JPS6243442B2 - - Google Patents

Info

Publication number
JPS6243442B2
JPS6243442B2 JP56014430A JP1443081A JPS6243442B2 JP S6243442 B2 JPS6243442 B2 JP S6243442B2 JP 56014430 A JP56014430 A JP 56014430A JP 1443081 A JP1443081 A JP 1443081A JP S6243442 B2 JPS6243442 B2 JP S6243442B2
Authority
JP
Japan
Prior art keywords
polymerization
polymer
cyclone
gas
gas phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56014430A
Other languages
Japanese (ja)
Other versions
JPS57128706A (en
Inventor
Akifumi Kato
Junichi Yoshida
Michiharu Suga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP1443081A priority Critical patent/JPS57128706A/en
Publication of JPS57128706A publication Critical patent/JPS57128706A/en
Publication of JPS6243442B2 publication Critical patent/JPS6243442B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 本発明は、オレフイン類の気相重合法に関し、
オレフイン類の気相重合帯域から排出される未反
応ガス流中に随伴含有される微粉状重合体による
付着や閉塞のトラブルを、容易な操作及び手段で
克服し、オレフイン類の気相重合を連続して長期
間にわたつて安定且つ円滑に行うことのできる改
善方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas phase polymerization method for olefins,
Continuous gas phase polymerization of olefins by overcoming problems of adhesion and clogging caused by fine powder polymers contained in the unreacted gas stream discharged from the gas phase polymerization zone of olefins with easy operations and means. This invention relates to an improvement method that can be carried out stably and smoothly over a long period of time.

更に詳しくは、本発明は、オレフイン類の気相
重合帯域から排出される微粉状重合体含有未反応
ガス流を、サイクロンに導いて該微粉状重合体を
捕集し、該サイクロン下部から吸引力を作用させ
て、捕集された該微粉状重合体をサイクロンから
吸引除去し、この除去した微粉状重合体を上記気
相重合帯域に循環させることを特徴とするオレフ
イン類の気相重合法に関する。
More specifically, the present invention involves guiding an unreacted gas stream containing a finely divided polymer discharged from a gas phase polymerization zone of olefins to a cyclone to collect the finely divided polymer, and applying a suction force from the lower part of the cyclone. The present invention relates to a gas phase polymerization method for olefins, characterized in that the collected fine powder polymer is removed by suction from a cyclone, and the removed fine powder polymer is circulated to the gas phase polymerization zone. .

なお、本発明において重合なる用語は、単独重
合のみならず共重合を包含した意味で、また重合
体は単独重合体のみならず共重合体を包含した意
味で用いられることがある。
In the present invention, the term "polymerization" is sometimes used to include not only homopolymerization but also copolymerization, and the term "polymer" is sometimes used to include not only homopolymers but also copolymers.

オレフイン重合用の遷移金属触媒成分の改良に
よつて、単位遷移金属当りのオレフイン重合体生
産能力が飛躍的に高められた結果、重合後におけ
る触媒除去操作を省略しうる段階に至つている。
このような高活性触媒を用いるときには、重合後
の操作が最も簡単なところから、オレフイン重合
を気相で行う方法が注目されている。
As a result of improvements in transition metal catalyst components for olefin polymerization, the production capacity of olefin polymers per unit transition metal has been dramatically increased, and as a result, we have reached a stage where the catalyst removal operation after polymerization can be omitted.
When using such a highly active catalyst, a method of carrying out olefin polymerization in the gas phase is attracting attention because it is the simplest to operate after polymerization.

該気相重合の実施に際しては、重合を円滑に進
めるために、例えば流動層重合器や撹拌流動層重
合器などのような完全混合型重合器を用い、オレ
フイン含有ガスによつて、触媒を含有するオレフ
イン重合体を浮遊流動させつつ重合を行う方法が
賞用されている。
When carrying out the gas phase polymerization, in order to proceed smoothly with the polymerization, a complete mixing type polymerization vessel such as a fluidized bed polymerization vessel or a stirred fluidized bed polymerization vessel is used, and a catalyst containing gas is added to the olefin-containing gas. A method in which polymerization is carried out while floating and fluidizing an olefin polymer has been widely used.

