JPH0227363B2 - ENKABINIRUKEIJUGOTAINOSEIZOHOHO - Google Patents

ENKABINIRUKEIJUGOTAINOSEIZOHOHO

Info

Publication number
JPH0227363B2
JPH0227363B2 JP9878680A JP9878680A JPH0227363B2 JP H0227363 B2 JPH0227363 B2 JP H0227363B2 JP 9878680 A JP9878680 A JP 9878680A JP 9878680 A JP9878680 A JP 9878680A JP H0227363 B2 JPH0227363 B2 JP H0227363B2
Authority
JP
Japan
Prior art keywords
vinyl chloride
polymerization
present
vinyl
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9878680A
Other languages
Japanese (ja)
Other versions
JPS5723608A (en
Inventor
Katsuo Mitani
Takashi Maehara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP9878680A priority Critical patent/JPH0227363B2/en
Publication of JPS5723608A publication Critical patent/JPS5723608A/en
Publication of JPH0227363B2 publication Critical patent/JPH0227363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は塩化ビニル系重合体の製造方法に関す
るものである。さらに詳しくは、チオグリコール
酸アルカリ金属塩の存在下に塩化ビニルまたは塩
化ビニルを主体としこれと共重合し得る不飽和単
量体を重合することによつて熱安定性に優れた比
較的重合度の低い平均重合度を有する塩化ビニル
系重合体の製造方法に関する。 塩化ビニル系重合体の加工性は重合度依存性が
大きく、比較的重合度の低い塩化ビニル系重合体
は高流動性を要求される加工方法によく用いられ
る。しかし、重合度の低い塩化ビニル系重合体は
平均重合度が低下するに従い熱安定性が著しく低
下する欠点がある。即ち、重合度の低下に伴な
い、塩化ビニル系重合体の熱的に不安定な分子鎖
末端基構造が増加すると同時に軟化温度が低下し
て分子鎖の熱的なゆらぎが起こり易くなり、僅か
の加熱でさえも加熱分解が起こり易いことが知ら
れている。 従来、比較的重合度の低い塩化ビニル系重合体
を得る目的で、重合系の温度を上げる方法とか重
合系に連鎖移動剤を添加することが公知である。
連鎖移動剤としてはハロゲン化炭化水素類、有機
メルカプタン類がよく用いられている。しかしな
がら、重合系の温度を上昇して重合度の低い塩化
ビニル系重合体を重合する場合には、重合温度が
塩化ビニル系重合体の軟化温度と接近するために
重合過程での塩化ビニル系重合体の分解、着色が
起こり易いだけでなく、分子鎖あたりの分子末端
二重結合の割合が増すために得られた重合体の熱
安定性が著しく低下する欠点がある。また重合系
にハロゲン化炭化水素、有機メルカプタン類等の
連鎖移動剤を添加して重合度の低い塩化ビニル系
重合体を重合する場合には、重合体中に連鎖移動
剤が残存して熱安定性が損なわれるだけでなく、
重合体の分子鎖末端に連鎖移動剤の切片が結合す
るため熱的に不安定となる。 これらの欠点を解決するために、本発明者らは
長年研究を重ねた結果、本発明のチオグリコール
酸アルカリ金属塩を連鎖移動剤として重合するこ
とにより、熱安定性に優れた比較的重合度の低い
平均重合度を有する塩化ビニル重合体が得られる
ことを見い出し、本発明を完成するに至つた。す
なわち、本発明は塩化ビニル又は塩化ビニルを主
体とするビニル系単量体混合物を水性媒体中で重
合するに当り、単量体100重量部に対して0.01〜
10重量部のチオグリコール酸アルカリ金属塩の存
在下に重合することを特徴とする塩化ビニル系重
合体の製造方法を提供するものである。 本発明において使用されるチオグリコール酸ア
ルカリ金属塩は例えばチオグリコール酸リチウム
塩、チオグリコール酸ナトリウム塩、チオグリコ
ール酸カリウム塩、チオグリコール酸ルビジウム
塩、チオグリコール酸セシウム塩等が単独または
混合物として使用される。より好適にはチオグリ
コール酸ナトリウム塩、チオグリコール酸カリウ
ム塩が使用される。 本発明の実施にあたりチオグリコール酸アルカ
リ金属塩は塩化ビニルまたは塩化ビニルを主体と
しこれと共重合し得る不飽和単量体の混合物100
重量部に対して一般に0.01〜10重量部、好ましく
は0.1〜5重量部で使用される。使用量が0.01重
量部より少なくなると連鎖移動効果が僅かとな
り、比較的重合度が低くかつ熱安定性の良い塩化
ビニル系重合体が得られない。さらにまた、使用
量が10重量部を越えると熱安定性の良い平均重合
度の低い重合体がしばしば得られないことがある
ので望ましくない。 また本発明のチオグリコール酸アルカリ金属塩
は重合の最初に全量加えてもよいし、あるいは重
合反応進行中に分割してまたは連続的に添加して
もよい。 本発明の方法は上記したチオグリコール酸アル
カリ金属塩を使用するほかは懸濁重合法、乳化重
合法等公知の塩化ビニルを水性媒体中で重合する
方法と同様に行なえばよい。この場合に使用され
る懸濁剤は公知の懸濁剤でよく、例えば部分鹸化
ポリビニルアルコール、酢酸ビニル−無水マレイ
ン酸共重合体、ポリビニルピロリドン、ゼラチ
ン、デンプン、メチルセルローズ、ヒドロキシプ
ロピルセルローズ等が挙げられる。また乳化剤は
例えばラウリン酸カリウム、ラウリルサルフエー
ト、ドデシルベンゼンスルホネート等が挙げられ
る。 本発明に使用される重合開始剤としては、例え
ばラウロイルパーオキサイド、ターシヤリーブチ
ルパーオキシピバレート、ベンゾイルパーオキサ
イド、イソプロピルジオキシカーボネート、アゾ
ビスイソブチロニトリル、α,α′−アゾビス−4
−メトキシ−2,4−ジメチルパレロニトリル等
の油溶性開始剤、過酸化水素、過硫酸カリウム、
過硫酸アンモニウム等あるいはこれらと例えば鉄
塩、亜硫酸塩等とのレドツクス系等水溶性開始剤
等公知のものが例示される。 本発明において塩化ビニル単量体と共重合し得
る単量体としては、例えばエチレン、プロピレン
等のオレフイン化合物;酢酸ビニル、プロピオン
酸ビニル等のビニルエステル類;アクリル酸及び
α−アルキルアクリル酸等の不飽和モノカルボン
酸及びそのアルキルエステル類、アミド類即ちア
クリル酸、メタアクリル酸、アクリル酸エチル、
メタアクリル酸メチル、アクリル酸アミド、メタ
アクリル酸アミド;アクリロニトリル等の不飽和
ニトリル類;マレイン酸、フマール酸等の不飽和
ジカルボン酸類、そのアルキルエステル類、及び
その無水物;ビニルメチルエーテル、ビニルエチ
ルエーテル等のビニルアルキルエーテル類;その
他種々の公知の共重合性単量体が挙げられる。 本発明において、重合温度は得られる塩化ビニ
ル系重合体の重合度、連鎖移動剤であるチオグリ
コール酸アルカリ金属塩の添加量との相関で決め
られるべきであり、必ずしも限定的でないが、一
般に45〜75℃の温度範囲が好ましい。高温で多量
のチオグリコール酸アルカリ金属塩を添加して長
時間重合すると塩化ビニル系重合体がしばしば着
色することがあるので好ましくない。 本発明の方法は塩化ビニルまたは塩化ビニルを
主体とするビニル系単量体混合物の懸濁重合に好
適に応用されるが、本発明の方法を実施するにあ
たつて、重合開始剤の添加量、重合時間等は従来
塩化ビニルを水性媒体中で重合する場合に採用さ
れていた条件に準じて定めればよく、これらはと
くに限定されるものではない。 本発明を更に具体的に説明するため、以下に実
施例及び比較例をあげて説明するが、本発明はこ
れらの実施例に限定されるものではない。 尚、実施例で表示された測定値は以下の測定方
法によつた。 (1) 平均重合度 JIS K−6721の方法に準じて求めた。 (2) 熱安定性 ロール混練りシートを180℃のギヤーオーブ
ン中で熱劣化試験を行ない、黒化時間を測定し
た。 (3) 着色 サンプルを日本電色(株)製DN−K5型色差計を
用いて、明度(L)、彩度(a)、及び色相(b)を測定す
る。次いで、標準試料である酸化マグネシウム
板を用いた標準のL0、a0及びb0の値、即ち、L0
=90.8、a0=0.4、及びb0=4.0を用いて、下記
ハンター式差計によつてサンプルの色差(△
E)をNBS(National Bureau Standards)単
位で求めた。 △E(NBS) =√(0−)2+(0−)2+(0−)2 実施例 1 撹拌機付2ステンレス製オートクレーブに部
分鹸化ポリビニルアルコール1.6g(鹸化度80%)
とメチルセルロース0.8gを溶解したイオン交換
水1Kgと第1表に示す割合のチオグリコール酸ア
ルカリ金属塩とターシヤリーブチルパーオキシピ
バレートを仕込んだ後、オートクレーブを脱気
後、塩化ビニル単量体350gを仕込み、60℃で4
時間重合した。得られた塩化ビニル重合体を多量
の水で充分洗浄した後乾燥した。 かくして得られた塩化ビニル樹脂と鉛系安定
剤、滑剤を秤量し、ヘンシエルミキサーでブレン
ドした。 混合割合は次の如くである。 塩化ビニル重合体 100重量部 三塩基性硫酸鉛 2重量部 ステアリン酸鉛 2重量部 ステアリン酸 0.2重量部 次に混合試料をミキシングロールを用いて150
℃で2分間混練りして厚さ1mmのシートを作成し
た。このシートの着色を色差計を用いて測定し
た。また熱安定性は上記シートをギヤーオーブン
中180℃で熱劣化試験を行ない、黒化時間を測定
した。これらの結果を第1表に示す。 尚、比較例として本発明以外の連鎖移動剤を用
いて重合した塩化ビニル重合体の結果を第1表に
示す。
