JPS59126407A - Gas-phase polymerization - Google Patents

Gas-phase polymerization

Info

Publication number
JPS59126407A
JPS59126407A JP177583A JP177583A JPS59126407A JP S59126407 A JPS59126407 A JP S59126407A JP 177583 A JP177583 A JP 177583A JP 177583 A JP177583 A JP 177583A JP S59126407 A JPS59126407 A JP S59126407A
Authority
JP
Japan
Prior art keywords
gas
fluidized bed
polymerization
polymer
polymerizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP177583A
Other languages
Japanese (ja)
Other versions
JPH0333165B2 (en
Inventor
Michiharu Suga
菅 道春
Takashi Hayashi
貴司 林
Akifumi Kato
章文 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP177583A priority Critical patent/JPS59126407A/en
Publication of JPS59126407A publication Critical patent/JPS59126407A/en
Publication of JPH0333165B2 publication Critical patent/JPH0333165B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/384Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
    • B01J8/388Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only externally, i.e. the particles leaving the vessel and subsequently re-entering it

Abstract

PURPOSE:Fine particles of polymer in the gas exhausted from the upper part of the fluidized bed are collected with a cyclone and allowed to return from a specific position to the fluidized bed polymerizer, thus enabling long-term, smooth and stable operation of olefin gas-phase polymerization to be performed. CONSTITUTION:The starting materials including olefin, catalyst and so on are subjected to gas-phase polymerization in the fluidized bed polymerizer 1 and the resultant polymer is discharged from the pipe 12. At the same time, the gas containing fine particles of the polymer is exhausted from the upper part of the fluidized bed and introduced into the cyclone 2 where the particles are collected. Then, the collected powder is allowed to return through the blower 10 to the gas-blowing space 4 formed beneath the gas-distributing plate 3 of the polymerizer and the gas is made to return back together with another gas, such as olefin, fed from the bottom of the polymerizer through the distribution plate 3 into the fluidized bed.

Description

【発明の詳細な説明】 本発明は、流動層を用いるオレフィンの気相重合方法に
関する。さらに詳しくは流動層上部から排出されるガス
に同伴される微粉末重合体をイーJNや閉塞などのトラ
ブルなしに流動層重合器に戻し、円滑な重合操作を長期
間継続して実施できるオレフィンの気相重合方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for gas phase polymerization of olefins using a fluidized bed. In more detail, the fine powder polymer entrained in the gas discharged from the upper part of the fluidized bed is returned to the fluidized bed polymerization reactor without problems such as EJN or blockage, and smooth polymerization operation can be continued for a long period of time. This invention relates to a gas phase polymerization method.

なお、本発明において重合なる用語は、単独重合のみな
らず、共重合を包含した意味で、また重合体は単独重合
体のみならず共重合体を包含した意味で用いられること
がある。
In the present invention, the term "polymerization" is sometimes used to include not only homopolymerization but also copolymerization, and the term "polymer" is sometimes used to include not only homopolymers but also copolymers.

オレフィン重合用のM移金属触媒成分の改良によって、
単位遷移金属当りのオレフィン重合体生産能力が飛躍的
に高められた結果、重合後における触媒除去操作を省略
しうる段階に至っている。このような高活性触媒を用い
るときには、重合後の操作が最も簡単なところから、オ
レフィン重合を気相で行う方法が注目されている。
By improving the M transfer metal catalyst component for olefin polymerization,
As a result of the dramatic increase in the production capacity of olefin polymers per unit of transition metal, we have reached a stage where it is possible to omit the catalyst removal operation after polymerization. When using such a highly active catalyst, a method of carrying out olefin polymerization in the gas phase is attracting attention because it is the simplest to operate after polymerization.

該気相重合の実施に際しては、重合を円滑に進めるため
に、例えば流動層重合器や攪拌流動層重合器などのよう
な完全混合型重合器を用い、オレフィン含有ガスによっ
て、触媒を含有するオレフィン重合体を浮遊流動させつ
つ重合を行う方法が賞ルされている。
When carrying out the gas phase polymerization, in order to proceed smoothly with the polymerization, a complete mixing type polymerization vessel such as a fluidized bed polymerization vessel or an agitated fluidized bed polymerization vessel is used, and the olefin containing catalyst is A method of carrying out polymerization while floating and fluidizing the polymer has been highly praised.

