JPS59126406A - Vapor-phase polymerization of olefin - Google Patents

Vapor-phase polymerization of olefin

Info

Publication number
JPS59126406A
JPS59126406A JP177483A JP177483A JPS59126406A JP S59126406 A JPS59126406 A JP S59126406A JP 177483 A JP177483 A JP 177483A JP 177483 A JP177483 A JP 177483A JP S59126406 A JPS59126406 A JP S59126406A
Authority
JP
Japan
Prior art keywords
fluidized bed
polymerization
polymer
gas
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP177483A
Other languages
Japanese (ja)
Other versions
JPH0333164B2 (en
Inventor
Michiharu Suga
菅 道春
Takashi Hayashi
貴司 林
Akifumi Kato
章文 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP177483A priority Critical patent/JPS59126406A/en
Publication of JPS59126406A publication Critical patent/JPS59126406A/en
Publication of JPH0333164B2 publication Critical patent/JPH0333164B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/384Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
    • B01J8/388Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only externally, i.e. the particles leaving the vessel and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:Fine particles of the polymer which are accompanied by the gas exhausted from the upper part of the fluidized bed are allowed to return to the fluidized bed polymerizer to enable the long-term, smooth operation of continuous, gas-phase olefin polymerization to be carried out. CONSTITUTION:The gas containing fine particles of the polymer, which is exhausted from the upper part of the fluidized bed 4 is introduced into the cyclone 8 where the particles are collected and recycled through the pipe 12 to the fluidized bed polymerizer 3. The circulation is effected to the inside of the fluidized bed more than 10mm. from the wall surface of the polymerizer 3, more than 50mm. from the fluidized bed bottom and less than 4/5H (the height of the fluidized bed). In the meantime, the polymer is taken out from the control valve 14 through the pipe 15 so that the height of the fluidized bed H is kept almost constant. Thus, the long-term, smooth operation of continuous gas-phase polymerization of olefin becomes possible.

Description

【発明の詳細な説明】 本発明は、流動層を用いるオレフィンの気相重合方法に
関する。さらに詳しくは流動層上部から排出されるガス
に同伴される微粉末重合体を付着や閉塞などのトラブル
なしに流動層重合器に戻し、円滑な重合操作を長期間継
続して実施できるオレフィンの気相重合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for gas phase polymerization of olefins using a fluidized bed. In more detail, the fine powder polymer entrained in the gas discharged from the upper part of the fluidized bed is returned to the fluidized bed polymerization reactor without problems such as adhesion or blockage, and the olefin gas can be used to continuously perform smooth polymerization operations for a long period of time. Relating to a phase polymerization method.

なお、本発明において重合なる用語は、単独重合のみな
らす共重合を包含した意味で、また重合体は単独重合体
のみならず共重合体を包含した意味で用いられることが
ある。
In the present invention, the term "polymerization" is sometimes used to include not only homopolymerization but also copolymerization, and "polymer" is sometimes used to include not only homopolymers but also copolymers.

オレフィン重合用の遷移金属触媒成分の改良によって、
羊位遷移金属当りのオレフィン重合体生産能力が飛躍的
に高められた結果、重合後における触媒除去操作を省略
しうる段階に至っている。
By improving transition metal catalyst components for olefin polymerization,
As a result of the dramatic increase in the production capacity of olefin polymers per transition metal, we have reached a stage where it is possible to omit the catalyst removal operation after polymerization.

このような高活性触媒を用いるときには、重合後の操作
が最も簡単なところから、オレフィン重合を気相で行う
方法が注目されている。
When using such a highly active catalyst, a method of carrying out olefin polymerization in the gas phase is attracting attention because it is the simplest to operate after polymerization.

該気相重合の実施に除t7ては、重合を円滑に進めるた
めに、例えば流動層重合器や攪拌流動層重合器などのよ
うな完全混合型重合器を用い、オレフィン含有ガスによ
って・触媒を含有するオレフィン重合体を浮遊流動させ
つつ重合を行う方法が賞月されている。
During the gas phase polymerization, a complete mixing type polymerization vessel such as a fluidized bed polymerization vessel or an agitated fluidized bed polymerization vessel is used in order to proceed with the polymerization smoothly. A method of carrying out polymerization while floating and fluidizing the olefin polymer contained therein has been widely praised.

この方法では、流動層を出た未反応ガス流を循環再使用
することが好ましく、そのためには、該未反応ガス流を
冷却器や循環ガスブロアーなどを通して循環させること
になるが、該未反応ガス流に随伴して排出される触媒を
含有している微粉状重合体がこれらの装置や配管内で重
合を起こし、塊状物を形成させ、機器能力の低下や閉塞
を引き起こすなどのトラブルの原因となる。
In this method, it is preferable to recycle and reuse the unreacted gas stream leaving the fluidized bed, and for this purpose, the unreacted gas stream is circulated through a cooler, a circulating gas blower, etc. Finely powdered polymer containing catalyst, which is discharged along with the gas flow, polymerizes in these devices and piping, forming lumps, which can cause problems such as reduced equipment performance and blockages. becomes.