The present invention relates to a method for producing vinyl chloride polymers. More specifically, by polymerizing vinyl chloride or an unsaturated monomer mainly composed of vinyl chloride and copolymerizable with vinyl chloride in the presence of an alkali metal salt of thioglycolic acid, a relatively high polymerization degree with excellent thermal stability is obtained. The present invention relates to a method for producing a vinyl chloride polymer having a low average degree of polymerization. The processability of vinyl chloride polymers is highly dependent on the degree of polymerization, and vinyl chloride polymers with a relatively low degree of polymerization are often used in processing methods that require high fluidity. However, vinyl chloride polymers with a low degree of polymerization have the disadvantage that their thermal stability decreases significantly as the average degree of polymerization decreases. In other words, as the degree of polymerization decreases, the thermally unstable molecular chain end group structure of the vinyl chloride polymer increases, and at the same time, the softening temperature decreases, making it easier for thermal fluctuations in the molecular chain to occur. It is known that thermal decomposition is likely to occur even when heated. Conventionally, for the purpose of obtaining a vinyl chloride polymer with a relatively low degree of polymerization, it has been known to raise the temperature of the polymerization system or to add a chain transfer agent to the polymerization system.
Halogenated hydrocarbons and organic mercaptans are often used as chain transfer agents. However, when increasing the temperature of the polymerization system to polymerize a vinyl chloride polymer with a low degree of polymerization, the polymerization temperature approaches the softening temperature of the vinyl chloride polymer, so that the vinyl chloride polymer is There is a drawback that not only decomposition and coloring of the polymer are likely to occur, but also that the thermal stability of the obtained polymer is significantly reduced due to an increase in the ratio of molecular terminal double bonds per molecular chain. In addition, when a chain transfer agent such as a halogenated hydrocarbon or organic mercaptan is added to the polymerization system to polymerize a vinyl chloride polymer with a low degree of polymerization, the chain transfer agent remains in the polymer and stabilizes heat. Not only is sexuality impaired;
The chain transfer agent fragment is bonded to the end of the polymer's molecular chain, making it thermally unstable. In order to solve these drawbacks, the present inventors have conducted research for many years and found that by polymerizing the alkali metal thioglycolic acid salt of the present invention as a chain transfer agent, a relatively high degree of polymerization with excellent thermal stability can be achieved. The present inventors have discovered that a vinyl chloride polymer having a low average degree of polymerization can be obtained, and have completed the present invention. That is, in the present invention, when vinyl chloride or a vinyl monomer mixture mainly composed of vinyl chloride is polymerized in an aqueous medium, 0.01 to 100 parts by weight of the monomer is used.
The present invention provides a method for producing a vinyl chloride polymer, which is characterized in that the polymerization is carried out in the presence of 10 parts by weight of an alkali metal salt of thioglycolic acid. The alkali metal salts of thioglycolate used in the present invention include, for example, lithium thioglycolate, sodium thioglycolate, potassium thioglycolate, rubidium thioglycolate, cesium thioglycolate, etc. used alone or as a mixture. be done. More preferably, thioglycolic acid sodium salt and thioglycolic acid potassium salt are used. In carrying out the present invention, the alkali metal salt of thioglycolic acid is vinyl chloride or a mixture of unsaturated monomers mainly composed of vinyl chloride and copolymerizable with vinyl chloride.
It is generally used in an amount of 0.01 to 10 parts by weight, preferably 0.1 to 5 parts by weight. If the amount used is less than 0.01 part by weight, the chain transfer effect will be slight, making it impossible to obtain a vinyl chloride polymer with a relatively low degree of polymerization and good thermal stability. Furthermore, if the amount used exceeds 10 parts by weight, it is not desirable because a polymer with good thermal stability and a low average degree of polymerization may not be obtained. Further, the alkali metal thioglycolic acid salt of the present invention may be added in its entirety at the beginning of the polymerization, or may be added in portions or continuously during the progress of the polymerization reaction. The method of the present invention may be carried out in the same manner as known methods for polymerizing vinyl chloride in an aqueous medium, such as suspension polymerization and emulsion polymerization, except that the above-mentioned alkali metal thioglycolic acid salt is used. The suspending agent used in this case may be a known suspending agent, such as partially saponified polyvinyl alcohol, vinyl acetate-maleic anhydride copolymer, polyvinylpyrrolidone, gelatin, starch, methyl cellulose, hydroxypropyl cellulose, etc. It will be done. Examples of emulsifiers include potassium laurate, lauryl sulfate, and dodecylbenzenesulfonate. Examples of the polymerization initiator used in the present invention include lauroyl peroxide, tert-butyl peroxypivalate, benzoyl peroxide, isopropyldioxycarbonate, azobisisobutyronitrile, α,α′-azobis-4