この方法では、流動層を出た未反応ぷガス流を循環再使
用することが好ましく、そのためには、該未反応ガス流
を冷却器や循環ガスブロアーなとを通して循環させるこ
とになるが、該未反応カス流に随伴して排出される触媒
を含有している微粉状重合体がこれらの装置や配管内で
重合を起こし、塊状物を形成させ、機器能力の低下や閉
塞を引き起こすなどのトラブルの原因となる。
In this method, it is preferable to recycle and reuse the unreacted gas stream leaving the fluidized bed, and for this purpose, the unreacted gas stream is circulated through a cooler, a circulating gas blower, etc. The fine powder polymer containing the catalyst that is discharged along with the unreacted waste stream polymerizes in these devices and piping, forming lumps, causing problems such as reduced equipment performance and blockage. It causes.

このようなトラブルの発生を回避するために、一般には
、流動層気相重合帯域を出た未反応ガスを循環使用する
に際しては、該未反応ガス流を予めサイクロンに導いて
微粉状重合体を取除いておくのが好ましく、かく捕集さ
れた微粉状重合体は、可及的速やかに気相重合帯域に循
環し、サイクロン周辺において望ましからざる重合の進
行によって壁(′j着や管閉塞などのトラブルが発生す
ることを未然に防止することが肝要である。
In order to avoid such troubles, in general, when the unreacted gas leaving the fluidized bed gas phase polymerization zone is recycled, the unreacted gas flow is guided into a cyclone in advance to form a finely powdered polymer. Preferably, the finely divided polymer thus collected is circulated to the gas phase polymerization zone as soon as possible, and the undesirable progress of polymerization in the vicinity of the cyclone can cause damage to the walls ('j) and tubes. It is important to prevent problems such as blockage from occurring.

従来、このような微粉状重合体のサイクロンから気相重
合帯域への循環方式についてあま゛り詳細に検討された
ことはなかった。一般的に流動層上部から排出される微
粉末をす・イクロンに捕集して流動層に戻す方式として
、流動層上部空間の器壁から戻す方法あるいは流動層形
成部の器壁から戻す方法が考えられる。オレフィンの気
相重合において前者の方法を採用するときGこは、微粉
末の循E?CMが非常に多くなり、サイクロン周辺にお
いて塊状物を生成し易くなり、閉塞、などのトラブルを
起こす傾向が認められる。また後者の方法を採用すると
きには、流動層内で微粉の凝集による塊状物の生成が認
められ、多孔板なとの閉塞を起こすというトラブルが発
生する。
Hitherto, the method of circulating such a finely powdered polymer from a cyclone to a gas phase polymerization zone has not been studied in detail. In general, the fine powder discharged from the upper part of the fluidized bed is collected in an icron and returned to the fluidized bed by returning it from the vessel wall in the upper space of the fluidized bed or from the vessel wall in the fluidized bed forming part. Conceivable. When employing the former method in the gas phase polymerization of olefins, what happens when the fine powder is circulated? It is observed that CM becomes very large, and lumps tend to form around the cyclone, causing problems such as blockage. Further, when the latter method is adopted, the formation of lumps due to agglomeration of fine powder within the fluidized bed is observed, causing troubles such as clogging of the porous plate.

微粉状重合体は通常活性の高い触媒を含有しているので
、廃棄するのは不経済であり、流動層重合器に循環して
再使用することが望まれる。そこで本発明者らは、上記
したようなトラブルを回避し、長時間の連続運転に支障
0のない微粉状重合体の循環方法を検討した結果、流動
層重合器の特定位置に循環を行う方法を見出子に至った
Since the finely divided polymer usually contains a highly active catalyst, it is uneconomical to dispose of it, and it is desirable to recycle it to the fluidized bed polymerizer for reuse. Therefore, the present inventors have investigated a method for circulating a finely powdered polymer that avoids the above-mentioned troubles and can be operated continuously for long periods of time without causing any problems.As a result, the present inventors have developed a method for circulating a finely powdered polymer at a specific position in a fluidized bed polymerization reactor. I came across this idea.

