JPH0333165B2 - - Google Patents

Info

Publication number
JPH0333165B2
JPH0333165B2 JP177583A JP177583A JPH0333165B2 JP H0333165 B2 JPH0333165 B2 JP H0333165B2 JP 177583 A JP177583 A JP 177583A JP 177583 A JP177583 A JP 177583A JP H0333165 B2 JPH0333165 B2 JP H0333165B2
Authority
JP
Japan
Prior art keywords
gas
fluidized bed
polymerization
polymer
polymerizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP177583A
Other languages
Japanese (ja)
Other versions
JPS59126407A (en
Inventor
Michiharu Suga
Takashi Hayashi
Akifumi Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP177583A priority Critical patent/JPS59126407A/en
Publication of JPS59126407A publication Critical patent/JPS59126407A/en
Publication of JPH0333165B2 publication Critical patent/JPH0333165B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/384Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
    • B01J8/388Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only externally, i.e. the particles leaving the vessel and subsequently re-entering it

Description

【発明の詳細な説明】 本発明は、流動層を用いるオレフインの気相重
合方法に関する。さらに詳しくは流動層上部から
排出されるガスに同伴される微粉末重合体を付着
や閉塞などのトラブルなしに流動層重合器に戻
し、円滑な重合操作を長期間継続して実施できる
オレフインの気相重合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for gas phase polymerization of olefins using a fluidized bed. In more detail, the fine powder polymer entrained in the gas discharged from the upper part of the fluidized bed is returned to the fluidized bed polymerization reactor without problems such as adhesion or clogging, allowing smooth polymerization to continue for a long period of time. Relating to a phase polymerization method.

なお、本発明において重合なる用語は、単独重
合のみならず、共重合を包含した意味で、また重
合体は単独重合体のみならず共重合体を包含した
意味で用いられることがある。
In the present invention, the term "polymerization" is sometimes used to include not only homopolymerization but also copolymerization, and the term "polymer" is sometimes used to include not only homopolymers but also copolymers.

オレフイン重合用の遷移金属触媒成分の改良に
よつて、単位遷移金属当りのオレフイン重合体生
産能力が飛躍的に高められた結果、重合後におけ
る触媒除去操作を省略しうる段階に至つている。
このような高活性触媒を用いるときには、重合後
の操作が最も簡単なところから、オレフイン重合
を気相で行う方法が注目されている。
As a result of improvements in transition metal catalyst components for olefin polymerization, the production capacity of olefin polymers per unit transition metal has been dramatically increased, and as a result, we have reached a stage where the catalyst removal operation after polymerization can be omitted.
When using such a highly active catalyst, a method of carrying out olefin polymerization in the gas phase is attracting attention because it is the simplest to operate after polymerization.

該気相重合の実施に際しては、重合を円滑に進
めるために、例えば流動層重合器や撹拌流動層重
合器などのような完全混合型重合器を用い、オレ
フイン含有ガスによつて、触媒を含有するオレフ
イン重合体を浮遊流動させつつ重合を行う方法が
賞用されている。
When carrying out the gas phase polymerization, in order to proceed smoothly with the polymerization, a complete mixing type polymerization vessel such as a fluidized bed polymerization vessel or a stirred fluidized bed polymerization vessel is used, and a catalyst containing gas is added to the olefin-containing gas. A method in which polymerization is carried out while floating and fluidizing an olefin polymer has been widely used.

この方法では、流動層を出た未反応ガス流を循
環再使用することが好ましく、そのためには、該
未反応ガス流を冷却器や循環ガスブロアーなどを
通して循環させることになるが、該未反応ガス流
に随伴して排出される触媒を含有している微粉状
重合体がこれらの装置や配管内で重合を起こし、
塊状物を形成させ、機器能力の低下や閉塞を引き
起こすなどのトラブルの原因となる。
In this method, it is preferable to recycle and reuse the unreacted gas stream leaving the fluidized bed, and for this purpose, the unreacted gas stream is circulated through a cooler, a circulating gas blower, etc. The finely powdered polymer containing the catalyst, which is discharged along with the gas flow, polymerizes inside these devices and piping.
This can cause lumps to form, causing problems such as reduced equipment performance and blockage.