このようなトラブルの発生を回避するために、一般には
、流動層気相重合帯域を出た未反応ガスを循環使用する
に際しては、該未反応ガス流を予めサイクロンに導いて
微粉状重合体を取除いておくのが好ましく、かく捕集さ
れた微粉状重合体は、可及的速やかに気相重合帯域に循
環し、サイクロン周辺において望ましからざる重合の進
行によって壁付着や管閉塞などのトラブルが発生するこ
とを未然に防止することが肝要である。
In order to avoid such troubles, in general, when the unreacted gas leaving the fluidized bed gas phase polymerization zone is recycled, the unreacted gas flow is guided into a cyclone in advance to form a finely powdered polymer. It is preferable to remove the finely divided polymer, and the fine powder polymer thus collected is circulated to the gas phase polymerization zone as soon as possible to prevent undesirable progress of polymerization around the cyclone, such as wall adhesion and pipe clogging. It is important to prevent problems from occurring.

従来このような微粉状重合体のサイクロンから気相重合
帯域への循環方式についてあまり詳細に検討されたこと
はなかった。一般的に流動層上部から排出される微粉末
をサイクロンに捕集して流動層に戻す方式として、流動
層上部空間の器壁から戻す方法あるいは流動層形成部の
器壁から戻す方法が考えられる。オレフィンの気相重合
において前者の方法を採用するときには、微粉末の循環
量が非常に多くなり、サイクロン周辺において塊状物を
生成し易くなり、閉塞などのトラブルを起こす傾向が認
められる。また後者の方法を採用するときには、流動層
内で微粉の凝集による塊状物の生成が認められ、多孔抜
などの閉塞を起こすというトラブルが発生する。
Conventionally, a method of circulating such a finely powdered polymer from a cyclone to a gas phase polymerization zone has not been studied in detail. Generally, the fine powder discharged from the upper part of the fluidized bed is collected in a cyclone and returned to the fluidized bed by returning it from the vessel wall in the space above the fluidized bed or from the vessel wall in the fluidized bed forming part. . When the former method is employed in the gas-phase polymerization of olefins, the amount of fine powder circulated becomes extremely large, making it easy to form lumps around the cyclone, which tends to cause problems such as blockage. Further, when the latter method is adopted, formation of lumps due to agglomeration of fine powder is observed in the fluidized bed, and troubles such as pore removal and blockage occur.

微粉状重合体は通常活性の高い触媒を含有しているので
、廃棄する妊は不経済であり、流動層重合器に循環して
再使用することが望まれる。そこで本発明者らは上記し
たようなトラブルを回避し、長時間の連続運転に支障の
ない微粉状重合体の循環方法を検討した結果、流動層内
の特定位置に循環を行う方法を見出すに至った。
Since the finely divided polymer usually contains a highly active catalyst, it is uneconomical to discard it, and it is desirable to recycle it to the fluidized bed polymerization vessel for reuse. Therefore, the present inventors investigated a method for circulating fine powder polymer that would avoid the above-mentioned troubles and would not hinder long-term continuous operation, and as a result, they found a method for circulating it to a specific position within the fluidized bed. It's arrived.

すなわち本発明は、流動層を用いてオレフィンを気相重
合する方法において、流動層上部から排出される微粉状
重合体含有ガスをサイクロンに導いて捕集した微粉状重
合体を流動層重合器に循環させるとともに、該循環を該
重合器壁面から少なくとも1Qmm以上、流動層底面か
ら5Qmm以上でかつ流動層高さの415以下の流動層
内部位置に行うことを特徴とするオレフィンの気相重合
方法である。
That is, the present invention is a method for gas phase polymerization of olefin using a fluidized bed, in which a gas containing a finely divided polymer discharged from the upper part of the fluidized bed is guided to a cyclone, and the collected finely divided polymer is transferred to a fluidized bed polymerization vessel. A method for vapor phase polymerization of olefins, characterized in that the circulation is carried out at a position inside the fluidized bed at least 1 Qmm from the wall of the polymerization vessel, 5Qmm or more from the bottom of the fluidized bed, and 415 or less above the height of the fluidized bed. be.

本発明の気相重合においては、通接金属触媒成分と周期
律表第1族ないし第6族金属の有機金属化合物触媒成分
とから形成される触媒を用いるのが好ましい。
In the gas phase polymerization of the present invention, it is preferable to use a catalyst formed from a catalytic metal catalyst component and an organometallic compound catalyst component of a metal from Group 1 to Group 6 of the Periodic Table.