すなわち本発明は、流動層重合器を用いてオレフィンを
気相重合する方法におl/)て、流仰ノ11呂上Vf[
Sから排出される微粉状重合体含有ガスをサイクロンに
導くことにより捕集した微粉状重合体を、が巴動層重合
器ガス分散板下部のガス吹込空間Gこ供給することを特
徴とするオレフィンの気相車台力θミに関する。
That is, the present invention provides a method for vapor phase polymerizing olefins using a fluidized bed polymerizer.
An olefin characterized in that the fine powder polymer collected by guiding the fine powder polymer-containing gas discharged from S to a cyclone is supplied to the gas blowing space G at the lower part of the gas distribution plate of the moving bed polymerizer. Regarding the gas phase vehicle force θmi.

本発明の気相重合においては、遷移金属触媒成分と周期
律表第1族ないし第6族金属の有1盗(λ1・元化合物
触媒成分とから形成される触1t7をj11シ入るのが
好ましい。
In the gas phase polymerization of the present invention, it is preferable to include a catalyst formed from a transition metal catalyst component and a metal of Group 1 to Group 6 of the periodic table (λ1) and a base compound catalyst component. .

遷移金属化合物触媒成分は、チタン、〕(ナジウム、ク
ロム、ジルコニウムなどの遷移金1・凪のイし合物であ
って、使用条件下に液状のものであっても固体状のもの
であってもよい。こ才tら(ま単一・化合物である必要
はなく、他の化合物G、二世持されて(1)たりあるい
は混合されていてもよい。さらに他の化合物との錯化合
物や複化合物であってもよい。
The transition metal compound catalyst component is a combination of transition metals such as titanium, sodium, chromium, and zirconium, which may be liquid or solid under the conditions of use. (It does not have to be a single compound, but may be combined with other compounds (1) or mixed. Furthermore, complex compounds with other compounds or It may be a composite compound.

好適な遷移金属化合物触媒成分は、遷移金属1ミリモル
当り約5000g以上、とくに約8000a以上のオレ
フィン重合体を製造することができる高活性成分であっ
て、その代表的なものとしてマグネシウム化合物0こよ
って高活性化されたチタン触媒成分を例示することがで
きる。例えば、チタン、マグネシウム及び/・ロゲンを
必須成分とする固体状のチタン触媒成分てあって、非晶
化されたハロゲン化マグネシウムを含有し、その比表面
積は、好ましくは約4Qm2/6以上、とくに好ましく
は約80ないし約Boom2/sの成分を8/11示す
ることができる。そして電子供fテ体、例えば有機酸エ
ステル、ケイ酸エステル、酸ノ1ライド、酸無水1勿、
ケトン、酸アミド、第三アミン、無機酸エステル、リン
酸エステル、亜リン酸エステル、エーテルなとを含有し
ていてもよい。この触媒成分は、例えば、チタンを約0
.5ないし約10 屯m%、とく(こ約1ないし約8重
量%含有し、チタン/マグネシウム(原子比)が約1/
2ないし約1/100.  とくに約1/6ないし約1
150、ハロゲン/チタン(原子比)が約4ないし約1
00、とくに約6ないし約80%電子供与体/チタン(
モル比)が0ないし約101とくにOないし約6の範囲
にあるものが好ましい。
A suitable transition metal compound catalyst component is a highly active component capable of producing an olefin polymer of about 5000 g or more, particularly about 8000 a or more, per mmol of transition metal, and a typical example thereof is a magnesium compound 0. A highly activated titanium catalyst component can be exemplified. For example, a solid titanium catalyst component containing titanium, magnesium and/or logen as essential components, containing amorphous magnesium halide, and having a specific surface area of preferably about 4Qm2/6 or more, particularly Preferably, a component of about 80 to about Boom2/s can be exhibited at 8/11. and electron f-te bodies, such as organic acid esters, silicate esters, acid nitrides, acid anhydrides,
It may contain ketones, acid amides, tertiary amines, inorganic acid esters, phosphoric esters, phosphorous esters, ethers, and the like. This catalyst component may contain, for example, about 0% titanium.
.. 5 to about 10 m%, especially (containing about 1 to about 8 wt%), titanium/magnesium (atomic ratio) about 1/
2 to about 1/100. Especially about 1/6 to about 1
150, halogen/titanium (atomic ratio) is about 4 to about 1
00, especially about 6 to about 80% electron donor/titanium (
Those having a molar ratio of 0 to about 101, particularly 0 to about 6 are preferred.