このようなトラブルの発生を回避するために、
一般には、流動層気相重合帯域を出た未反応ガス
を循環使用するに際しては、該未反応ガス流を予
めサイクロンに導いて微粉状重合体を取除いてお
くのが好ましく、かつ捕集された微粉状重合体
は、可及的速やかに気相重合帯域に循環し、サイ
クロン周辺において望ましからざる重合の進行に
よつて壁付着や管閉塞などのトラブルが発生する
ことを未然に防止することが肝要である。
To avoid such troubles,
Generally, when the unreacted gas leaving the fluidized bed gas phase polymerization zone is recycled and used, it is preferable to introduce the unreacted gas flow into a cyclone in advance to remove the finely powdered polymer. The finely powdered polymer is circulated to the gas phase polymerization zone as soon as possible to prevent problems such as wall adhesion and pipe clogging due to undesired progress of polymerization around the cyclone. That is essential.

従来、このような微粉状重合体のサイクロンか
ら気相重合帯域への循環方式についてあまり詳細
に検討されたことはなかつた。一般的に流動層上
部から排出される微粉をサイクロンに捕集して流
動層に戻す方式として、流動層上部空間の器壁か
ら戻す方法あるいは流動層形成部の器壁から戻す
方法が考えられる。オレフインの気相重合におい
て前者の方法を採用するときには、微粉末の循環
量が非常に多くなり、サイクロン周辺において塊
状物を生成し易くなり、閉塞などのトラブルを起
こす傾向が認められる。また後者の方法を採用す
るときには、流動層内で微粉の凝集による塊状物
の生成が認められ、多孔板などの閉塞を起こすと
いうトラブルが発生する。
Hitherto, the method of circulating such a finely powdered polymer from a cyclone to a gas phase polymerization zone has not been studied in detail. In general, as a method for collecting fine powder discharged from the upper part of the fluidized bed in a cyclone and returning it to the fluidized bed, there is a method in which the fine powder is returned from the vessel wall in the space above the fluidized bed, or a method in which it is returned from the vessel wall in the fluidized bed forming part. When the former method is adopted in the gas phase polymerization of olefins, the amount of fine powder circulated becomes extremely large, making it easy to form lumps around the cyclone, which tends to cause problems such as blockage. Furthermore, when the latter method is adopted, the formation of lumps due to agglomeration of fine powder within the fluidized bed is observed, causing problems such as clogging of perforated plates and the like.

微粉状重合体は通常活性の高い触媒を含有して
いるので、廃棄するのは不経済であり、流動層重
合器に循環して再使用することが望まれる。そこ
で本発明者らは、上記したようなトラブルを回避
し、長時間の連続運転に支障のない微粉状重合体
の循環方法を検討した結果、流動層重合器の特定
位置に循環を行う方法を見出すに至つた。
Since the finely divided polymer usually contains a highly active catalyst, it is uneconomical to dispose of it, and it is desirable to recycle it to the fluidized bed polymerizer for reuse. Therefore, the present inventors investigated a method for circulating finely powdered polymer that would avoid the above-mentioned troubles and would not hinder long-term continuous operation. I came to the conclusion.

すなわち本発明は、流動層重合器を用いてオレ
フインを気相重合する方法において、流動層上部
から排出される微粉状重合体含有ガスをサイクロ
ンに導くことにより捕集した微粉状重合体を、流
動層重合器ガス分散板下部のガス吹込空間に供給
することを特徴とするオレフインの気相重合方法
に関する。
That is, the present invention provides a method for gas-phase polymerizing olefin using a fluidized bed polymerizer, in which a fine powder polymer-containing gas discharged from the upper part of the fluidized bed is guided to a cyclone to collect the collected fine powder polymer. The present invention relates to a method for vapor phase polymerization of olefin, which is characterized in that gas is supplied to a gas blowing space below a gas distribution plate of a layer polymerizer.