この方法では、流動層を出た未反応ガス流を循
環再使用することが好ましく、そのためには、該
未反応ガス流を冷却器や循環ガスブロアーなどを
通して循環させることになるが、該未反応ガス流
に随伴して排出される触媒を含有している微粉状
重合体がこれらの装置や配管内で重合を起こし、
塊状物を形成させ、機器能力の低下や閉塞を引き
起こすなどのトラブルの原因となる。
In this method, it is preferable to recycle and reuse the unreacted gas stream leaving the fluidized bed, and for this purpose, the unreacted gas stream is circulated through a cooler, a circulating gas blower, etc. The finely powdered polymer containing the catalyst, which is discharged along with the gas flow, polymerizes inside these devices and piping.
This can cause lumps to form, causing problems such as reduced equipment performance and blockage.

このようなトラブルの発生を回避するために、
一般には、流動層気相重合帯域を出た未反応ガス
を循環使用するに際しては、該未反応ガス流を予
めサイクロンに導いて微粉状重合体を取除いてお
く方法が採用されている。この際、サイクロンの
底部は重合器に連結され、捕集された微粉状重合
体はその自重による自然落下によつて重合器に戻
される。
To avoid such troubles,
Generally, when the unreacted gas leaving the fluidized bed gas phase polymerization zone is recycled, a method is adopted in which the unreacted gas flow is previously introduced into a cyclone to remove the finely divided polymer. At this time, the bottom of the cyclone is connected to the polymerization vessel, and the collected fine powder polymer is returned to the polymerization vessel by gravity due to its own weight.

ところが、このような従来手法では、サイクロ
ン中での微粉状重合体の実際の滞留時間は、無視
できるほどには短かくないため、サイクロン中で
不都合な重合が進行することが回避し難く、壁面
付着や配管閉塞のトラブルが発生し易く、この傾
向は活性の高い触媒を用いる場合にとくに著しい
ことがわかつた。
However, in such conventional methods, the actual residence time of the fine powder polymer in the cyclone is not so short that it can be ignored, so it is difficult to avoid undesirable polymerization progressing in the cyclone, and the wall surface It was found that troubles such as adhesion and piping clogging are likely to occur, and this tendency is particularly remarkable when a highly active catalyst is used.

本発明者等は、このような微粉状重合体含有未
反応ガス流のサイクロン処理に際して生ずる新た
な技術課題を解決すべく研究を行つた。
The present inventors conducted research in order to solve new technical problems that arise during cyclone treatment of such a flow of unreacted gas containing a finely divided polymer.

その結果、サイクロンの下部から吸引力を作用
させるという極めて簡単な手段によつて、上記ト
ラブルが有利に克服でき、例えば、吸引除去した
微粉状重合体を気相重合帯域に随伴循環させる随
伴用ガス流を兼ねた高速ガス流によるエジエクタ
ー作用を利用して、上記吸引力を生じさせるとい
う操作及び装置上きわめて容易且つ簡単な手段に
よつて、上記の新たな技術課題が一挙に且つ工業
的に有利に克服でき、オレフイン類の気相重合を
連続して長期間にわたつて安定且つ円滑に行い得
ることを発見した。
As a result, the above-mentioned troubles can be advantageously overcome by the extremely simple means of applying suction force from the lower part of the cyclone. By utilizing the ejector action of a high-speed gas flow that also serves as a gas flow to generate the above-mentioned suction force, which is extremely easy and simple in terms of operation and equipment, the above-mentioned new technical problems can be solved all at once and industrially advantageous. It has been discovered that the gas phase polymerization of olefins can be carried out stably and smoothly continuously over a long period of time.

