JPS6243444B2 - - Google Patents

Info

Publication number
JPS6243444B2
JPS6243444B2 JP56077370A JP7737081A JPS6243444B2 JP S6243444 B2 JPS6243444 B2 JP S6243444B2 JP 56077370 A JP56077370 A JP 56077370A JP 7737081 A JP7737081 A JP 7737081A JP S6243444 B2 JPS6243444 B2 JP S6243444B2
Authority
JP
Japan
Prior art keywords
polymerization
polymer
gas
cyclone
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56077370A
Other languages
Japanese (ja)
Other versions
JPS57192409A (en
Inventor
Akifumi Kato
Michiharu Suga
Masahiro Sugi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP7737081A priority Critical patent/JPS57192409A/en
Publication of JPS57192409A publication Critical patent/JPS57192409A/en
Publication of JPS6243444B2 publication Critical patent/JPS6243444B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 本発明は、流動床重合反応区域とその上方の気
相区域との界面、所謂“流動層界面”及びその付
近における生成重合体の重合器内壁付着、更には
塊状物形成のトラブルを工業的に有利に回避で
き、且つ触媒、重合体粒子、ガス状オレフインな
どの重合系各成分の接触状態が均一且つ良好で、
組成分布、分子量分布、粒子形状などの点でも良
好な重合体を、安定した重合操作をもつて製造で
きる改善されたオレフイン類の気相重合方法に関
する。なお、本発明において、重合なる用語は、
単独重合のみならず共重合を包含した意味で、ま
た重合体は単独重合体のみならず共重合体を包含
した意味で用いられることがある。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to the interface between a fluidized bed polymerization reaction zone and a gas phase zone above it, the so-called "fluidized bed interface", and the adhesion of produced polymer to the inner wall of a polymerization vessel in the vicinity thereof, as well as the prevention of lumps. Formation troubles can be industrially advantageously avoided, and the contact state of each component of the polymerization system, such as the catalyst, polymer particles, and gaseous olefin, is uniform and good.
The present invention relates to an improved method for the gas phase polymerization of olefins, which can produce polymers with good compositional distribution, molecular weight distribution, particle shape, etc. using stable polymerization operations. In addition, in the present invention, the term “polymerization” refers to
The term "polymer" is sometimes used to include not only homopolymerization but also copolymerization, and the term "polymer" is sometimes used to include not only homopolymers but also copolymers.

オレフイン重合用の遷移金属触媒成分の改良に
よつて、単位遷移金属当りのオレフイン重合体生
産能力が飛躍的に高められた結果、重合後におけ
る触媒除去操作を省略しうる段階に至つている。
このような高活性触媒を用いるときには、重合後
の操作が最も簡単なところから、オレフイイン重
合を気相で行う方法が注目されている。
As a result of improvements in transition metal catalyst components for olefin polymerization, the production capacity of olefin polymers per unit transition metal has been dramatically increased, and as a result, we have reached a stage where the catalyst removal operation after polymerization can be omitted.
When using such a highly active catalyst, a method of carrying out olefin polymerization in the gas phase is attracting attention because it is the simplest to operate after polymerization.

該気相重合においては、重合を円滑に進めるた
めに、例えば塔式流動層重合器や塔式撹拌流動層
重合器などの塔式重合器を用い、オレフイン含有
ガスの上昇流によつて触媒を含有するオレフイン
重合体を浮遊流動させつつ重合を行い、随時、排
出ガス中の重合体を捕集して重合区域で循環させ
る流動床方式の重合方法が賞用されている。この
ような流動層を用いる場合には、安定した流動領
域を形成して重合を行うことが推奨されており、
そのためには、オレフイン含有ガスの上昇速度
は、最低流動化速度の約1.5倍ないし10倍未満、
とくに約2ないし約6倍にすべきであると言われ
ている(例えば特開昭54−139983号など)。
In the gas phase polymerization, in order to proceed smoothly with the polymerization, a tower-type polymerizer such as a tower-type fluidized bed polymerizer or a tower-type stirred fluidized bed polymerizer is used, and the catalyst is catalyzed by an upward flow of olefin-containing gas. A fluidized bed polymerization method has been widely used, in which polymerization is carried out while the olefin polymer contained therein is suspended and fluidized, and the polymer in the exhaust gas is collected as needed and circulated in the polymerization zone. When using such a fluidized bed, it is recommended to form a stable fluidized region for polymerization.
To this end, the rate of rise of the olefin-containing gas must be approximately 1.5 times to less than 10 times the minimum fluidization rate;
In particular, it is said that it should be increased by about 2 to about 6 times (for example, Japanese Patent Application Laid-open No. 139983/1983).