遷移金属化合物触媒成分は、チタン、バナジウム、クロ
ム、ジルコニウムなどの道移金属の化合物であって、使
用条件下に液状のものであっても固体状のものであって
もよい。これらは単一化合物である必要はなく、他の化
合物に°担持されていたりあるいは混合されていてもよ
い。さらに他の化合物との錯化合物や複化合物であって
もよい。
The transition metal compound catalyst component is a compound of a transition metal such as titanium, vanadium, chromium, zirconium, etc., and may be in a liquid or solid state under the conditions of use. These do not need to be a single compound, and may be supported on other compounds or mixed. Furthermore, it may be a complex compound or a composite compound with other compounds.

好適な遷移金属化合物触媒成分は、遷移金属1ミリモル
当り約5000g以上、とくに約8000g以上のオレ
フィン重合体を製造することができる高活性成分であっ
て、その代表的なものとしてマグナシラム化合物によっ
て高活性化されたチタン触媒成分を例示することができ
る。例えば・チタン1マグネシウム及びハロゲンを必須
成分とする固体状のチタン触媒成分であって、非晶化さ
れたハロゲン化マグネシウムを含有し、その比表面積は
、好ましくは約40m2/g以上、とくに好ましくは約
80ないし約800m/gの成分を例示することができ
る。そして電子供与体、例えば有機酸エステル、ケイ酸
エステル、酸ハライド、酸無水物、ケトン、酸アミド、
第三アミン、無機酸エステル、リン酸エステル、亜リン
酸エステル、エーテルなどを含有していてもよい。この
触媒成分は、例えば、チタンを約0.5ないし約10重
量%、とくに約1ないし約8重量%含有し、チタン/マ
グネシウム(原子比)が約1/2ないし約1/100 
、とくに約1/ろないし約1150、ハロゲン/チタン
(原子比)が約4ないし約100、とくに約6ないし約
80九電子供与体/チタン(モル比)が0ないし約10
、とくに0ないし約6の範囲にあるものが好ましい。
A suitable transition metal compound catalyst component is a highly active component capable of producing about 5,000 g or more, particularly about 8,000 g or more of olefin polymer per mmol of transition metal, and a typical example thereof is a highly active component that can be produced by a magnacilam compound. An example of this is a titanium catalyst component. For example, a solid titanium catalyst component containing titanium 1 magnesium and a halogen as essential components, containing amorphous magnesium halide, and having a specific surface area of preferably about 40 m2/g or more, particularly preferably A component of about 80 to about 800 m/g can be exemplified. and electron donors such as organic acid esters, silicate esters, acid halides, acid anhydrides, ketones, acid amides,
It may also contain tertiary amines, inorganic acid esters, phosphate esters, phosphite esters, ethers, and the like. This catalyst component contains, for example, about 0.5 to about 10% by weight of titanium, especially about 1 to about 8% by weight, and the titanium/magnesium (atomic ratio) is about 1/2 to about 1/100.
, especially from about 1 to about 1150, halogen/titanium (atomic ratio) from about 4 to about 100, especially from about 6 to about 80, and nine electron donor/titanium (molar ratio) from 0 to about 10.
, particularly those in the range of 0 to about 6 are preferred.

これらの触媒成分についてはすでに数多く提案されてお
り、広く知られている。
Many of these catalyst components have already been proposed and are widely known.

有機金属化合物触媒成分は、周期律表第1族ないし第3
族の金属と炭素の結合を有する有機金属化合物であって
、その具体例としては、アルカリ金属の有機化合物、ア
ルカリ土類金属の有機金属化合物、有機アルミニウム化
合物などが挙げられ、例えば、アルキルリチウム、アリ
ールナトリウム、アルキルマグネシウム、アリールマグ
ネシウム、アルキルマグネシウムハライド、アリールマ
グネシウムハライド、アルキルマグネシウムヒドリド、
トリアルキルアルミニウム、アルキルアルミニウムハラ
イド、アルキルアルミニウムヒドリド、アルキルアルミ
ニウムアルJキシドヘアルキルリチウムアルミニウム、
これらの混合物などを例示できる。
The organometallic compound catalyst component belongs to Groups 1 to 3 of the periodic table.
Specific examples include organic compounds of alkali metals, organic metal compounds of alkaline earth metals, and organic aluminum compounds, such as alkyl lithium, Aryl sodium, alkylmagnesium, arylmagnesium, alkylmagnesium halide, arylmagnesium halide, alkylmagnesium hydride,
Trialkylaluminum, alkylaluminum halide, alkylaluminum hydride, alkylaluminum alkyl J oxide hair alkyl lithium aluminum,
Examples include mixtures of these.

前記2成分に加え、立体規則性、分子量、分子量分布な
どを調節する目的で、水素、ハロゲン化炭化水素、電子
供与体触媒成分、例えば、有機酸エステル、ケイ酸エス
テル、カルボン酸ハライド、カルボン酸アミド、第三ア
ミン、酸無水物\エーテル〜ケトンヘアルデヒドなどを
併用してもよい。
In addition to the above two components, for the purpose of adjusting stereoregularity, molecular weight, molecular weight distribution, etc., hydrogen, halogenated hydrocarbons, electron donor catalyst components, such as organic acid esters, silicate esters, carboxylic acid halides, carboxylic acids Amides, tertiary amines, acid anhydrides, ethers, ketone hairdehydes, etc. may be used in combination.