本発明の気相重合においては、遷移金属触媒成
分と周期律表第1族ないし第3族金属の有機金属
化合物触媒成分とから形成される触媒を用いるの
が好ましい。
In the gas phase polymerization of the present invention, it is preferable to use a catalyst formed from a transition metal catalyst component and an organometallic compound catalyst component of a metal from Group 1 to Group 3 of the periodic table.

遷移金属化合物触媒成分は、チタン、バナジウ
ム、クロム、ジルコニウムなどの遷移金属の化合
物であつて、使用条件下に液状のものであつても
固体状のものであつてもよい。これらは単一化合
物である必要はなく、他の化合物に担持されてい
たりあるいは混合されていてもよい。さらに他の
化合物との錯化合物や複化合物であつてもよい。
The transition metal compound catalyst component is a compound of a transition metal such as titanium, vanadium, chromium, zirconium, etc., and may be liquid or solid under the conditions of use. These do not need to be a single compound, and may be supported on other compounds or mixed. Furthermore, it may be a complex compound or a composite compound with other compounds.

好適な遷移金属化合物触媒成分は、遷移金属1
ミリモル当り約5000g以上、とくに約8000g以上
のオレフイン重合体を製造することができる高活
性成分であつて、その代表的なものとしてマグネ
シウム化合物によつて高活性化されたチタン触媒
成分を例示することができる。例えば、チタン、
マグネシウム及びハロゲンを必須成分とする固体
状のチタン触媒成分であつて、非晶化されたハロ
ゲン化マグネシウムを含有し、その比表面積は、
好ましくは約40m2/g以上、とくに好ましくは約
80ないし約800m2/gの成分を例示することがで
きる。そして電子供与体、例えば有機酸エステ
ル、ケイ酸エステル、酸ハライド、酸無水物、ケ
トン、酸アミド、第三アミン、無機酸エステル、
リン酸エステル、亜リン酸エステル、エーテルな
どを含有していてもよい。この触媒成分は、例え
ば、チタンを約0.5ないし約10重量%、とくに約
1ないし約8重量%含有し、チタン/マグネシウ
ム(原子比)が約1/2ないし約1/100、とく
に約1/3ないし約1/50、ハロゲン/チタン
(原子比)が約4ないし約100、とくに約6ないし
約80、電子供与体/チタン(モル比)が0ないし
約10、とくに0ないし約6の範囲にあるものが好
ましい。これらの触媒成分についてはすでに数多
く提案されており、広く知られている。
Suitable transition metal compound catalyst components include transition metal 1
A titanium catalyst component highly activated by a magnesium compound is exemplified as a representative example of a highly active component capable of producing about 5,000 g or more, particularly about 8,000 g or more of olefin polymer per mmol. Can be done. For example, titanium,
A solid titanium catalyst component containing magnesium and halogen as essential components, containing amorphous magnesium halide, and its specific surface area is:
Preferably about 40 m 2 /g or more, particularly preferably about 40 m 2 /g or more
80 to about 800 m 2 /g can be exemplified. and electron donors, such as organic acid esters, silicic acid esters, acid halides, acid anhydrides, ketones, acid amides, tertiary amines, inorganic acid esters,
It may contain phosphoric acid ester, phosphorous acid ester, ether, etc. This catalyst component contains, for example, about 0.5 to about 10% by weight of titanium, especially about 1 to about 8% by weight, and the titanium/magnesium (atomic ratio) is about 1/2 to about 1/100, especially about 1/2. 3 to about 1/50, halogen/titanium (atomic ratio) from about 4 to about 100, especially about 6 to about 80, electron donor/titanium (molar ratio) from 0 to about 10, especially 0 to about 6. Preferably the one in Many of these catalyst components have already been proposed and are widely known.