しかしながら、流動層の状態を支配する因子
は、上記速度のみではなく、重合器形状、分散
板、流動層高さ、その他諸々の因子が絡んでお
り、そのような他の因子の影響によつて、重合区
域の流動状態が必ずしも満足すべきではないとき
や、あるいは流動状態が良くても触媒導入が均一
でなかつたり、重合体粒子形状が良好でないとき
などにおいては、安定化した重合を行うことがで
きず、例えば、塊状物の生成や重合体の壁付着な
どが生じ易くなる。そしてこのような望まざる現
象は、流動層界面及びその付近でとくに顕著に起
こり易い。
However, the factors governing the state of the fluidized bed are not only the above-mentioned speed, but also the shape of the polymerization vessel, the dispersion plate, the height of the fluidized bed, and other factors. In cases where the fluidity state in the polymerization zone is not necessarily satisfactory, or even when the fluidity state is good, the catalyst introduction is not uniform or the polymer particle shape is not good, stabilized polymerization must be carried out. For example, the formation of lumps and the adhesion of polymers to walls are likely to occur. Such undesired phenomena are particularly likely to occur at and near the fluidized bed interface.

本発明者らは、流動層界面に往々にして生ずる
上記の如き不利益を未然に回避し、しかも安定し
た気相重合を、工業的に容易な操作で行うための
手段を開発すべく研究を行つた。
The present inventors have conducted research in order to avoid the above-mentioned disadvantages that often occur at fluidized bed interfaces, and to develop a means to perform stable gas phase polymerization with industrially easy operations. I went.

その結果、従来、塔式重合器では顧みられなか
つた高速ガス流速度を採用すること及び排出ガス
をサイクロンに導いて該ガスに同伴される重合体
を補集して捕集された重合体の一部もしくは全部
を重合区域で循環させることの結合要件を満足す
る条件下に、オレフイン類の気相重合反応を行う
ことによつて、従来提案から予期されるところに
反して、多くの改善が達成できるという意外な事
実を発見した。
As a result, we have adopted a high gas flow rate, which has not been considered in conventional column-type polymerizers, and we have introduced the exhaust gas into a cyclone to collect the polymer entrained in the gas. By carrying out the gas phase polymerization of olefins under conditions that satisfy the combined requirement of some or all circulation in the polymerization zone, a number of improvements, contrary to those expected from previous proposals, have been achieved. I discovered a surprising fact that it can be achieved.

本発明者等の研究によれば、上記結合要件を充
足する条件下にオレフイン類の気相重合反応を行
うことによつて、触触、重合体粒子、ガス状オレ
フインなどの重合系各成分の接触状態が、非常に
均一且つ良好となり、その結果、組成分布や分子
量分布の狭い重合体の製造が容易であることがわ
かつた。更に、従来技術では、動きが悪かつた壁
面部あるいは分散板直上部に関しても見違えるよ
うな改良効果が得られ、重合器内における前記し
たような生成重合体の重合器内壁付着や塊状物形
成のトラブルが解消され、さらに又、流動性の悪
い粉体ですら予想以上の活発な動きを示し、安全
運転が長期的に行えることが確認された。そして
予想外なことにも、装置の摩耗や重合体粒子破壊
などの悪影響も、実際上、無視できる程度にすぎ
ないことが判明した。
According to the research conducted by the present inventors, by carrying out a gas phase polymerization reaction of olefins under conditions that satisfy the above bonding requirements, various components of the polymerization system such as catalytic agents, polymer particles, and gaseous olefins can be separated. It was found that the contact condition was very uniform and good, and as a result, it was easy to produce a polymer with a narrow composition distribution and molecular weight distribution. Furthermore, with the conventional technology, a noticeable improvement effect can be obtained on the wall surface portion or directly above the dispersion plate, where movement was slow, and the above-mentioned adhesion of the produced polymer to the inner wall of the polymerization vessel and formation of lumps in the polymerization vessel can be reduced. The problem was resolved, and even powder with poor fluidity showed more active movement than expected, confirming that safe operation could be carried out over a long period of time. Unexpectedly, it has been found that the negative effects such as equipment wear and polymer particle breakage are negligible in practice.

従つて、本発明の目的は、改善されたオレフイ
ン類の気相重合方法を提供するにある。
Accordingly, it is an object of the present invention to provide an improved method for the gas phase polymerization of olefins.

本発明の上記目的及び更に多くの他の目的なら
びに利点は、以下の記載から一層明らかとなるで
あろう。
The above objects and many other objects and advantages of the present invention will become more apparent from the following description.

本発明によれば、塔式重合器中で、オレフイン
含有ガスの上昇流によつてオレフイン重合体を浮
遊流動させつつ重合を行い、且つ所望により、随
時、排出ガス中の重合体を捕集して重合区域へ循
環させる流動床方式のオレフイン類の気相重合方
法において、(i)塔内のガス上昇速度を最低流動化
速度の10倍よりも速くし、且つ(ii)塔上部よりの排
出ガスをサイクロンに導いて同伴される重合体を
補集し、該捕集された重合体の一部又は全部を重
合器に循環させることを特徴とするオレフイン類
の重合方法が提供される。
According to the present invention, polymerization is carried out in a column-type polymerization vessel while floating and fluidizing the olefin polymer by an upward flow of the olefin-containing gas, and if desired, the polymer in the exhaust gas is collected at any time. In a fluidized bed gas phase polymerization method for olefins in which the gas is circulated to the polymerization zone, (i) the rate of gas rise in the column is higher than 10 times the minimum fluidization rate, and (ii) the gas is discharged from the top of the column. A method for polymerizing olefins is provided, which comprises introducing gas into a cyclone to collect entrained polymer, and circulating part or all of the collected polymer to a polymerization vessel.