電子供与体成分は、重合に際し、予め有機金属化合物触
媒成分と錯化合物(又は付加化合物)を形成させてから
使用してもよく、またトリハロゲン化アルミニウムのよ
うなルイス酸の如き他の化合物と錯化合物(又は付加化
合物)を形成した形で使用してもよい。
During polymerization, the electron donor component may be used after forming a complex compound (or addition compound) with the organometallic compound catalyst component in advance, or may be used with other compounds such as Lewis acids such as aluminum trihalides. It may be used in the form of a complex compound (or addition compound).

本発明方法において、重合に用いられるオレフィンとし
ては、エチレン、プロピレン、1−ブテン、1−ペンテ
ン、1−ヘキセン、1−オクテン、1−デセン、4−メ
チル−1−ペンテン、6−メチル−1−ペンテン、スチ
レン、ブタジェン、イソプレン、1,4−へキサジエン
1.ジシクロペンタジェン、5−エチリデン−2−ノル
ボルネンなどを例示でき、気相重合が可能な範囲でこれ
らの単独重合や共重合を行うことができる。
In the method of the present invention, the olefins used for polymerization include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 4-methyl-1-pentene, 6-methyl-1 -Pentene, styrene, butadiene, isoprene, 1,4-hexadiene 1. Examples include dicyclopentadiene, 5-ethylidene-2-norbornene, etc., and homopolymerization or copolymerization of these can be performed within a range where gas phase polymerization is possible.

本発明方法は、好ましくは、エチレン又はプロピレンの
単独重合、エチレンと他のオレフィンとの共重合−プロ
ピレンと他のオレフィンの共重合を行う場合に好適に利
用できる。
The method of the present invention can be suitably used for homopolymerization of ethylene or propylene, copolymerization of ethylene and other olefins, and copolymerization of propylene and other olefins.

気相重合は、流動層重合器、攪拌流動層重合器などのよ
うな流動層を用いる重合器中で行われる。
Gas phase polymerization is carried out in a polymerization vessel using a fluidized bed, such as a fluidized bed polymerization vessel, an agitated fluidized bed polymerization vessel, and the like.

重合温度は、オレフィン重合体の融点以下、好ましくは
融点より約10°C以上低く、かつ室温ないし約130
°C1とくには約40ないし110°C程度である。ま
た重合圧力は、例えば、大気圧ないし約150 kg 
/ otr2、とくに約2ないし約70 kq 101
12の範囲が好ましい。重合に際して任意に使用される
水素は、例えばオレフィン1モルに対し約0.001な
いし約20モル、とくには約0.02ないし約10モル
の範囲で用いるのが好ましい。また重合熱を除去するた
めに、液状の易揮発性炭化水素、例えばプロパンやプタ
ジを供給し、重合帯域中で気化させてもよい。
The polymerization temperature is below the melting point of the olefin polymer, preferably about 10°C or more lower than the melting point, and from room temperature to about 130°C.
°C1, particularly about 40 to 110 °C. Further, the polymerization pressure is, for example, atmospheric pressure to about 150 kg.
/otr2, especially about 2 to about 70 kq 101
A range of 12 is preferred. Hydrogen optionally used in the polymerization is preferably used in an amount of, for example, about 0.001 to about 20 moles, particularly about 0.02 to about 10 moles, per mole of olefin. In order to remove the heat of polymerization, a liquid easily volatile hydrocarbon such as propane or putaj may be supplied and vaporized in the polymerization zone.

前記の如き、遷移金属化合物触媒成分、有機金属化合物
触媒成分、電子供与体触媒成分等を用いる場合には、反
応床容積14当り、遷移金属化合物触媒成分が遷移金属
原子に換算して約0.0005ないし約1ミリモル、と
くには約o、o o iないし約0.5 ミIJモル、
有機金属化合物触媒成分を、該金属/遷移金属(原子比
)が約1ないし約2000・とくに約1ないし約500
となるような割合で用いるのが好ましい。また電子供与
体触媒成分を、有機金属化合物触媒成分1モル当り、0
ないし約1モル、とくにOないし約0.5モル程度の割
合で用いるのが好ましい。
When using a transition metal compound catalyst component, an organometallic compound catalyst component, an electron donor catalyst component, etc. as described above, the amount of the transition metal compound catalyst component is approximately 0.00% in terms of transition metal atoms per 14 reaction bed volumes. 0005 to about 1 mmol, especially about o, o o i to about 0.5 mmol,
The organometallic compound catalyst component has a metal/transition metal (atomic ratio) of about 1 to about 2000, particularly about 1 to about 500.
It is preferable to use the ratio such that In addition, the electron donor catalyst component was added to 0% per mole of the organometallic compound catalyst component.
It is preferably used in a proportion of O to about 1 mol, particularly O to about 0.5 mol.

