()(A) メチルメタクリレート5〜100重量%と、
それと共重合可能なモノマー95〜0重量%と
からなるモノマー又はモノマー混合物を重合
して得られる、100mlのクロロホルム中に0.1
gの重合体を溶解した溶液について、25℃で
測定した還元粘度(ηsp/c)が2以下であ
る非ゴム状重合体又は共重合体5〜45重量部
の存在下に、 (B) アルキル基の炭素数が1〜18のアクリル酸
アルキル100〜30重量%とアルキル基の炭素
数が1〜18のメタクリル酸アルキル70〜0重
量%とからなるモノマー又はモノマー混合物
40〜70重量部を、(B)成分の重合体のηsp/c
が1以下になるような条件で重合し、得られ
た(A)、(B)両成分を含む重合体の存在下に、 (C) メチルメタクリレート50〜100重量%と、
それと共重合可能なモノマー50〜0重量%と
からなるモノマー又はモノマー混合物5〜40
重量部を重合((A)、(B)、(C)成分の和は100重
量部)して、得られる三段重合物0.05〜10重
量部 とからなる良好な加工性を有する塩化ビニル樹脂
組成物。
[Claims] 1 () A polyvinyl chloride polymer and/or copolymer in which at least 80% by weight is vinyl chloride
99.95-90 parts by weight and ()(A) 5-100% by weight of methyl methacrylate,
0.1 in 100 ml of chloroform, obtained by polymerizing a monomer or monomer mixture consisting of it and 95 to 0% by weight of a copolymerizable monomer.
In the presence of 5 to 45 parts by weight of a non-rubber-like polymer or copolymer having a reduced viscosity (ηsp/c) of 2 or less as measured at 25°C, (B) alkyl A monomer or monomer mixture consisting of 100 to 30% by weight of alkyl acrylate whose group has 1 to 18 carbon atoms and 70 to 0% by weight of alkyl methacrylate whose alkyl group has 1 to 18 carbon atoms.
40 to 70 parts by weight of the polymer of component (B)
is 1 or less, and in the presence of a polymer containing both components (A) and (B), (C) 50 to 100% by weight of methyl methacrylate,
5 to 40% monomer or monomer mixture consisting of 50 to 0% by weight of a monomer copolymerizable with it
A vinyl chloride resin with good processability, consisting of 0.05 to 10 parts by weight of a three-stage polymer obtained by polymerizing parts by weight (the sum of components (A), (B), and (C) is 100 parts by weight). Composition.
JP2564281A 1981-02-24 1981-02-24 Vinyl chloride resin composition Granted JPS57139135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2564281A JPS57139135A (en) 1981-02-24 1981-02-24 Vinyl chloride resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2564281A JPS57139135A (en) 1981-02-24 1981-02-24 Vinyl chloride resin composition

Publications (2)

Publication Number Publication Date
JPS57139135A JPS57139135A (en) 1982-08-27
JPH0250137B2 true JPH0250137B2 (en) 1990-11-01

Family

ID=12171484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2564281A Granted JPS57139135A (en) 1981-02-24 1981-02-24 Vinyl chloride resin composition

Country Status (1)

Country Link
JP (1) JPS57139135A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0662826B2 (en) * 1985-05-13 1994-08-17 三菱レイヨン株式会社 Vinyl chloride resin composition
JP2887478B2 (en) * 1988-03-29 1999-04-26 三菱レイヨン株式会社 Processing aid for thermoplastic resin and thermoplastic resin composition using the same
KR100337614B1 (en) * 1994-12-30 2002-11-23 주식회사 엘지씨아이 Process for producing processing aid for vinyl chloride resin
KR101417941B1 (en) * 2013-07-30 2014-07-10 (주)피피아이평화 Impact PVC pipe resin composition and the Impact PVC pipe using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128654A (en) * 1977-04-15 1978-11-09 Kureha Chem Ind Co Ltd Vinyl chloride resin composition
JPS5586832A (en) * 1978-12-22 1980-07-01 Kureha Chem Ind Co Ltd Vinyl chloride resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53128654A (en) * 1977-04-15 1978-11-09 Kureha Chem Ind Co Ltd Vinyl chloride resin composition
JPS5586832A (en) * 1978-12-22 1980-07-01 Kureha Chem Ind Co Ltd Vinyl chloride resin composition

Also Published As

Publication number Publication date
JPS57139135A (en) 1982-08-27

Similar Documents

Publication Publication Date Title
EP0367198B1 (en) Lubricant for thermoplastic resin and thermoplastic resin composition comprising said lubricant
WO2000012621A1 (en) Processing aid for vinyl chloride resin and vinyl chloride resin composition containing the same
JP6573933B2 (en) Acrylic processing aid and vinyl chloride resin composition containing the same
EP0040543B1 (en) Vinyl chloride polymer composition
JP4901468B2 (en) Acrylic copolymer composition, method for preparing acrylic copolymer, and vinyl chloride resin composition containing acrylic copolymer
JPS60192754A (en) Thermoplastic resin composition
JP3631360B2 (en) Vinyl chloride resin composition
JPH0788415B2 (en) Transparency and impact improver for polyvinyl chloride
JP2515014B2 (en) Vinyl chloride resin composition
JPH0250137B2 (en)
JPS61133257A (en) Vinyl chloride resin composition
JPH062792B2 (en) Lubricants for thermoplastics
JPS5839454B2 (en) Vinyl chloride resin composition
JPH01215846A (en) Vinyl chloride resin composition
JPH037704B2 (en)
JPS6354017B2 (en)
JPH03281509A (en) Fluorinated acrylic polymer having lubricating effect and thermoplastic resin composition containing the same
JPS58129041A (en) Polyvinyl chloride resin composition
JPS61133256A (en) Vinyl chloride resin composition
JPS6112739A (en) Vinyl chloride resin composition
JPH039135B2 (en)
JPS6323947A (en) Production of polyvinyl chloride resin composition
JPS5946534B2 (en) Processability improver composition for vinyl chloride resins
JPH07278237A (en) Lubricant for thermoplastic resin and thermoplastic resin composition containing same
JPH0337255A (en) Lubricant for thermoplastic resin and thermoplastic resin composition containing the same