-oil-soluble initiators such as methoxy-2,4-dimethylpareronitrile, hydrogen peroxide, potassium persulfate,
Examples include water-soluble initiators such as ammonium persulfate or redox-based initiators containing these with iron salts, sulfites, etc. In the present invention, monomers that can be copolymerized with vinyl chloride monomers include, for example, olefin compounds such as ethylene and propylene; vinyl esters such as vinyl acetate and vinyl propionate; acrylic acid and α-alkyl acrylic acid; Unsaturated monocarboxylic acids and their alkyl esters, amides, namely acrylic acid, methacrylic acid, ethyl acrylate,
Methyl methacrylate, acrylic acid amide, methacrylic acid amide; Unsaturated nitriles such as acrylonitrile; Unsaturated dicarboxylic acids such as maleic acid and fumaric acid, their alkyl esters, and their anhydrides; vinyl methyl ether, vinyl ethyl Examples include vinyl alkyl ethers such as ether; and various other known copolymerizable monomers. In the present invention, the polymerization temperature should be determined in relation to the degree of polymerization of the resulting vinyl chloride polymer and the amount of alkali metal thioglycolate added as a chain transfer agent, and is generally not limited to 45%. A temperature range of ~75°C is preferred. Adding a large amount of thioglycolic acid alkali metal salt at high temperature and polymerizing for a long time is not preferred because the vinyl chloride polymer often becomes colored. The method of the present invention is suitably applied to suspension polymerization of vinyl chloride or a vinyl monomer mixture mainly composed of vinyl chloride. , polymerization time, etc. may be determined according to the conditions conventionally employed when vinyl chloride is polymerized in an aqueous medium, and these are not particularly limited. EXAMPLES In order to explain the present invention more specifically, Examples and Comparative Examples will be given below, but the present invention is not limited to these Examples. Incidentally, the measured values displayed in the examples were based on the following measuring method. (1) Average degree of polymerization Determined according to the method of JIS K-6721. (2) Thermal stability The roll-kneaded sheet was subjected to a thermal deterioration test in a gear oven at 180°C, and the blackening time was measured. (3) Coloring Measure the lightness (L), saturation (a), and hue (b) of the sample using a DN-K5 color difference meter manufactured by Nippon Denshoku Co., Ltd. Next, the standard L 0 , a 0 and b 0 values using the standard sample magnesium oxide plate, that is, L 0
= 90.8, a 0 = 0.4, and b 0 = 4.0, the color difference of the sample (△
E) was calculated in NBS (National Bureau Standards) units. △E (NBS) =√( 0 −) 2 + ( 0 −) 2 + ( 0 −) 2 Example 1 1.6 g of partially saponified polyvinyl alcohol (saponification degree 80%) in a stainless steel autoclave with a stirrer
After charging 1 kg of ion-exchanged water in which 0.8 g of methylcellulose was dissolved, thioglycolic acid alkali metal salt and tert-butyl peroxypivalate in the proportions shown in Table 1, and degassing the autoclave, 350 g of vinyl chloride monomer was added. 4 at 60℃
Polymerized for hours. The obtained vinyl chloride polymer was thoroughly washed with a large amount of water and then dried. The vinyl chloride resin thus obtained, a lead-based stabilizer, and a lubricant were weighed and blended using a Henschel mixer. The mixing ratio is as follows. Vinyl chloride polymer 100 parts by weight Tribasic lead sulfate 2 parts by weight Lead stearate 2 parts by weight Stearic acid 0.2 parts by weight Next, the mixed sample was mixed using a mixing roll.
The mixture was kneaded at ℃ for 2 minutes to form a sheet with a thickness of 1 mm. The coloration of this sheet was measured using a color difference meter. Thermal stability was determined by conducting a heat deterioration test on the sheet at 180°C in a gear oven and measuring the blackening time. These results are shown in Table 1. As a comparative example, Table 1 shows the results of vinyl chloride polymers polymerized using chain transfer agents other than those of the present invention.