本発明の気相重合方法においては、遷移金属触
媒成分と周期律表第1族ないし第3族金属の有機
金属化合物触媒成分とから形成される触媒を用い
るのが好ましい。
In the gas phase polymerization method of the present invention, it is preferable to use a catalyst formed from a transition metal catalyst component and an organometallic compound catalyst component of a metal from Group 1 to Group 3 of the Periodic Table.

遷移金属化合物触媒成分は、チタン、バナジウ
ム、クロム、ジルコニウムなどの遷移金属の化合
物であつて、使用条件下に液状のものであつても
固体状のものであつてもよい。これらは単一化合
物である必要はなく、他の化合物に担持されてい
たりあるいは混合されていてもよい。さらに他の
化合物との錯化合物や複化合物であつてもよい。
The transition metal compound catalyst component is a compound of a transition metal such as titanium, vanadium, chromium, zirconium, etc., and may be liquid or solid under the conditions of use. These do not need to be a single compound, and may be supported on other compounds or mixed. Furthermore, it may be a complex compound or a composite compound with other compounds.

好適な遷移金属化合物触媒成分は、遷移金属1
ミリモル当り約5000g以上、とくに約8000g以上
のオレフイン重合体を製造することができる高活
性成分であつて、その代表的なものとしてマグネ
シウム化合物によつて高活性化されたチタン触媒
成分を例示することができる。例えば、チタン、
マグネシウム及び、ハロゲンを必須成分とする固
体状のチタン触媒成分であつて、非晶化されたハ
ロゲン化マグネシウムを含有し、その比表面積
は、好ましくは約40m2/g以上、とくに好ましく
は約80ないし約800m2/gの成分を例示すること
ができる。そして電子供与体、例えば有機酸エス
テル、ケイ酸エステル、酸ハライド、酸無水物、
ケトン、酸アミド、第三アミン、無機酸エステ
ル、リン酸エステル、亜リン酸エステル、エーテ
ルなどを含有していてもよい。この高活性触媒成
分は、例えば、チタンを約0.5ないし約10重量
%、とくに約1ないし約8重量%含有し、チタ
ン/マグネシウム(原子比)が約1/2ないし約
1/100、とくに約1/3ないし約1/50、ハロ
ゲン/チタン(原子比)が約4ないし約100、と
くに約6ないし約80、電子供与体/チタン(モル
比)が0ないし約10、とくに0ないし約6の範囲
にあるものが好ましい。これらの触媒成分につい
てはすでに数多く提案されており、広く知られて
おり、本発明方法で好ましく利用できる。
Suitable transition metal compound catalyst components include transition metal 1
A titanium catalyst component highly activated by a magnesium compound is exemplified as a representative example of a highly active component capable of producing about 5,000 g or more, particularly about 8,000 g or more of olefin polymer per mmol. Can be done. For example, titanium,
A solid titanium catalyst component containing magnesium and a halogen as essential components, containing amorphous magnesium halide, and having a specific surface area of preferably about 40 m 2 /g or more, particularly preferably about 80 m 2 /g or more. 800 m 2 /g can be exemplified. and electron donors such as organic acid esters, silicate esters, acid halides, acid anhydrides,
It may contain ketones, acid amides, tertiary amines, inorganic acid esters, phosphate esters, phosphite esters, ethers, and the like. This highly active catalyst component contains, for example, about 0.5 to about 10% by weight of titanium, especially about 1 to about 8% by weight, and the titanium/magnesium (atomic ratio) is about 1/2 to about 1/100, especially about 1/3 to about 1/50, halogen/titanium (atomic ratio) about 4 to about 100, especially about 6 to about 80, electron donor/titanium (molar ratio) 0 to about 10, especially 0 to about 6 Preferably, it is within this range. Many of these catalyst components have already been proposed and are widely known, and can be preferably used in the method of the present invention.

有機金属化合物触媒成分は、周期律表第1族な
いし第3族の金属と炭素の結合を有する有機金属
化合物であつて、その具体例としては、アルカリ
金属の有機金属化合物、アルカリ土類金属の有機
金属化合物、有機アルミニウム化合物などが挙げ
られる。このような有機金属触媒成分としては、
例えば、アルキルリチウム、アリールナトリウ
ム、アルキルマグネシウム、アリールマグネシウ
ム、アルキルマグネシウムハライド、アリールマ
グネシウムハライド、アルキルマグネシウムヒド
リド、トリアルキルアルミニウム、アルキルアル
ミニウムハライド、アルキルアルミニウムヒドリ
ド、アルキルアルミニウムアルコキシド、アルキ
ルリチウムアルミニウム、これらの混合物などを
例示できる。
The organometallic compound catalyst component is an organometallic compound having a bond between a metal of Groups 1 to 3 of the periodic table and carbon, and specific examples include organometallic compounds of alkali metals and alkaline earth metals. Examples include organometallic compounds and organoaluminum compounds. Such organometallic catalyst components include:
For example, alkyl lithium, aryl sodium, alkyl magnesium, aryl magnesium, alkyl magnesium halide, aryl magnesium halide, alkyl magnesium hydride, trialkyl aluminum, alkyl aluminum halide, alkyl aluminum hydride, alkyl aluminum alkoxide, alkyl lithium aluminum, mixtures thereof, etc. can be exemplified.