これらの触媒成分についてはすでに数多く提案されてお
り、広く知られている。
Many of these catalyst components have already been proposed and are widely known.

有機金属化合物触媒成分は、周期律表第1 INないし
第3族の金属と炭素の結合を有する有機金属化合物であ
って、その具体例としては、アルカリ金属の有機化合物
、アルカリ土類金属の有機金属化合物、有機アルミニウ
ム化合物なとが挙けられ、例えば、アルキルリチウム アルキルマグネシウムハライド、アリールマグネシウム
ハライド、アルキルマグネシウムヒドリド、ト リ ア
ルキルアル ムハライド、アルギルアルミニウムヒドリド、アルキル
アルミニウムアルコギシド、アルキルリチウムアルミニ
ウム きる。
The organometallic compound catalyst component is an organometallic compound having a bond between a metal of Groups 1 to 3 of the periodic table and carbon, and specific examples include organic compounds of alkali metals and organic compounds of alkaline earth metals. Examples include metal compounds and organoaluminum compounds, such as alkyllithium alkylmagnesium halides, arylmagnesium halides, alkylmagnesium hydrides, trialkylalumhalides, alkylaluminum hydrides, alkylaluminum alkogides, and alkyllithium aluminum compounds. .

前記2成分に加え、立体規則性、分子量、分子量分布な
どを調節する目的で、水素、ハロゲン化炭化水素、電子
供与体触媒成分、例えば、有機酸エステ/L/1ケイ酸
エステル、カルボン酸ハライド、カルボン酸アミド、第
三アミン、酸無水物、エーテル、ケトン、アルデヒドな
どを併用してもよい。
In addition to the above two components, for the purpose of adjusting stereoregularity, molecular weight, molecular weight distribution, etc., hydrogen, halogenated hydrocarbon, electron donor catalyst components, such as organic acid ester/L/1 silicate ester, carboxylic acid halide , carboxylic acid amide, tertiary amine, acid anhydride, ether, ketone, aldehyde, etc. may be used in combination.

電子供与体成分は、重合に際し、予め有機金属化合物触
媒成分と錯化合物(又は付加化合I#J)を形成させて
から使用してもよく、またトリハロゲン化アルミニウム
のよりなルイス酸の如き他の化合物と錯化合物(又は付
加化合物゛)を形成した形で使用してもよい。
The electron donor component may be used after forming a complex compound (or addition compound I#J) with the organometallic compound catalyst component in advance during polymerization. It may be used in the form of a complex compound (or addition compound) with the compound.

本発明方法において、重合に用いられるオレフィンとし
ては、エチレン、プロピレン、1−ブテン−、1−ペン
テン、1−ヘキセン、1−オクテン、1−デセン、4−
メチル−1−ペンテン、3−メチル−1−ペンテン、、
スチレン、ブタジェン、イソプレン、1.4−ヘキサジ
エン、ジシクロペンタジェン、5−エチリデン−2−ノ
ルボルネンなどを例示でき、気相重合が可能な範囲でこ
れらの単独重合や共重合を行うことができる。
In the method of the present invention, the olefins used for polymerization include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 4-
Methyl-1-pentene, 3-methyl-1-pentene,
Examples include styrene, butadiene, isoprene, 1,4-hexadiene, dicyclopentadiene, 5-ethylidene-2-norbornene, etc., and homopolymerization or copolymerization of these can be performed within a range where gas phase polymerization is possible.