オレフィン類の重合は実質的に連続的に行うのがよい。The polymerization of olefins is preferably carried out substantially continuously.

すなわち、触媒成分、オレフィン、必要に応じて水素、
希釈剤などを、連続的に重合器に供給し、気体成分によ
って触媒を含有する重合体を浮遊流動させながら重合を
行う方法を採用するのが工業的に有利である。連続重合
においては、重合器中の重合体量をほぼ一定に維持する
ように、重合体を連続的(又は間欠的)に重合器から抜
き出し、一方、実質的な重合帯域である重合体の浮遊流
動域を通過した未反応ガス流(場合により水素や希釈剤
などを含む)は、微粉状重合体を同伴して重合帯域から
実質的に連続的に排出される。
i.e. catalyst components, olefin, optionally hydrogen,
It is industrially advantageous to adopt a method in which a diluent and the like are continuously supplied to a polymerization vessel and polymerization is carried out while the catalyst-containing polymer is suspended and fluidized by a gas component. In continuous polymerization, the polymer is continuously (or intermittently) withdrawn from the polymerization vessel so as to maintain the amount of polymer in the polymerization vessel almost constant, while the polymer is suspended in a substantial polymerization zone. The unreacted gas stream (optionally containing hydrogen, diluent, etc.) passing through the flow zone is substantially continuously discharged from the polymerization zone, entraining the finely divided polymer.

これをサイクロンに導き、未反応ガス流中の微粉重合体
を捕集する。微粉重合体が除去された未反応ガスは、冷
却器、ブロワ−などの諸機器に適宜通した後、重合帯域
に循環させ再使用することができる。
This is led to a cyclone to collect the finely divided polymer in the unreacted gas stream. The unreacted gas from which the fine powder polymer has been removed can be appropriately passed through various devices such as a cooler and a blower, and then circulated to the polymerization zone for reuse.

本発明方法においては、前記サイクロンに捕集された微
粉状重合体が、器壁付着や閉塞のトラブルを生じさせな
いようにできるだけ速かに気相重合帯域に循環させるこ
とが好ましい。そのためには自然落下によって循環させ
てもよいが、ロータリーバルブを用いる方法、ファンを
用いる方法、同伴ガスを導入する方法などによって強制
的に循環させる方法を採用するのが好ましい。とくにフ
ァンの使用が好ましい。この循環に際し本発明において
は、例えば流動層高さが300ないし12000mm、
流動層の径が′500ないし6000mm程度の流動層
を形成させながらオレフィンの気相重合を行う場合に、
その循環位置を、流動層底面(通常はガス分散板上部)
から少なくとも5Qmm上部であるが少なくとも流動層
高さくH)の415以下、好ましくは流動層底面から1
15Hないし2/3Hの高さであってかつ重合器横壁面
から10mm以上、好ましくは5Qmm以上離れた位置
とするものである。循環位置を上記位置よりさらに流動
層底面に近づけた場合には、循環ガスの偏流及び重合体
の停滞部を生じる等、流動層底面直上部の流動状態を著
しく阻害し、塊状物を形成するトラブルを引き起こす。
In the method of the present invention, it is preferable that the finely powdered polymer collected in the cyclone be circulated to the gas phase polymerization zone as quickly as possible so as not to cause troubles such as adhesion to the vessel wall or clogging. For this purpose, it is possible to circulate by natural fall, but it is preferable to adopt a method of forced circulation using a method using a rotary valve, a method using a fan, a method by introducing entrained gas, etc. In particular, it is preferable to use a fan. During this circulation, in the present invention, for example, the height of the fluidized bed is 300 to 12000 mm,
When performing gas phase polymerization of olefin while forming a fluidized bed with a diameter of about 500 to 6000 mm,
Position the circulation at the bottom of the fluidized bed (usually the top of the gas distribution plate).
at least 5 Qmm above the fluidized bed height H), but at least 415 mm below the fluidized bed height H), preferably 1 Qmm from the bottom of the fluidized bed.
The height is 15H to 2/3H, and the position is 10 mm or more, preferably 5Q mm or more away from the side wall surface of the polymerization vessel. If the circulation position is moved closer to the bottom of the fluidized bed than the above position, problems such as uneven flow of the circulating gas and stagnation of the polymer will occur, which will significantly impede the flow state directly above the bottom of the fluidized bed and cause the formation of lumps. cause.