前記2成分に加え、立体規則性、分子量、分子
量分布などを調節する目的で、水素、ハロゲン化
炭化水素、電子供与体触媒成分、例えば、有機酸
エステル、ケイ酸エステル、カルボン酸ハライ
ド、カルボン酸アミド、第三アミン、酸無水物、
エーテル、ケトン、アルデヒドなどを併用しても
よい。該電子供与体成分は、重合に際し、予め前
記の有機金属化合物触媒成分と錯化合物(又は付
加化合物)を形成させてから使用してもよく、ま
たトリハロゲン化アルミニウムのようなルイス酸
の如き他の化合物と錯化合物(又は付加化合物)
を形成した形で使用してもよい。
In addition to the above two components, for the purpose of adjusting stereoregularity, molecular weight, molecular weight distribution, etc., hydrogen, halogenated hydrocarbons, electron donor catalyst components, such as organic acid esters, silicate esters, carboxylic acid halides, carboxylic acids amides, tertiary amines, acid anhydrides,
Ethers, ketones, aldehydes, etc. may be used in combination. The electron donor component may be used after forming a complex compound (or addition compound) with the organometallic compound catalyst component in advance during polymerization, or may be used after forming a complex compound (or addition compound) with the organometallic compound catalyst component. Compounds and complex compounds (or addition compounds)
It may be used in a formed form.

本発明方法において、重合に用いられるオレフ
イン類としては、エチレン、プロピレン、1−ブ
テン、1−ペンテン、1−ヘキセン、1−オクテ
ン、1−デセン、4−メチル−1−ペンテン、3
−メチル−1−ペンテン、スチレン、ブタジエ
ン、イソプレン、1・4−ヘキサジエン、ジシク
ロペンタジエン、5−エチリデン−2−ノルボネ
ンのC2〜C12のオレフイン類及びジエン類などを
例示でき、気相重合が可能な範囲でこれらの単独
重合や共重合を行うことができる。
In the method of the present invention, the olefins used for polymerization include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 4-methyl-1-pentene, 3
Examples include C2 to C12 olefins and dienes such as -methyl-1-pentene, styrene, butadiene, isoprene, 1,4-hexadiene, dicyclopentadiene, and 5-ethylidene- 2 -norbornene, and gas phase polymerization These homopolymerizations and copolymerizations can be carried out to the extent possible.

本発明方法は、好ましくは、エチレン又はプロ
ピレンの単独重合、エチレンと他のオレフイン及
び/又はジエン類との共重合、プロピレンと他の
オレフイン及び/又はジエン類の共重合を行う場
合に好適に利用できる。
The method of the present invention is preferably used for homopolymerization of ethylene or propylene, copolymerization of ethylene with other olefins and/or dienes, and copolymerization of propylene with other olefins and/or dienes. can.

気相重合は、一般に流動層重合器として使用さ
れている塔式重合器を用いて行うことができる。
反応温度は、オレフイン重合体の融点以下、好ま
しくは融点より約10℃以上低く、かつ室温ないし
約130℃、とくには約40ないし約110℃程度である
のがよい。また、重合圧力は、例えば、大気圧な
いし約150Kg/cm2、とくには約2ないし約70Kg/
cm2の範囲が好ましい。重合に際して、任意に使用
できる水素は、例えばオレフイン1モルに対し約
0.001ないし約20モル、とくには約0.02ないし約
10モルの範囲で用いるのが好ましい。また重合熱
を除去するために、液状の易揮発性炭化水素、例
えばプロパンやブタンを供給し、重合帯域中で気
化させてもよい。
Gas phase polymerization can be carried out using a tower type polymerizer that is generally used as a fluidized bed polymerizer.
The reaction temperature is preferably below the melting point of the olefin polymer, preferably about 10°C or more lower than the melting point, and from room temperature to about 130°C, particularly about 40 to about 110°C. Further, the polymerization pressure is, for example, atmospheric pressure to about 150 Kg/cm 2 , particularly about 2 to about 70 Kg/cm 2 .
A range of cm 2 is preferred. Hydrogen that can be optionally used during polymerization is, for example, about 1 mole of olefin.
0.001 to about 20 moles, especially about 0.02 to about
It is preferable to use it in a range of 10 moles. Furthermore, in order to remove the heat of polymerization, a liquid easily volatile hydrocarbon such as propane or butane may be supplied and vaporized in the polymerization zone.