本発明方法は、好ましくは、エチレン又はプロピレンの
単独重合、エチレンと他のオレフィンとの共重合、プロ
ピレンと他のオレフィンの共m合を行う場合に好適に利
用できる。
The method of the present invention can be preferably used for homopolymerization of ethylene or propylene, copolymerization of ethylene and other olefins, and copolymerization of propylene and other olefins.

気相重合は、流動層重合器、橙拌流動層重合器などのよ
うな流動層を用いる重合器中で行われる。
Gas phase polymerization is carried out in a polymerization vessel using a fluidized bed, such as a fluidized bed polymerization vessel, an orange-stirred fluidized bed polymerization vessel, and the like.

重合温度は、オレフィン重合体の融点以下、好ましくは
融点より約10°C以上低く、かつ”ji fllAな
いし約130°C1とくには約40ないし110°C程
度である。
The polymerization temperature is below the melting point of the olefin polymer, preferably about 10°C or more lower than the melting point, and about 130°C to about 130°C, particularly about 40 to 110°C.

また重合圧力は、例えば、大気圧ないし約150kg/
cm2、とくに約2ないし約7 0 kr)/lyn2
(7)範11−+Jが好ましい。重合に際して任意に使
用される水素は、例えばオレフィン1七ルシこ対し約0
.001ないし約20モル、とくには約0.02ないし
約10モルの範囲で用いるのが好ましい。また重合熱を
除去するために、液状の易揮発性炭化水素、例えばプロ
パンやブタンを供給し、重合帯域中で気化されてもよい
Further, the polymerization pressure is, for example, atmospheric pressure to about 150 kg/
cm2, especially about 2 to about 70 kr)/lyn2
(7) Range 11-+J is preferred. Hydrogen optionally used during the polymerization may be used, for example, in an amount of about 0 per 17 olefins.
.. 0.001 to about 20 mol, particularly about 0.02 to about 10 mol. Furthermore, in order to remove the heat of polymerization, a liquid easily volatile hydrocarbon such as propane or butane may be supplied and vaporized in the polymerization zone.

前記の如き、遷移金属化合物触媒成分、有機金属化合物
触媒成分、電子供与体触媒成分等を用いる場合には、反
応床容積1e当り、遷移金属化合物触媒成分が遷移金属
原子に換算して約[]、O Q 0 5ないし約1ミリ
モル、とくには約0.0 0 1ないし約0、5 ミI
Jモル、有機金属化合物触媒成分を、該金属/遷移金属
(原子比)が約1ないし約2000、とくに約1ないし
約500となるような割合で用いるのが好ましい。また
電子供与体触媒成分を、有機金属化合物触媒成分1モル
当り、0ないし約1モル、とくにOないし0.5モル程
度の割合で用いるのが好ましい。
In the case of using a transition metal compound catalyst component, an organometallic compound catalyst component, an electron donor catalyst component, etc. as described above, the transition metal compound catalyst component is approximately [ ] per reaction bed volume 1e in terms of transition metal atoms. , O Q 0 5 to about 1 mmol, especially about 0.0 0 1 to about 0.5 mmol
J moles of the organometallic compound catalyst component are preferably used in proportions such that the metal/transition metal (atomic ratio) is from about 1 to about 2000, especially from about 1 to about 500. Further, it is preferable to use the electron donor catalyst component in a proportion of 0 to about 1 mol, particularly about O to 0.5 mol, per 1 mol of the organometallic compound catalyst component.

オレフィン類の重合は実質的に連続的に行うのがよい。The polymerization of olefins is preferably carried out substantially continuously.

すなわち、触媒成分、オレフィン、必要に応じて水素、
希釈剤なとを、連続的に重合器に供給し、気体成分によ
って触媒を含有する重合体を浮遊流動させながら重合を
行う方法を採用するのが工業的に有利である。連続重合
においては、重合器中の重合体量をほぼ一定に維持する
ように、重合体を連続的(又は間欠e9 )に重合器か
ら抜き串q、、一方、実質的な重合帯域である重合体の
浮遅流動域を通過した未反応ガス流(場合により水素や
希釈剤ムとを含む)は、微粉状重合体を同伴して重合帯
域から実質的に連続的に排出される。
i.e. catalyst components, olefin, optionally hydrogen,
It is industrially advantageous to adopt a method in which a diluent is continuously supplied to a polymerization vessel and polymerization is carried out while the catalyst-containing polymer is floated and fluidized by a gaseous component. In continuous polymerization, in order to maintain the amount of polymer in the polymerization vessel almost constant, the polymer is continuously (or intermittently) removed from the polymerization vessel. The unreacted gas stream (optionally including hydrogen and diluent) passing through the floating slow flow zone of the coalescence is substantially continuously discharged from the polymerization zone, entraining the finely divided polymer.