【表】 実施例 2 撹拌機付2ステンレス製オートクレーブに部
分鹸化ポリビニルアルコール1.6g(鹸化度80%)
とメチルセルロース0.8gを溶解したイオン交換
水1Kgと第2表に示す割合のチオグリコール酸ナ
トリウムとターシヤリーブチルパーオキシピバレ
ートを仕込んだ後、オートクレーブを脱気後、塩
化ビニル単量体350gを仕込み、第2表に示す温
度で重合した。得られた塩化ビニル重合体を多量
の水で充分洗浄した後乾燥した。 かくして得られた塩化ビニル重合体を実施例1
と同様の方法で安定剤、滑剤をブレンドした後、
シートを作成しロールシートの着色と熱安定性を
調べた。その結果を第2表に示す。 尚、比較例として本発明以外の連鎖移動剤を用
いて重合した塩化ビニル重合体の結果を第2表に
示す。
[Table] Example 2 1.6 g of partially saponified polyvinyl alcohol (saponification degree 80%) in a stainless steel autoclave with a stirrer
After charging 1 kg of ion-exchanged water in which 0.8 g of methyl cellulose was dissolved, sodium thioglycolate and tert-butyl peroxypivalate in the proportions shown in Table 2, the autoclave was degassed, and 350 g of vinyl chloride monomer was charged. , polymerization was carried out at the temperatures shown in Table 2. The obtained vinyl chloride polymer was thoroughly washed with a large amount of water and then dried. The vinyl chloride polymer thus obtained was prepared in Example 1.
After blending the stabilizer and lubricant in the same manner as
A sheet was prepared and the coloring and thermal stability of the rolled sheet were investigated. The results are shown in Table 2. As a comparative example, Table 2 shows the results of vinyl chloride polymers polymerized using chain transfer agents other than those of the present invention.