前記の如き、遷移金属化合物触媒成分、有機金
属化合物触媒成分、電子供与体触媒成分等を用い
る場合には、重合区域容積1得り、遷移金属化
合物触媒成分が遷移金属原子に換算して約0.0005
ないし約1ミリモル、とくには約0.001ないし約
0.5ミリモル、有機金属化合物触媒成分を、該金
属/遷移金属(原子比)が約1ないし約2000、と
くに約1ないし約500となるような割合で用いる
のが好ましい。また電子供与体触媒成分を、有機
金属化合物触媒成分1モル当り、0ないし約1モ
ル、とくには0ないし約0.5モル程度の割合で用
いるのが好ましい。
When using a transition metal compound catalyst component, an organometallic compound catalyst component, an electron donor catalyst component, etc. as described above, the polymerization zone volume is 1, and the transition metal compound catalyst component is approximately 0.0005 in terms of transition metal atoms.
from about 1 mmol, especially from about 0.001 to about
Preferably, 0.5 mmol of the organometallic compound catalyst component is used in a ratio such that the metal/transition metal (atomic ratio) is from about 1 to about 2000, especially from about 1 to about 500. Further, it is preferable to use the electron donor catalyst component in a proportion of 0 to about 1 mol, particularly 0 to about 0.5 mol, per 1 mol of the organometallic compound catalyst component.

気相重合は、塔式重合器のガス分散板下部から
オレフイン含有ガスを吹込み、ガス分散板上部に
ある触媒含有重合体を浮遊流動させながら行われ
る。この際、塔内のガス上昇速度を最低流動化速
度の10倍より速く、好ましくは約12ないし約50倍
程度に維持する。このような高速のガス流速度を
採用することにより、反応系各成分のより良好な
接触が達せられるとともに、通常の流動層におけ
る重合とは異なり、多くの重合体が排出ガス流に
伴つて塔上部から抜き出されることになる。
Gas phase polymerization is carried out by blowing an olefin-containing gas into the lower part of the gas distribution plate of the tower type polymerization vessel, while causing the catalyst-containing polymer located above the gas distribution plate to float and flow. At this time, the rate of gas rise in the column is maintained to be higher than 10 times, preferably about 12 to about 50 times, the minimum fluidization rate. By employing such high gas flow rates, better contact between the components of the reaction system is achieved and, unlike in conventional fluidized bed polymerizations, more of the polymer is transported to the column with the exhaust gas stream. It will be pulled out from the top.

本発明方法においては、上述のような高いガス
流速度の採用と共に、このような重合体を含有す
る排出ガスをサイクロンに導き、重合体の大部分
を捕集する一方、重合体が除去された前記排出ガ
スは、冷却器、ブロワーなどの諸機器に適宜通し
た後、重合帯域に循環させ再使用することができ
る。
In the method of the present invention, in addition to employing a high gas flow rate as described above, the exhaust gas containing such polymers is guided to a cyclone to collect most of the polymer while removing the polymer. The exhaust gas can be appropriately passed through various devices such as a cooler and a blower, and then circulated to the polymerization zone for reuse.

サイクロンに捕集された重合体の一部又は全部
は、重合区域に循環されるが、そこでの過度の重
合による壁付着や循環通路閉塞などを防止するた
め、速やかに移動させる必要がある。この際、重
合体の一部を循環させる場合には、残部を系外に
抜き出し、例えばそのまま製品とすることができ
る。このようにサイクロンから製品を取り出す方
式は、従来の流動層を用いる重合において重合器
から直接製品を抜き出す方式に比較して取り出す
際に同伴するガス量が少なく好適である。しかし
サイクロンからのみ製品を取り出すには、相当量
の重合体の同伴が必要であるから、ガス流速が最
低流動化速度の10倍より速いが、比較的大きくな
い領域を採用する場合には、重合器からの直接抜
き出し方式のみか、あるいは重合器からの直接抜
き出し方式とサイクロンを用いた捕集重合体の一
部の抜き出し方式の両者の抜き出し方式を併用す
るのがよい。
A part or all of the polymer collected in the cyclone is circulated to the polymerization zone, but it must be moved quickly to prevent wall adhesion and circulation passage blockage due to excessive polymerization there. At this time, when part of the polymer is circulated, the remaining part can be extracted from the system and used, for example, as a product as it is. This method of taking out the product from the cyclone is preferable because the amount of gas entrained during removal is smaller than the method of taking out the product directly from the polymerization vessel in conventional polymerization using a fluidized bed. However, since removal of the product from the cyclone alone requires the entrainment of a significant amount of polymer, polymerization is It is preferable to use only the direct extraction method from the polymerization vessel, or a combination of the direct extraction method from the polymerization vessel and the extraction method of a part of the collected polymer using a cyclone.