これをサイクロンに導き、未反応ガス流中の微粉重合体
を捕集する。微粉重合体が除去された未反応ガスは、冷
却器、う゛ロワーなどの詰機器に適宜通した後、重合帯
域に循環させ再使用することができる。
This is led to a cyclone to collect the finely divided polymer in the unreacted gas stream. The unreacted gas from which the fine powder polymer has been removed can be appropriately passed through packing equipment such as a cooler or a blower, and then circulated to the polymerization zone for reuse.

本発明方法においては、前記サイクロンに捕集された微
粉状重合体が、器壁イ・1着や閉塞のトラブルを生じさ
せないようにできるたけ速かに気相重合帯域に循環させ
ることが望ましい。そのためには自然落下によって循環
させてもよいが、rj−タリーバルブを用いる方法、フ
ァンを用いる方法、同伴ガスを導入する方法などによっ
て強制的に循環させる方法を採用することが望ましい。
In the method of the present invention, it is desirable that the finely powdered polymer collected in the cyclone be circulated to the gas phase polymerization zone as quickly as possible so as not to cause problems such as sticking to the vessel wall or clogging. For this purpose, it is possible to circulate by natural fall, but it is desirable to adopt a method of forced circulation using a method using an RJ-tally valve, a method using a fan, a method by introducing entrained gas, etc.

この循環に際し、本発明においては、流動層重合器ガス
分散板下部の勾゛ス吹込空間に循環を行うものである。
During this circulation, in the present invention, circulation is performed in a gradient blowing space below the gas distribution plate of the fluidized bed polymerizer.

循環された微粉状重合体は、51分散板を通じオレフィ
ン等のガスに伴なわれて流動層に戻されるが、流動層の
一部に局部的に戻されるのではなく、ガス分散板を通じ
均等に戻されることになるので、流動状態が乱されず良
好な流動状態が得られる。さらには流動層の最下部から
循環されるので流動層中での重合の進行によって微粉状
重合体粒子が成長し、その粒子径が大きくなり、従って
再び流動層上部から排出ガスに同伴される量か減少する
ことになるのでサイクロンの負荷が少なくなり、またサ
イクロン回りの重合体の付着などのトラブルが減少、回
避される。
The circulated fine powder polymer is returned to the fluidized bed along with gas such as olefin through the distribution plate 51, but it is not returned locally to a part of the fluidized bed, but evenly through the gas distribution plate. Since it is returned, the flow state is not disturbed and a good flow state can be obtained. Furthermore, since it is circulated from the bottom of the fluidized bed, as polymerization progresses in the fluidized bed, fine powder polymer particles grow and their particle size increases, so that the amount is entrained in the exhaust gas from the top of the fluidized bed again. The load on the cyclone is reduced, and troubles such as polymer adhesion around the cyclone are reduced or avoided.

一方、ガス吹込空間に戻された微粉状重合体は、そこに
滞留している時間をできるだけ短かくし、速かに流動層
に戻すようにすることが望ましい。
On the other hand, it is desirable that the fine powder polymer returned to the gas blowing space be kept there for as short a period of time as possible and quickly returned to the fluidized bed.

そのためにはガス吹込空間及びガス分散板の形状を微粉
状重合体の循環に好都合となるような工夫を施すことが
望ましい。
For this purpose, it is desirable that the shapes of the gas blowing space and the gas distribution plate be designed to be convenient for the circulation of the finely powdered polymer.