また循環位置を上記位置よりさらに上方に行った場合に
は、せっかく重合器内に循環された微粉状重合体は、直
ちに重合帯域を通過し、未反応ガスに同伴して再びサイ
クロンに導かれる、いわゆるショートパスを繰り返すこ
とになる。微粉状重合体の重合器内での滞留時間が短い
ため、生長が進まないだけでなく、サイクロンの負荷が
増大し、器壁付着や閉塞のトラブルの原因となる。また
循環位置を上記位置よりさらに重合器横壁面に近づけた
場合には、通常化じている壁面付近の円滑な重合体の下
降流を乱し、重合体の停滞部を生じるため壁面付近での
塊状物形成のトラブルを引き起こし易くなる。
In addition, when the circulation position is moved higher than the above position, the fine powder polymer that has been circulated in the polymerization vessel immediately passes through the polymerization zone and is guided again to the cyclone together with the unreacted gas. This means repeating so-called short passes. Since the residence time of the finely divided polymer in the polymerization vessel is short, not only does growth not progress, but the load on the cyclone increases, causing problems such as adhesion to the vessel wall and blockage. In addition, if the circulation position is moved closer to the side wall of the polymerization vessel than the above position, the normally smooth downward flow of polymer near the wall will be disrupted, creating a stagnation area of the polymer. This tends to cause troubles such as lump formation.

第1図は本発明の一実施態様を示す図面である。FIG. 1 is a drawing showing one embodiment of the present invention.

流動層重合器6には、多孔板6の上部に流動層4が形成
されている。遷移金属化合物触媒成分と有機金属化合物
触媒成分を予め別の容器中で少量のオレフィンで予備重
合処理することによって得られた触媒懸濁液を管1から
ヒーター2を通して液状媒体を気化させた後、重合器6
に供給する。原料オレフィン、必要に応じて使用される
水素や希釈剤を、管5及びvllから新たにあるいは循
環によって重合器に供給し、流動層4を流動させつつ重
合反応を行わしめる。流動層を通過した未反応ガスは、
微粉状重合体を同伴しているのて管7から排出後、サイ
クロン8に導き、粉末重合体を取り除く。微粉重合体が
除去された未反応ガスは、管11から冷却器16及び循
環ブロワ−16を通って重合器に循環される。サイクロ
ン8の下部に設けられたファン9によってサイクロン中
の微粉末重合体は強制的に管12から流動層に循環させ
る。
In the fluidized bed polymerizer 6, a fluidized bed 4 is formed above a perforated plate 6. A catalyst suspension obtained by prepolymerizing a transition metal compound catalyst component and an organometallic compound catalyst component with a small amount of olefin in a separate container is passed from a tube 1 to a heater 2 to vaporize the liquid medium. Polymerization vessel 6
supply to. The raw material olefin, hydrogen and diluent used as necessary are supplied to the polymerization reactor either freshly or by circulation through the tubes 5 and Vll, and the polymerization reaction is carried out while fluidizing the fluidized bed 4. The unreacted gas that has passed through the fluidized bed is
After the fine powder polymer is discharged from the pipe 7, it is led to a cyclone 8 to remove the powder polymer. The unreacted gas from which the finely divided polymer has been removed is circulated from pipe 11 through cooler 16 and circulation blower 16 to the polymerization vessel. A fan 9 provided at the bottom of the cyclone 8 forces the finely powdered polymer in the cyclone to circulate through the tube 12 into the fluidized bed.

管12の流動層中のノズル先端位置は、横壁からd1多
孔板6から上方にhだけ離れており、ここに流動層高さ
)。一方、重合体は、流動層高さがほぼ一定となるよう
に調節弁14から管15を通って抜き出される。
The nozzle tip position in the fluidized bed of the tube 12 is away from the side wall by d1 upward from the perforated plate 6 by h, which is the fluidized bed height). On the other hand, the polymer is withdrawn from the control valve 14 through the pipe 15 so that the height of the fluidized bed remains approximately constant.

上記態様によって、オレフィン類の気相重合を・連続し
て長期間に亘り、円滑に行うことができた。
According to the above embodiment, gas phase polymerization of olefins could be carried out continuously and smoothly over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施態様を示す図面である。 出願人  三井石油化学工業株式会社 代理人  山  口     和 FIG. 1 is a drawing showing one embodiment of the present invention. Applicant: Mitsui Petrochemical Industries, Ltd. Agent Kazu Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] (1)流動層を用いてオレフィンを気相重合する方法に
おいて、流動層上部から排出される微粉状重合体含有ガ
スをサイクロンに導いて捕集した微粉状重合体を流動層
重合器に循環させるとともに、該循環を該重合器壁面か
ら少なくとも10mm以上、流動層底面から50rr1
m以上でかつ流動層高さの415以下の流動層内部位置
に行うことを特徴とするオレフィンの気相重合方法。
(1) In a method for gas phase polymerization of olefin using a fluidized bed, the fine powder polymer-containing gas discharged from the upper part of the fluidized bed is guided to a cyclone, and the collected fine powder polymer is circulated to the fluidized bed polymerization vessel. At the same time, the circulation is at least 10mm from the wall of the polymerization vessel and 50mm from the bottom of the fluidized bed.
A method for vapor phase polymerization of olefins, characterized in that the process is carried out at a position inside a fluidized bed at a height of 415 m or more and a height of 415 m or less.
JP177483A 1983-01-11 1983-01-11 Vapor-phase polymerization of olefin Granted JPS59126406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP177483A JPS59126406A (en) 1983-01-11 1983-01-11 Vapor-phase polymerization of olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP177483A JPS59126406A (en) 1983-01-11 1983-01-11 Vapor-phase polymerization of olefin