有機金属化合物触媒成分は、周期律表第1族な
いし第3族の金属と炭素の結合を有する有機金属
化合物であつて、その具体例としては、アルカリ
金属の有機化合物、アルカリ土類金属の有機金属
化合物、有機アルミニウム化合物などが挙げら
れ、例えば、アルキルリチウム、アリールナトリ
ウム、アルキルマグネシウムハライド、アリール
マグネシウムハライド、アルキルマグネシウムヒ
ドリド、トリアルキルアルミニウム、アルキルア
ルミニウムハライド、アルキルアルミニウムヒド
リド、アルキルアルミニウムアルコキシド、アル
キルリチウムアルミニウム、これらの混合物など
を例示できる。
The organometallic compound catalyst component is an organometallic compound having a bond between a metal of Groups 1 to 3 of the periodic table and carbon, and specific examples include organic compounds of alkali metals and organic compounds of alkaline earth metals. Examples include metal compounds, organoaluminum compounds, etc., such as alkyl lithium, aryl sodium, alkyl magnesium halide, aryl magnesium halide, alkyl magnesium hydride, trialkyl aluminum, alkyl aluminum halide, alkyl aluminum hydride, alkyl aluminum alkoxide, alkyl lithium aluminum , and mixtures thereof.

前記2成分に加え、立体規則性、分子量、分子
量分布などを調節する目的で、水素、ハロゲン化
炭化水素、電子供与体触媒成分、例えば、有機酸
エステル、ケイ酸エステル、カルボン酸ハライ
ド、カルボン酸アミド、第三アミン、酸無水物、
エーテル、ケトン、アルデヒドなどを併用しても
よい。電子供与体成分は、重合に際し、予め有機
金属化合物触媒成分と錯化合物(又は付加化合
物)を形成させてから使用してもよく、またトリ
ハロゲン化アルミニウムのようなルイス酸の如き
他の化合物と錯化合物(又は付加化合物)を形成
した形で使用してもよい。
In addition to the above two components, for the purpose of adjusting stereoregularity, molecular weight, molecular weight distribution, etc., hydrogen, halogenated hydrocarbons, electron donor catalyst components, such as organic acid esters, silicate esters, carboxylic acid halides, carboxylic acids amides, tertiary amines, acid anhydrides,
Ethers, ketones, aldehydes, etc. may be used in combination. During polymerization, the electron donor component may be used after forming a complex compound (or addition compound) with the organometallic compound catalyst component in advance, or may be used with other compounds such as Lewis acids such as aluminum trihalides. It may be used in the form of a complex compound (or addition compound).

本発明方法において、重合に用いられるオレフ
インとしては、エチレン、プロピレン、1−ブテ
ン、1−ペンテン、1−ヘキセン、1−オクテ
ン、1−デセン、4−メチル−1−ペンテン、3
−メチル−1−ペンテン、スチレン、ブタジエ
ン、イソプレン、1,4−ヘキサジエン、ジシク
ロペンタジエン、5−エチリデン−2−ノルボル
ネンなどを例示でき、気相重合が可能な範囲でこ
れらの単独重合や共重合体行うことができる。
In the method of the present invention, the olefins used for polymerization include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 4-methyl-1-pentene, 3
-Methyl-1-pentene, styrene, butadiene, isoprene, 1,4-hexadiene, dicyclopentadiene, 5-ethylidene-2-norbornene, etc.; homopolymerization or copolymerization of these is possible to the extent that gas phase polymerization is possible. Can be combined.

本発明方法は、好ましくは、エチレン又はプロ
ピレンの単独重合、エチレンと他のオレフインと
の共重合、プロピレンと他のオレフインの共重合
を行う場合に好適に利用できる。
The method of the present invention can be preferably used for homopolymerization of ethylene or propylene, copolymerization of ethylene and other olefins, and copolymerization of propylene and other olefins.