第1図は流動層重合器1周辺の模式図であって管9から
触媒を、管8からオレフィン、その他のガス原料を流動
層重合器に供給する。オレフィンはh゛ス分赦板6を通
り、流動層で重合体を浮遊流動させつつ自身も重合に消
費される。未反応のガス成分は微粉状重合体を伴なって
流動層重合器1頂部から排出され、管5を通ってサイク
ロン2に導かれる。サイクロン2で捕集した微粉状重合
体はブロワ−10を通して流動層重合器1のガス分散板
3の下部に形成されているガス吹込空間に戻され、重合
器底部から供給されるオレフィン等のカスに伴なってガ
ス分散板を通じ流動層に循環され、有効に利用される。
FIG. 1 is a schematic diagram of the vicinity of the fluidized bed polymerizer 1, in which a catalyst is supplied from a tube 9, and olefin and other gas raw materials are supplied from a tube 8 to the fluidized bed polymerizer. The olefin passes through the space dispensing plate 6 and is consumed in polymerization while causing the polymer to float and flow in the fluidized bed. Unreacted gas components are discharged from the top of the fluidized bed polymerizer 1 together with the finely powdered polymer, and are led to the cyclone 2 through a pipe 5. The finely powdered polymer collected by the cyclone 2 is returned to the gas blowing space formed at the bottom of the gas distribution plate 3 of the fluidized bed polymerizer 1 through the blower 10, and is passed through the blower 10 to the gas blowing space formed at the bottom of the gas distribution plate 3 of the fluidized bed polymerizer 1. Along with this, the gas is circulated through the gas distribution plate to the fluidized bed and used effectively.

サイクロン2を出た排がスは適宜冷却などを行った後、
管8に戻して循環使用することができる。流動層中の1
1合体は、その高さがほぼ一定となるようにバルブ11
を通し、管12から排出される。
After the exhaust gas leaving cyclone 2 is cooled down as appropriate,
It can be returned to the tube 8 and used for circulation. 1 in fluidized bed
1. The valve 11 is connected so that its height is almost constant.
and is discharged from tube 12.

第1図において、重合器に戻された微動状重合体がガス
吹込空間に必要以上に滞留しないよう番こするため、ガ
ス吹込空間を形成するih 7.%器壁部の傾斜αが少
なくとも45度、好ましくは60ないし80度となって
いることが望まれる。この傾斜力(緩すぎると、重合器
壁土に微粉状重合体が堆積し易く、器壁に重合体が付着
したり、塊状物を形成したすするおそれがある。
In FIG. 1, a gas blowing space is formed to prevent the slightly moving polymer returned to the polymerization vessel from staying in the gas blowing space more than necessary.7. It is desired that the slope α of the percentile wall is at least 45 degrees, preferably 60 to 80 degrees. If this inclination force is too loose, finely powdered polymer tends to accumulate on the wall soil of the polymerization vessel, and there is a risk that the polymer may adhere to the vessel wall or form lumps.

さらに微粉状重合体を可及的速かにガス分散板を通過さ
せるために、ガス分散板の孔径を全体的に大きくしたり
あるいは下方が末広がりになるようにしたりすることに
よって容易に流動層に戻すことが可能にしておくことが
望ましい。例えばそのためには、分散板の孔径を、ガス
人口側において少なくとも5m+n、とくに8ないし5
0mm&度にすることが望ましい。
Furthermore, in order to pass the finely powdered polymer through the gas distribution plate as quickly as possible, the pore size of the gas distribution plate can be made larger overall or the bottom part can be widened to make it easier to form a fluidized bed. It is desirable to be able to return it. For this purpose, for example, the pore size of the distribution plate should be at least 5 m+n, in particular 8 to 5 m, on the gas population side.
It is desirable to set it to 0 mm & degree.