Publications (2)

Publication Number Publication Date
JPS59126406A true JPS59126406A (en) 1984-07-21
JPH0333164B2 JPH0333164B2 (en) 1991-05-16

Family

ID=11510917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP177483A Granted JPS59126406A (en) 1983-01-11 1983-01-11 Vapor-phase polymerization of olefin

Country Status (1)

Country Link
JP (1) JPS59126406A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0369640A2 (en) * 1988-11-18 1990-05-23 Brown & Root, Inc.(a Delaware corporation) Method and apparatus for gas phase polymerization of olefins in vertically stacked reactors
DE112006003437T5 (en) 2005-12-19 2008-10-23 Sumitomo Chemical Co., Ltd. Process for the preparation of olefin polymer
DE102008061425A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Co., Ltd. Olefin polymerization reactor, polyolefin production system and polyolefin production process
DE102008061518A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Co., Ltd. A spouted bed apparatus, sputtered bed polyolefin production system, and polyolefin manufacturing method
DE102008061427A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Company, Ltd. Spouted bed apparatus and polyolefin production method using the same
DE102008061426A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Company, Ltd. Reaction unit for olefin polymerization and process for polyolefin production
DE102008061516A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Company, Ltd. Powder transfer device and polyolefin production process
DE102008063203A1 (en) 2007-12-28 2009-09-03 Sumitomo Chemical Co., Ltd. Process for producing a propylene-ethylene block copolymer
DE102009013002A1 (en) 2008-03-14 2010-06-10 Sumitomo Chemical Company, Ltd. Propylene-based block copolymer particles
DE102010023010A1 (en) 2009-06-08 2010-12-09 Sumitomo Chemical Company, Limited Spouted / fluidized bed olefin polymerization reactor
US7999048B2 (en) 2006-08-11 2011-08-16 Sumitomo Chemical Company, Limited Process for producing prepolymerization catalyst for polymerization of olefin and process for producing olefin polymer
DE102012005833A1 (en) 2011-03-25 2012-09-27 Sumitomo Chemical Company, Ltd. Olefin polymerization reactor, polyolefin production system, and polyolefin production process
WO2016099277A1 (en) * 2014-12-18 2016-06-23 Klaren International B.V. Apparatus for carrying out a physical and/or chemical process, in particular a heat exchanger
EP3231817A1 (en) 2016-04-12 2017-10-18 Sumitomo Chemical Co., Ltd. Method for producing polyolefin
EP3587457A1 (en) 2018-06-26 2020-01-01 Sumitomo Chemical Company, Limited Method of transferring slurry, method of producing polyolefin and use thereof
US10537871B2 (en) 2016-08-03 2020-01-21 Sumitomo Chemical Company, Limited System for producing polyolefin, method of producing polyolefin, and method of producing heterophasic propylene polymer material
EP3738984A1 (en) 2019-03-29 2020-11-18 Sumitomo Chemical Company, Limited Method for producing heterophasic propylene polymer particles
EP3885376A1 (en) 2020-02-14 2021-09-29 Sumitomo Chemical Company Limited Production method of propylene polymer