気相重合は、流動層重合器、撹拌流動層重合器
などのような流動層を用いる重合器中で行われ
る。重合温度は、オレフイン重合体の融点以下、
好ましくは融点より約10℃以上低く、かつ室温な
いし約130℃、とくに約40ないし110℃程度であ
る。また重合圧力は、例えば、大気圧ないし約
150Kg/cm2、とくに約2ないし約70Kg/cm2の範囲
が好ましい。重合に際して任意に使用される水素
は、例えばオレフイン1モルに対し約0.001ない
し約20モル、とくには約0.02ないし約10モルの範
囲で用いるのが好ましい。また重合熱を除去する
ために、液状の易揮発性炭化水素、例えばプロパ
ンやブタンを供給し、重合帯域中で気化されても
よい。
Gas phase polymerization is carried out in a polymerization vessel using a fluidized bed, such as a fluidized bed polymerization vessel, a stirred fluidized bed polymerization vessel, and the like. The polymerization temperature is below the melting point of the olefin polymer,
The temperature is preferably about 10°C or more lower than the melting point, and from room temperature to about 130°C, particularly about 40 to 110°C. In addition, the polymerization pressure may be, for example, atmospheric pressure to about
A range of 150 Kg/cm 2 , particularly from about 2 to about 70 Kg/cm 2 is preferred. Hydrogen optionally used in the polymerization is preferably used in an amount of, for example, about 0.001 to about 20 mol, particularly about 0.02 to about 10 mol, per 1 mol of olefin. Furthermore, in order to remove the heat of polymerization, a liquid easily volatile hydrocarbon such as propane or butane may be supplied and vaporized in the polymerization zone.

前記の如き、遷移金属化合物触媒成分、有機金
属化合物触媒成分、電子供与体触媒成分等を用い
る場合には、反応床容積1当り、遷移金属化合
物触媒成分が遷移金属原子に換算して約0.0005な
いし約1ミリモル、とくには約0.001ないし約0.5
ミリモル、有機金属化合物触媒成分を、該金属/
遷移金属(原子比)が約1ないし約2000、とくに
約1ないし約500となるような割合で用いるのが
好ましい。また電子供与体触媒成分を、有機金属
化合物触媒成分1モル当り、0ないし約1モル、
とくに0ないし約0.5モル程度の割合で用いるの
が好ましい。
When using a transition metal compound catalyst component, an organometallic compound catalyst component, an electron donor catalyst component, etc. as described above, the amount of the transition metal compound catalyst component is about 0.0005 to 0.0005 to 1,000,000 in terms of transition metal atoms per 1 volume of the reaction bed. about 1 mmol, especially about 0.001 to about 0.5
millimoles of the organometallic compound catalyst component to the metal/
It is preferable to use the transition metal (atomic ratio) in a proportion of about 1 to about 2000, particularly about 1 to about 500. In addition, the electron donor catalyst component is added in an amount of 0 to about 1 mol per 1 mol of the organometallic compound catalyst component.
In particular, it is preferable to use it in a proportion of about 0 to about 0.5 mol.

オレフイン類の重合は実質的に連続的に行うの
がよい。すなわち、触媒成分、オレフイン、必要
に応じて水素、希釈剤などを、連続的に重合器に
供給し、気体成分によつて触媒を含有する重合体
を浮遊流動させながら重合を行う方法を採用する
のが工業的に有利である。連続重合においては、
重合器中の重合体量をほぼ一定に維持するよう
に、重合体を連続的(又は間欠的)に重合器から
抜き出し、一方、実質的な重合帯域である重合体
の浮遊流動域を通過した未反応ガス流(場合によ
り水素や希釈剤などを含む)は、微粉状重合体を
同伴して重合帯域から実質的に連続的に排出され
る。これをサイクロンに導き、未反応ガス流中の
微粉重合体を捕集する。微粉重合体が除去された
未反応ガスは、冷却器、ブロワーなどの諸機器に
適宜通した後、重合帯域に循環させ再使用するこ
とができる。
The polymerization of olefins is preferably carried out substantially continuously. That is, a method is adopted in which the catalyst component, olefin, hydrogen, diluent, etc. are continuously supplied to the polymerization vessel as necessary, and the polymerization is carried out while the polymer containing the catalyst is floated and fluidized by the gas component. is industrially advantageous. In continuous polymerization,
The polymer was continuously (or intermittently) withdrawn from the polymerization vessel so as to maintain the amount of polymer in the polymerization vessel approximately constant, while passing through a floating flow zone of the polymer, which was the substantial polymerization zone. An unreacted gas stream (optionally containing hydrogen, diluent, etc.) is substantially continuously discharged from the polymerization zone, entraining the finely divided polymer. This is led to a cyclone to collect the finely divided polymer in the unreacted gas stream. The unreacted gas from which the finely divided polymer has been removed can be appropriately passed through various devices such as a cooler and a blower, and then circulated to the polymerization zone for reuse.