【表】 実施例 3 撹拌機付2ステンレス製オートクレーブに部
分鹸化ポリビニルアルコール1.2g(鹸化度80%)
とメチルセルロース0.6gを溶解したイオン交換
水1Kgと第3表に示す割合の連鎖移動剤、共重合
モノマー及びターシヤリーブチルパーオキシピバ
レートを仕込んだ後、オートクレーブを脱気後、
塩化ビニル単量体250gを仕込み55℃で3時間重
合した。得られた塩化ビニル共重合体を多量のメ
タノールで充分洗浄した後、減圧乾燥した。 かくして得られた塩化ビニル共重合体を実施例
1と同様の方法で安定剤、滑剤をブレンドした
後、シートを作成し、ロールシートの着色、熱安
定性を調べた。それらの結果を第3表に示す。
[Table] Example 3 1.2 g of partially saponified polyvinyl alcohol (saponification degree 80%) in a stainless steel autoclave with a stirrer
After charging 1 kg of ion-exchanged water in which 0.6 g of methyl cellulose was dissolved, a chain transfer agent, a copolymerization monomer, and tert-butyl peroxypivalate in the proportions shown in Table 3, the autoclave was degassed.
250 g of vinyl chloride monomer was charged and polymerized at 55°C for 3 hours. The obtained vinyl chloride copolymer was thoroughly washed with a large amount of methanol and then dried under reduced pressure. After blending the vinyl chloride copolymer thus obtained with a stabilizer and a lubricant in the same manner as in Example 1, a sheet was prepared, and the coloring and thermal stability of the rolled sheet were examined. The results are shown in Table 3.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 塩化ビニル又は塩化ビニルを主体とするビニ
ル系単量体混合物を水性媒体中で重合するに当
り、チオグリコール酸アルカリ金属塩の存在下に
重合することを特徴とする塩化ビニル系重合体の
製造方法。
1. Production of a vinyl chloride polymer characterized by polymerizing vinyl chloride or a vinyl monomer mixture mainly composed of vinyl chloride in an aqueous medium in the presence of an alkali metal thioglycolic acid salt. Method.
JP9878680A 1980-07-21 1980-07-21 ENKABINIRUKEIJUGOTAINOSEIZOHOHO Expired - Lifetime JPH0227363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9878680A JPH0227363B2 (en) 1980-07-21 1980-07-21 ENKABINIRUKEIJUGOTAINOSEIZOHOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9878680A JPH0227363B2 (en) 1980-07-21 1980-07-21 ENKABINIRUKEIJUGOTAINOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS5723608A JPS5723608A (en) 1982-02-06
JPH0227363B2 true JPH0227363B2 (en) 1990-06-15