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0369640A2 (en) * 1988-11-18 1990-05-23 Brown & Root, Inc.(a Delaware corporation) Method and apparatus for gas phase polymerization of olefins in vertically stacked reactors
DE112006003437T5 (en) 2005-12-19 2008-10-23 Sumitomo Chemical Co., Ltd. Process for the preparation of olefin polymer
US7999048B2 (en) 2006-08-11 2011-08-16 Sumitomo Chemical Company, Limited Process for producing prepolymerization catalyst for polymerization of olefin and process for producing olefin polymer
DE102008061516A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Company, Ltd. Powder transfer device and polyolefin production process
DE102008061427A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Company, Ltd. Spouted bed apparatus and polyolefin production method using the same
DE102008061426A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Company, Ltd. Reaction unit for olefin polymerization and process for polyolefin production
DE102008061518A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Co., Ltd. A spouted bed apparatus, sputtered bed polyolefin production system, and polyolefin manufacturing method
DE102008061425A1 (en) 2007-12-11 2009-06-18 Sumitomo Chemical Co., Ltd. Olefin polymerization reactor, polyolefin production system and polyolefin production process
US8313704B2 (en) 2007-12-11 2012-11-20 Sumitomo Chemical Company, Limited Spouted bed device, polyolefin production system with spouted bed device, and polyolefin production process
US8084555B2 (en) 2007-12-11 2011-12-27 Sumitomo Chemical Company, Limited Spouted bed device, polyolefin production system with spouted bed device, and polyolefin production process
US7834108B2 (en) 2007-12-11 2010-11-16 Sumitomo Chemical Company, Limited Powder transfer device and polyolefin production process
US8030420B2 (en) 2007-12-11 2011-10-04 Sumitomo Chemical Company, Limited Olefin polymerization reaction unit and polyolefin production process
US7993593B2 (en) 2007-12-11 2011-08-09 Sumitomo Chemical Company, Limited Olefin polymerization reactor, polyolefin production system, and polyolefin production process
US7993591B2 (en) 2007-12-11 2011-08-09 Sumitomo Chemical Company, Limited Spouted bed device and polyolefin production process using the same
DE102008063203A1 (en) 2007-12-28 2009-09-03 Sumitomo Chemical Co., Ltd. Process for producing a propylene-ethylene block copolymer
US7799866B2 (en) 2007-12-28 2010-09-21 Sumitomo Chemical Company, Limited Method for producing propylene-ethylene block copolymer
DE102009013002A1 (en) 2008-03-14 2010-06-10 Sumitomo Chemical Company, Ltd. Propylene-based block copolymer particles
US8163246B2 (en) 2009-06-08 2012-04-24 Sumitomo Chemical Company, Limited Spouted-fluidized bed-type olefin polymerization reactor
DE102010023010B4 (en) 2009-06-08 2023-05-25 Sumitomo Chemical Company, Limited Spouted Bed/Fluid Bed Olefin Polymerization Reactor
DE102010023010A1 (en) 2009-06-08 2010-12-09 Sumitomo Chemical Company, Limited Spouted / fluidized bed olefin polymerization reactor
DE102012005833B4 (en) 2011-03-25 2022-10-20 Sumitomo Chemical Company, Ltd. Olefin polymerization reactor, polyolefin production system and polyolefin production process
DE102012005833A1 (en) 2011-03-25 2012-09-27 Sumitomo Chemical Company, Ltd. Olefin polymerization reactor, polyolefin production system, and polyolefin production process
NL2014011B1 (en) * 2014-12-18 2016-10-12 Klaren Int B V Apparatus for carrying out a physical and/or chemical process, in particular a heat exchanger.
WO2016099277A1 (en) * 2014-12-18 2016-06-23 Klaren International B.V. Apparatus for carrying out a physical and/or chemical process, in particular a heat exchanger
EP3231817A1 (en) 2016-04-12 2017-10-18 Sumitomo Chemical Co., Ltd. Method for producing polyolefin
US10537871B2 (en) 2016-08-03 2020-01-21 Sumitomo Chemical Company, Limited System for producing polyolefin, method of producing polyolefin, and method of producing heterophasic propylene polymer material
EP3587457A1 (en) 2018-06-26 2020-01-01 Sumitomo Chemical Company, Limited Method of transferring slurry, method of producing polyolefin and use thereof
EP3738984A1 (en) 2019-03-29 2020-11-18 Sumitomo Chemical Company, Limited Method for producing heterophasic propylene polymer particles
EP3885376A1 (en) 2020-02-14 2021-09-29 Sumitomo Chemical Company Limited Production method of propylene polymer

Also Published As

Publication number Publication date
JPH0333164B2 (en) 1991-05-16

Similar Documents

Publication Publication Date Title
JPS59126406A (en) Vapor-phase polymerization of olefin
EP0012147B1 (en) Process for the preparation of high density ethylene polymers in fluid bed reactor
EP0041796B1 (en) Improvement in multi-step gas-phase polymerization of olefins
KR101426308B1 (en) Gas-phase process and apparatus for the polymerization of olefins
EP0040992B1 (en) Process for multi-step gas-phase polymerization of olefins
JPH09501733A (en) Vapor phase polymerization of α-olefins
US4395359A (en) Polymerization catalyst, process for preparing, and use for ethylene homopolymerization
JP4960858B2 (en) Method for controlling the flow rate of a polymer in a polymerization process
JPH0313246B2 (en)
CS214856B2 (en) Method of making the resin olefine polymere
JPH06503123A (en) Gas phase polymerization method for olefins
JPH10279612A (en) Gas phase polymerization process
US4684703A (en) Polymerization catalyst for ethylene homopolymerization
JP2009509017A (en) Method for vapor phase polymerization of olefins
JPS5941648B2 (en) Exothermic polymerization in a vertical fluidized bed reactor system with cooling means and its equipment
JPH1081702A (en) Polymerization
JPH0571601B2 (en)
JPS6243442B2 (en)
EP0004646B2 (en) Process for preparing polymerization catalyst and process for ethylene homopolymerization
JPS58120617A (en) Ethylene improved copolymerization
JPS6243444B2 (en)
JPH0333165B2 (en)
JPS6243441B2 (en)
JPS6412289B2 (en)
JPS6243443B2 (en)