本発明方法においては、前記サイクロンに捕集
された微粉状重合体が、器壁付着や閉塞のトラブ
ルを生じさせないようにできるだけ速かに気相重
合帯域に循環させることが望ましい。そのために
は自然落下によつて循環させてもよいが、ロータ
リーバルブを用いる方法、フアンを用いる方法、
同伴ガスを導入する方法などによつて強制的に循
環させる方法を採用することが望ましい。
In the method of the present invention, it is desirable that the finely divided polymer collected in the cyclone be circulated to the gas phase polymerization zone as quickly as possible so as not to cause problems such as adhesion to the vessel wall or clogging. For this purpose, it is possible to circulate by gravity, but there are also methods using a rotary valve, a method using a fan, etc.
It is desirable to adopt a method of forced circulation, such as by introducing an entrained gas.

この循環に際し、本発明においては、流動層重
合器ガス分散板下部のガス吹込空間に循環を行う
ものである。循環された微粉状重合体は、ガス分
散板を通じオレフイン等のガスに伴なわれて流動
層に戻されるが、流動層の一部に局部的に戻され
るのではなく、ガス分散板を通じ均等に戻される
ことになるので、流動状態が乱されず良好な流動
状態が得られる。さらには流動層の最下部から循
環されるので流動層中での重合の進行によつて微
粉状重合体粒子が成長し、その粒子径が大きくな
り、従つて再び流動層上部から排出ガスに同伴さ
れる量が減少することになるのでサイクロンの負
荷が少なくなり、またサイクロン回りの重合体の
付着などのトラブルが減少、回避される。
During this circulation, in the present invention, circulation is performed in the gas blowing space below the gas distribution plate of the fluidized bed polymerizer. The circulated fine powder polymer is returned to the fluidized bed along with gas such as olefin through the gas distribution plate, but it is not returned locally to a part of the fluidized bed, but evenly through the gas distribution plate. Since it is returned, the flow state is not disturbed and a good flow state can be obtained. Furthermore, since it is circulated from the bottom of the fluidized bed, as polymerization progresses in the fluidized bed, fine powder polymer particles grow, their particle size increases, and are entrained in the exhaust gas from the top of the fluidized bed again. Since the amount of cyclone is reduced, the load on the cyclone is reduced, and troubles such as polymer adhesion around the cyclone are reduced or avoided.

一方、ガス吹込空間に戻された微粉状重合体
は、そこに滞留している時間をできるだけ短かく
し、速かに流動層に戻すようにすることが望まし
い。そのためにはガス吹込空間及びガス分散板の
形状を微粉状重合体の循環に好都合となるような
工夫を施すことが望ましい。
On the other hand, it is desirable that the fine powder polymer returned to the gas blowing space be kept there for as short a period of time as possible and quickly returned to the fluidized bed. For this purpose, it is desirable that the shapes of the gas blowing space and the gas distribution plate be designed to be convenient for the circulation of the finely powdered polymer.