サイクロンに捕集された重合体を重合器に循環
させるには、種々の方法を採用することができ
る。例えば、サイクロンから重合区域への循環径
路にロータリーバルブを設け、自然落下させる方
法、あるいはラインの閉塞やライン上への付着を
防止するため、強制的に重合器へ循環させる方法
などが挙げられる。とくに好適な手段としては、
サイクロンの下部を横切る高速ガス流を作用させ
る手段が挙げられる。この際生ずるエジエクター
効果によつて重合体はサイクロンから吸引除去さ
れると共に、該高速ガス流中に吸引されるので、
この高速ガスをそのまま気相重合帯域に供給すれ
ば、所望の重合体の循環ができる。
Various methods can be employed to circulate the polymer collected in the cyclone to the polymerization vessel. Examples include a method in which a rotary valve is provided in the circulation path from the cyclone to the polymerization zone to allow the material to fall naturally, or a method in which the material is forcibly circulated to the polymerization vessel in order to prevent line blockage or adhesion on the line. A particularly suitable method is
Means include applying a high velocity gas flow across the lower part of the cyclone. Due to the ejector effect that occurs at this time, the polymer is suctioned away from the cyclone and is also sucked into the high-speed gas flow.
If this high-speed gas is supplied as it is to the gas phase polymerization zone, the desired polymer can be circulated.

高速ガスによる吸引は、連続的に行つてもよい
が、未反応ガスの高速ガス流への洩れ量を調節す
る意味から、サイクロン下部と高速ガス流管の間
にロータリー弁やタイマー弁などの如き弁機構を
設け、間欠的に行つてもよい。いずれにしても強
制的な吸引除去によつて、重合体のサイクロン中
での滞留時間を短縮させることが可能となり、壁
付着や閉塞などのトラブルを未然に防止すること
ができる。
Suction with high-speed gas may be performed continuously, but in order to control the amount of unreacted gas leaking into the high-speed gas flow, a rotary valve, timer valve, etc. should be installed between the lower part of the cyclone and the high-speed gas flow pipe. A valve mechanism may be provided to perform the operation intermittently. In any case, by forced suction removal, it is possible to shorten the residence time of the polymer in the cyclone, and it is possible to prevent problems such as wall adhesion and blockage.

以上のような目的に用いられる重合体の吸引作
用及び随伴用ガス作用を兼ねた高速ガスは、重合
に悪影響を及ぼさないものであればよい。例え
ば、重合に用いられるオレフイン類、希釈剤、水
素、あるいはこれらの混合物などが利用できる。
該高速ガスの流通速度は、サイクロン下部との連
通部で充分な吸引力を示せばよく、例えば1m/
secないし約100m/sec程度の速度とすればよ
い。該連通部の管径を適当に細くしておけば、高
速ガス量を過大にする必要はないので、重合帯域
に戻しても重合状態が乱されることはない。重合
帯域に戻す方法として、直接重合体の浮遊流動域
に供給する方法、該域上部から該域に吹付ける方
法などを採用することができる。
The high-velocity gas used for the above-mentioned purpose, which serves both the polymer suction action and accompanying gas action, may be any gas that does not adversely affect the polymerization. For example, olefins used in polymerization, diluents, hydrogen, or mixtures thereof can be used.
The flow velocity of the high-speed gas may be as long as it exhibits a sufficient suction force at the communicating part with the lower part of the cyclone, for example, 1 m/m/m.
The speed may be approximately 100 m/sec to approximately 100 m/sec. If the pipe diameter of the communicating portion is appropriately reduced, there is no need to increase the amount of high-speed gas, so that the polymerization state will not be disturbed even if the gas is returned to the polymerization zone. As a method of returning the polymer to the polymerization zone, a method of directly supplying the polymer to the floating flow region, a method of spraying it into the region from above the region, etc. can be adopted.

第1図は、本発明の一実施態様を示す図面であ
る。塔式重合器1の上方側部に、管11から連続
的に触媒を供給する一方、重合器1の下部に、管
14からの循環ガスと、管15からのフレツシユ
ガスからなるオレフイン含有ガスを高速で吹込
む。多孔板8を通つたオレフイン含有ガスは、オ
レフイン重合体を浮遊流動させつつ、接触と接触
して重合体を生成する。反応にかかわらなかつた
ガス成分は、重合器頂部から排出し、サイクロン
2に導き、そこで同伴する重合体を捕集する。サ
イクロンに捕集された重合体は、その下部に設け
られたロータリーバルブを通して重合器に戻され
る。サイクロンを通過したガス成分は、冷却器4
を通して冷却した後、ブロワー5により昇圧して
重合器1に循環する。重合器中の重合体量をほぼ
一定に保つため、バルブ6,7により管16から
連続的に抜き出す。
FIG. 1 is a drawing showing one embodiment of the present invention. Catalyst is continuously supplied to the upper side of the column-type polymerizer 1 from the pipe 11, while olefin-containing gas consisting of circulating gas from the pipe 14 and fresh gas from the pipe 15 is fed to the lower part of the polymerizer 1 at high speed. Blow in. The olefin-containing gas passing through the perforated plate 8 causes the olefin polymer to float and flow while coming into contact with the contact to form a polymer. Gas components not involved in the reaction are discharged from the top of the polymerization vessel and led to a cyclone 2, where the entrained polymer is collected. The polymer collected in the cyclone is returned to the polymerization vessel through a rotary valve provided at the bottom of the cyclone. The gas components that have passed through the cyclone are transferred to cooler 4.
After cooling, the pressure is increased by a blower 5 and the polymer is circulated to the polymerization vessel 1. In order to keep the amount of polymer in the polymerization vessel approximately constant, it is continuously drawn out from tube 16 by means of valves 6 and 7.