本発明1.こよれば、サイクロン回りのトラブルもなく
、重合状態も良好であり、長期連続重合を行うことが可
能である。
Present invention 1. According to this method, there are no troubles surrounding the cyclone, the polymerization condition is good, and it is possible to carry out continuous polymerization for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様を示す図面である。 出願人  三井石油化学工業株式会社 代理人  山  口     和 FIG. 1 is a drawing showing one embodiment of the present invention. Applicant: Mitsui Petrochemical Industries, Ltd. Agent Kazu Yamaguchi

Claims (2)

【特許請求の範囲】[Claims] (1)流動層重合器を用いてオレフィンを気相重合する
方法において、流動層上部から排出される微粉状重合体
含有ガスをサイクロンに導くことにより捕集した微粉状
重合体を、流動層重合器ガス分散板下部のガス吹込空間
に供給することを特徴とするオレフィンの気相重合方法
(1) In a method of gas-phase polymerizing olefin using a fluidized bed polymerization device, the fine powder polymer collected by guiding the fine powder polymer-containing gas discharged from the upper part of the fluidized bed to a cyclone is subjected to fluidized bed polymerization. A method for the gas phase polymerization of olefins, characterized in that the gas is supplied to a gas blowing space at the bottom of a gas distribution plate.
(2)流動層重合器ガス分散板下部のガス吹込空間を形
成する重〜合器壁部の傾斜を少なくとも45度以上とす
ることを特徴とする特許請求の範囲(1)記載の方法。 (ろ) ガス分散板下部ガス人口側の孔径を少なくとも
5mm以上とする特許請求の範囲(1)記載の方法。
(2) The method according to claim (1), characterized in that the wall portion of the polymerization vessel forming the gas blowing space below the gas distribution plate of the fluidized bed polymerization vessel has an inclination of at least 45 degrees or more. (b) The method according to claim (1), wherein the pore diameter on the gas distribution side of the lower part of the gas distribution plate is at least 5 mm or more.
JP177583A 1983-01-11 1983-01-11 Gas-phase polymerization Granted JPS59126407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP177583A JPS59126407A (en) 1983-01-11 1983-01-11 Gas-phase polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP177583A JPS59126407A (en) 1983-01-11 1983-01-11 Gas-phase polymerization

Publications (2)

Publication Number Publication Date
JPS59126407A true JPS59126407A (en) 1984-07-21
JPH0333165B2 JPH0333165B2 (en) 1991-05-16

Family

ID=11510944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP177583A Granted JPS59126407A (en) 1983-01-11 1983-01-11 Gas-phase polymerization

Country Status (1)

Country Link
JP (1) JPS59126407A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506949A (en) * 2011-03-02 2014-03-20 ボーリアリス アーゲー Flexible reactor assembly for olefin polymerization.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506949A (en) * 2011-03-02 2014-03-20 ボーリアリス アーゲー Flexible reactor assembly for olefin polymerization.

Also Published As

Publication number Publication date
JPH0333165B2 (en) 1991-05-16

Similar Documents

Publication Publication Date Title
JPH0135002B2 (en)
EP0041796B1 (en) Improvement in multi-step gas-phase polymerization of olefins
CA1322625C (en) Process and apparatus for the gas-phase polymerisation of olefins in a fluidised-bed reactor
KR101426308B1 (en) Gas-phase process and apparatus for the polymerization of olefins
PL189584B1 (en) Gaseous phase polymerisation process
KR100388507B1 (en) Apparatus and process for polymering olefin in gas phase
JPH0333164B2 (en)
EP0050477B1 (en) Process for producing ethylene copolymer by gaseous phase polymerization
EP1613668B1 (en) Gas-phase olefin polymerization process
KR100472977B1 (en) Polymerization Method
JP2009509017A (en) Method for vapor phase polymerization of olefins
CZ722689A3 (en) Process of one or more alpha-olefins continuous polymerization
US5633333A (en) Process for polymerizing olefin in gas phase
JPH0571601B2 (en)
JPS59126407A (en) Gas-phase polymerization
JPS58120617A (en) Ethylene improved copolymerization
JPS6243442B2 (en)
EP1278783B1 (en) Olefin polymerization process
EP0004646A2 (en) Process for preparing polymerization catalyst and process for ethylene homopolymerization
JP3654456B2 (en) Process for gas phase polymerization of olefins
JPS6243444B2 (en)
JPS6243443B2 (en)
JPS6243441B2 (en)
JPS59176305A (en) Vapor-phase polymerization
JPH0841120A (en) Production of ethylene/alpha-olefin copolymer