第1図は流動層重合器1周辺の模式図であつて
管9から触媒を、管8からオレフイン、その他の
ガス原料を流動層重合器に供給する。オレフイン
はガス分散板3を通り、流動層で重合体を浮遊流
動させつつ自身も重合に消費される。未反応のガ
ス成分は微粉状重合体を伴なつて流動層重合器1
頂部から排出され、管5を通つてサイクロン2に
導かれる。サイクロン2で捕集した微粉状重合体
はブロワー10を通して流動層重合器1のガス分
散板3の下部に形成されているガス吹込空間に戻
され、重合器底部から供給されるオレフイン等の
ガスに伴なつてガス分散板を通じ流動層に循環さ
れ、有効に利用される。サイクロン2を出た排ガ
スは適宜却却などを行つた後、管8に戻して循環
使用することができる。流動層中の重合体は、そ
の高さがほぼ一定となるようにバルブ11を通
じ、管12から排出される。
FIG. 1 is a schematic diagram of the vicinity of the fluidized bed polymerizer 1, in which a catalyst is supplied from a tube 9, and olefin and other gas raw materials are supplied from a tube 8 to the fluidized bed polymerizer. The olefin passes through the gas distribution plate 3 and is consumed in polymerization while causing the polymer to float and flow in the fluidized bed. The unreacted gas components are transferred to the fluidized bed polymerizer 1 along with the finely powdered polymer.
It is discharged from the top and led through pipe 5 to cyclone 2. The finely powdered polymer collected by the cyclone 2 is returned to the gas blowing space formed at the bottom of the gas distribution plate 3 of the fluidized bed polymerizer 1 through the blower 10, and is mixed with the gas such as olefin supplied from the bottom of the polymerizer. The gas is then circulated through the gas distribution plate to the fluidized bed and used effectively. After the exhaust gas exiting the cyclone 2 is appropriately disposed of, it can be returned to the pipe 8 and used for circulation. The polymer in the fluidized bed is discharged from pipe 12 through valve 11 so that its height remains approximately constant.

第1図において、重合器に戻された微粉状重合
体がガス吹込空間に必要以上に滞留しないように
するため、ガス吹込空間を形成する重合器壁部の
傾斜αが少なくとも45度、好ましくは60ないし80
度となつていることが望まれる。この傾斜が緩す
ぎると、重合器壁上に微粉状重合体が堆積し易
く、器壁に重合体が付着したり、塊状物を形成し
たりするおそれがある。
In FIG. 1, in order to prevent the fine powder polymer returned to the polymerization vessel from remaining in the gas injection space more than necessary, the slope α of the polymerization vessel wall forming the gas injection space is preferably at least 45 degrees. 60 to 80
It is hoped that the degree of If this inclination is too gentle, fine powder polymer tends to accumulate on the walls of the polymerization vessel, and there is a risk that the polymer may adhere to the walls of the vessel or form lumps.

さらに微粉状重合体を可及的速かにガス分散板
を通過させるために、ガス分散板の孔径を全体的
に大きくしたりあるいは下方が末広がりになるよ
うにしたりすることによつて容易に流動層に戻す
ことが可能にしておくことが望ましい。えばその
ためには、分散板の孔径を、ガス入口側において
少なくとも5mm、とくに8ないし30mm程度にする
ことが望ましい。
Furthermore, in order to allow the finely powdered polymer to pass through the gas distribution plate as quickly as possible, the pore diameter of the gas distribution plate is made larger overall, or the bottom part is widened toward the bottom, so that the polymer can flow easily. It is desirable to be able to return to the layer. For example, for this purpose, it is desirable that the hole diameter of the dispersion plate be at least 5 mm, particularly about 8 to 30 mm, on the gas inlet side.