Family

ID=14229046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9878680A Expired - Lifetime JPH0227363B2 (en) 1980-07-21 1980-07-21 ENKABINIRUKEIJUGOTAINOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0227363B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231876U (en) * 1988-08-18 1990-02-28

Also Published As

Publication number Publication date
JPS5723608A (en) 1982-02-06

Similar Documents

Publication Publication Date Title
JPH05105702A (en) Dispersion stabilizer for suspension polymerization of vinyl chloride, its production and suspension polymerization of vinyl chloride
JPS6144883B2 (en)
JP3339257B2 (en) Vinyl chloride resin composition
JPH0227363B2 (en) ENKABINIRUKEIJUGOTAINOSEIZOHOHO
EP0177956B1 (en) Low molecular weight vinyl halide/vinyl ester copolymers by aqueous polymerization
JP3115954B2 (en) Method for producing partially saponified polyvinyl alcohol
JP3317830B2 (en) Method for producing vinyl chloride polymer
JP3241815B2 (en) Suspension polymerization of vinyl monomers
JPS5946521B2 (en) Method for producing vinyl chloride polymer
JP3240196B2 (en) Method for producing vinyl polymer
JP2823681B2 (en) Method for producing vinyl chloride polymer
JP2921948B2 (en) Vinyl chloride copolymer
JP3388528B2 (en) Method for producing vinyl polymer
JPS61266421A (en) Production of vinyl chloride resin excellent in flow and heat stability
JP3696541B2 (en) Method for producing composite resin emulsion
JP3371579B2 (en) Vinyl chloride polymer and method for producing the same
JPH06107734A (en) Production of heat-resistant vinyl chloride-based copolymer
JPH06107732A (en) Production of heat-resistant vinyl chloride-based copolymer
JP3231948B2 (en) Method for producing vinyl chloride polymer
JPS63234052A (en) Vinyl chloride polymer composition having excellent heat stability and production thereof
JPH0428723B2 (en)
JPH0410884B2 (en)
JPH10101715A (en) Production of vinyl chloride polymer
JP2989645B2 (en) Polyvinyl ester polymer and method for producing the same
JPH0341083B2 (en)