次にこのような装置を用いて重合を行つた例を
示す。
Next, an example of polymerization using such an apparatus will be shown.

実施例 1 〔触媒合成〕 200mlのフラスコに無水MgCl27.2g、デカン23
mlおよび2−エチルヘキサノール23mlを入れ、
120℃で2時間加熱反応を行い、均一溶液とした
のち、安息香酸エチル1.68mlを添加した。
Example 1 [Catalyst synthesis] 7.2 g of anhydrous MgCl 2 and 23 decane in a 200 ml flask
ml and 23 ml of 2-ethylhexanol,
A heating reaction was carried out at 120° C. for 2 hours to obtain a homogeneous solution, and then 1.68 ml of ethyl benzoate was added.

400mlのフラスコにTiCl4200mlを入れ、−20℃に
冷却保持した状態で上記均一溶液を全量、1時間
に渡つて滴下したのち、80℃に昇温した。80℃で
2時間撹拌後、固体部を過により採取し、これ
を新たなTiCl4200mlに懸濁させ、90℃で2時間撹
拌した。撹拌終了後、熱過により採取した固体
部を熱灯油およびヘキサンで十分洗浄し、チタン
触媒成分を得た。該触媒はTi4.5wt%、Cl60wt
%、Mg18wt%を含み、平均粒子径15μ、比表面
積は195m2/gであつた。
200 ml of TiCl 4 was placed in a 400 ml flask, and while the flask was kept cooled at -20°C, the entire amount of the above homogeneous solution was added dropwise over 1 hour, and then the temperature was raised to 80°C. After stirring at 80°C for 2 hours, the solid portion was collected by filtration, suspended in 200 ml of fresh TiCl 4 and stirred at 90°C for 2 hours. After the stirring was completed, the solid portion collected by heating was thoroughly washed with hot kerosene and hexane to obtain a titanium catalyst component. The catalyst contains Ti4.5wt% and Cl60wt
%, Mg 18wt%, average particle diameter 15μ, and specific surface area 195m 2 /g.

〔触媒前処理〕[Catalyst pretreatment]

得られた触媒スラリーを、Ti原子に換算した
5mmol/となるようにヘキサン中に再懸濁し
た後、トリエチルアルミニウムを15mmol/と
なるように添加し、さらにプロピレンをチタン触
媒成分1g当り0.5gとなるような割合で供給
し、40℃で処理を行つた。
The obtained catalyst slurry was resuspended in hexane at a concentration of 5 mmol/calculated as Ti atoms, triethylaluminum was added at a concentration of 15 mmol/g, and propylene was further added at a concentration of 0.5 g per 1 g of titanium catalyst component. The treatment was carried out at 40°C.

〔重 合〕[Polymerization]

第1図に示す重合装置において、塔式重合器と
して直径300mm、反応部容積100の流動層重合器
を用い、これにTi原子換算で0.5mmol/−ヘ
キサンに再調整したTi触媒スラリーを、撹拌機
付触媒ドラムから1/hrの速度で、またトリエ
チルアルミニウムを25mmol/hrの速度で供給し
た。一方、1−ブテンとエチレンを、1−ブテ
ン/エチレン(モル比)=0.07の割合で、ガス空
塔速度が97cm/sec(最低流動化速度8cm/sec)
の速度で供給した。重合器中のエチレン共重合体
量がほぼ一定となるように共重合体を抜き出し
た。重合温度は90℃、重合圧力は6Kg/cm2Gであ
つた。かくして密度0.940g/cm3、メルトインデ
ツクス1.3、嵩比重、400Kg/m3、平均粒径600μ
のエチレン共重合体を5.5Kg/hrの速度で得た。
70時間の連続運転によつても壁付着等によるトラ
ブルはなかつた。
In the polymerization apparatus shown in Fig. 1, a fluidized bed polymerization vessel with a diameter of 300 mm and a reaction section volume of 100 is used as a tower type polymerization vessel, and a Ti catalyst slurry readjusted to 0.5 mmol/-hexane in terms of Ti atoms is added to it with stirring. Triethylaluminum was fed at a rate of 1/hr from an equipped catalyst drum, and triethylaluminum was fed at a rate of 25 mmol/hr. On the other hand, when 1-butene and ethylene are mixed at a ratio of 1-butene/ethylene (mole ratio) = 0.07, the superficial gas velocity is 97 cm/sec (minimum fluidization velocity 8 cm/sec).
was supplied at a rate of The copolymer was extracted so that the amount of ethylene copolymer in the polymerization vessel was almost constant. The polymerization temperature was 90° C. and the polymerization pressure was 6 kg/cm 2 G. Thus density 0.940g/cm 3 , melt index 1.3, bulk specific gravity 400Kg/m 3 , average particle size 600μ
of ethylene copolymer was obtained at a rate of 5.5 Kg/hr.
Even after 70 hours of continuous operation, there were no problems such as adhesion to walls.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施態様を示す図面であ
る。
FIG. 1 is a drawing showing one embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 塔式重合器中で、オレフイン含有ガスの上昇
流によつてオレフイン重合体を浮遊流動させつつ
重合を行い、随時、排出ガス中の重合体を捕集し
て重合区域へ循環させる流動床方式のオノフイン
類の気相重合方法において、 (i) 塔内のガス上昇速度を最低流動化速度の10倍
より速くし、且つ (ii) 塔上部よりの排出ガスをサイクロンに導いて
同伴される重合体を捕集し、捕集された重合体
の一部もしくは全部を重合区域へ循環させるこ
と を特徴とするオレフイン類の気相重合方法。
[Scope of Claims] 1. Polymerization is carried out in a column-type polymerization vessel while the olefin polymer is suspended and fluidized by an upward flow of olefin-containing gas, and the polymer in the exhaust gas is collected from time to time to the polymerization zone. In the fluidized bed gas phase polymerization method for onofine compounds, (i) the rate of gas rise in the column is made higher than 10 times the minimum fluidization rate, and (ii) the exhaust gas from the upper part of the column is transferred to a cyclone. 1. A method for gas phase polymerization of olefins, characterized in that the polymer introduced and entrained is collected, and part or all of the collected polymer is recycled to a polymerization zone.
JP7737081A 1981-05-23 1981-05-23 Vapor phase polymerization of olefin Granted JPS57192409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7737081A JPS57192409A (en) 1981-05-23 1981-05-23 Vapor phase polymerization of olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7737081A JPS57192409A (en) 1981-05-23 1981-05-23 Vapor phase polymerization of olefin