本発明によれば、サイクロン回りのトラブルも
なく、重合状態も良好であり、長期連続重合を行
うことが可能である。
According to the present invention, there are no troubles surrounding the cyclone, the polymerization condition is good, and it is possible to carry out continuous polymerization for a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施態様を示す図面であ
る。
FIG. 1 is a drawing showing one embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 流動層重合器を用いてオレフインを気相重合
する方法において、流動層上部から排出される微
粉状重合体含有ガスをサイクロンに導くことによ
り捕集した微粉状重合体を、流動層重合器ガス分
散板下部のガス吹込空間に供給することを特徴と
するオレフインの気相重合方法。 2 流動層重合器ガス分散板下部のガス吹込空間
を形成する重合器壁部の傾斜を少なくとも45度以
上とすることを特徴とする特許請求の範囲1記載
の方法。 3 ガス分散板下部ガス入口側の孔径を少なくと
も5mm以上とする特許請求の範囲1記載の方法。
[Claims] 1. In a method for vapor phase polymerizing olefin using a fluidized bed polymerizer, a fine powder polymer-containing gas discharged from the upper part of the fluidized bed is guided to a cyclone to collect the collected fine powder polymer. , a gas phase polymerization method for olefin, characterized in that the gas is supplied to a gas blowing space below a gas distribution plate of a fluidized bed polymerizer. 2. The method according to claim 1, characterized in that the wall portion of the polymerizer forming the gas blowing space below the gas distribution plate of the fluidized bed polymerizer has an inclination of at least 45 degrees. 3. The method according to claim 1, wherein the hole diameter on the gas inlet side of the lower part of the gas distribution plate is at least 5 mm.
JP177583A 1983-01-11 1983-01-11 Gas-phase polymerization Granted JPS59126407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP177583A JPS59126407A (en) 1983-01-11 1983-01-11 Gas-phase polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP177583A JPS59126407A (en) 1983-01-11 1983-01-11 Gas-phase polymerization

Publications (2)

Publication Number Publication Date
JPS59126407A JPS59126407A (en) 1984-07-21
JPH0333165B2 true JPH0333165B2 (en) 1991-05-16

Family

ID=11510944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP177583A Granted JPS59126407A (en) 1983-01-11 1983-01-11 Gas-phase polymerization

Country Status (1)

Country Link
JP (1) JPS59126407A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE052511T2 (en) * 2011-03-02 2021-05-28 Borealis Ag A process for the production polymers

Also Published As

Publication number Publication date
JPS59126407A (en) 1984-07-21

Similar Documents

Publication Publication Date Title
EP0012147B1 (en) Process for the preparation of high density ethylene polymers in fluid bed reactor
JPH0333164B2 (en)
KR101426308B1 (en) Gas-phase process and apparatus for the polymerization of olefins
EP0020818B1 (en) Process for preparing a polymerization catalyst and process for the production of ethylene polymers
JP5308795B2 (en) Polyolefin production method and polyolefin production system provided with spouted bed apparatus
JPH029045B2 (en)
US7993591B2 (en) Spouted bed device and polyolefin production process using the same
JPH09501733A (en) Vapor phase polymerization of α-olefins
EP0549252A1 (en) Process for the gas-phase polymerisation of alpha-olefins in a fluidized-bed reactor
JPH0135002B2 (en)
US4395359A (en) Polymerization catalyst, process for preparing, and use for ethylene homopolymerization
JPH0313246B2 (en)
US4684703A (en) Polymerization catalyst for ethylene homopolymerization
US5604172A (en) Shape-shifted magnesium alkoxide component for polymerizing olefins
US7482411B2 (en) Gas-phase olefin polymerization process
KR101546735B1 (en) Process for the gas-phase polymerization of olefins
EP0004966B1 (en) Exothermic polymerization in a vertical fluid bed reactor system containing cooling means therein.
KR100388326B1 (en) Process for polymerising olefin in gas phase
JPH0571601B2 (en)
JPH0333165B2 (en)
JPS6243442B2 (en)
JP2009161351A (en) Powder transfer device and method of manufacturing polyolefin
EP0004646B2 (en) Process for preparing polymerization catalyst and process for ethylene homopolymerization
JPS58120617A (en) Ethylene improved copolymerization
JPS6243444B2 (en)