Publications (2)

Publication Number Publication Date
JPS57192409A JPS57192409A (en) 1982-11-26
JPS6243444B2 true JPS6243444B2 (en) 1987-09-14

Family

ID=13632005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7737081A Granted JPS57192409A (en) 1981-05-23 1981-05-23 Vapor phase polymerization of olefin

Country Status (1)

Country Link
JP (1) JPS57192409A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640963A (en) * 1985-02-15 1987-02-03 Standard Oil Company (Indiana) Method and apparatus for recycle of entrained solids in off-gas from a gas-phase polyolefin reactor
US8198384B1 (en) * 2011-01-10 2012-06-12 Westlake Longview Corporation Method for preventing or reducing clogging of a fines ejector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917426A (en) * 1972-04-05 1974-02-15
JPS54139983A (en) * 1978-04-18 1979-10-30 Union Carbide Corp Exothermic polymerization in vertical fluidized bed reactorshaving cooling means * and apparatus therefor
JPS58111384A (en) * 1981-12-24 1983-07-02 Matsushita Electric Ind Co Ltd Laser tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917426A (en) * 1972-04-05 1974-02-15
JPS54139983A (en) * 1978-04-18 1979-10-30 Union Carbide Corp Exothermic polymerization in vertical fluidized bed reactorshaving cooling means * and apparatus therefor
JPS58111384A (en) * 1981-12-24 1983-07-02 Matsushita Electric Ind Co Ltd Laser tube

Also Published As

Publication number Publication date
JPS57192409A (en) 1982-11-26

Similar Documents

Publication Publication Date Title
KR101426308B1 (en) Gas-phase process and apparatus for the polymerization of olefins
JPH0313246B2 (en)
JPS59126406A (en) Vapor-phase polymerization of olefin
US6303716B1 (en) High-activity catalyst for producing low-, medium- and high density polyethylenes by gas phase polymerization, process for preparing the same and use of the same in ethylene polymerization
EP0107105B1 (en) Direct conversion of a polymerization reaction catalyzed by a ziegler-type catalyst into one catalyzed by a chromium-based catalyst
JPH029045B2 (en)
JPH09501733A (en) Vapor phase polymerization of α-olefins
JP4960858B2 (en) Method for controlling the flow rate of a polymer in a polymerization process
JP2000302807A (en) Polymerization method
JPS6411651B2 (en)
JPH1081702A (en) Polymerization
US5859157A (en) Process for gas phase polymerization of olefins
JP3216928B2 (en) Drying method of gas phase polymerization reaction system
JPH0571601B2 (en)
JP2000336112A (en) Organic silicon compound, catalyst for production of olefin polymer and production of olefin polymer
JPS6243444B2 (en)
JPS6243442B2 (en)
JP2755699B2 (en) Apparatus and method for gas phase polymerization of olefins in a fluidized bed reactor by introducing an organometallic compound
JP2893505B2 (en) Method for producing polypropylene
JPS6243441B2 (en)
JPS58120617A (en) Ethylene improved copolymerization
JPH04261408A (en) Production of polyolefin
EP0004646B2 (en) Process for preparing polymerization catalyst and process for ethylene homopolymerization
FI78485B (en) OLEFINPOLYMERISATIONSKATALYSATORER ANPASSADE FOER GASFAS PROCESSER, DERAS PREKURSOR, FRAMSTAELLNING OCH ANVAENDNING.
JPH0333165B2 (en)