従つて、本発明の目的は、前記の如きトラブル
を抑制ないし防止し、連続して安定した運転を長
期に亘つて可能ならしめる方法を提供するたあ
る。
Therefore, an object of the present invention is to provide a method that suppresses or prevents the above-mentioned troubles and enables continuous and stable operation over a long period of time.

本発明の上記目的及び更に多くの他の目的なら
びに利点は、以下の記載から一層明らかとなるで
あろう。
The above objects and many other objects and advantages of the present invention will become more apparent from the following description.

本発明方法によれば、オレフイン類の気相重合
帯域から排出される微粉状重合体含有未反応ガス
流をサイクロンに導いて該微粉状重合体を捕集
し、該サイクロン下部から吸引力を作用させて、
捕集された該微粉状重合体をサイクロンから吸引
除去し、この除去した微粉状重合体を上記気相重
合帯域に循環させる。
According to the method of the present invention, an unreacted gas flow containing a finely divided polymer discharged from a gas phase polymerization zone for olefins is guided to a cyclone to collect the finely divided polymer, and a suction force is applied from the lower part of the cyclone. Let me,
The collected fine powder polymer is removed by suction from the cyclone, and the removed fine powder polymer is circulated to the gas phase polymerization zone.

本発明の気相重合においては、遷移金属触媒成
分と周期律表第1族ないし第3族金属の有機金属
化合物触媒成分とから形成される触媒を用いるの
が好ましい。
In the gas phase polymerization of the present invention, it is preferable to use a catalyst formed from a transition metal catalyst component and an organometallic compound catalyst component of a metal from Group 1 to Group 3 of the periodic table.

遷移金属化合物触媒成分は、チタン、バナジウ
ム、クロム、ジルコニウムなどの遷移金属の化合
物であつて、使用条件下に液状のものであつても
固体状のものであつてもよい。これらは単一化合
物である必要はなく、他の化合物に担持されてい
たりあるいは混合されていてもよい。さらに他の
化合物との錯化合物や複化合物であつてもよい。
The transition metal compound catalyst component is a compound of a transition metal such as titanium, vanadium, chromium, zirconium, etc., and may be liquid or solid under the conditions of use. These do not need to be a single compound, and may be supported on other compounds or mixed. Furthermore, it may be a complex compound or a composite compound with other compounds.

好適な遷移金属化合物触媒成分は、遷移金属1
ミリモル当り約5000g以上、とくに約8000g以上
のオレフイン重合体を製造することができる高活
性成分であつて、その代表的なものとしてマグネ
シウム化合物によつて高活性化されたチタン触媒
成分を例示することができる。例えば、チタン、
マグネシウム及びハロゲンを必須成分とする固体
状のチタン触媒成分であつて、非晶化されたハロ
ゲン化マグネシウムを含有し、その比表面積は、
好ましくは約40m2/g以上、とくに好ましくは約
80ないし約800m2/gの成分を例示することがで
きる。そして電子供与体、例えば有機酸エステ
ル、ケイ酸エステル、酸ハライド、酸無水物、ケ
トン、酸アミド、第三アミン、無機酸エステル、
リン酸エステル、亜リン酸エステル、エーテルな
どを含有していてもよい。この触媒成分は、例え
ば、チタンを約0.5ないし約10重量%、とくに約
1ないし約8重量%含有し、チタン/マグネシウ
ム(原子比)が約1/2ないし約1/100、とくに約1/
3ないし約1/50、ハロゲン/チタン(原子比)が
約4ないし約100、とくに約6ないし約80、電子
供与体/チタン(モル比)が0ないし約10、とく
に0ないし約6の範囲にあるものが好ましい。こ
れらの触媒成分についてはすでに数多く提案され
ており、広く知られている。
Suitable transition metal compound catalyst components include transition metal 1
A titanium catalyst component highly activated by a magnesium compound is exemplified as a representative example of a highly active component capable of producing about 5,000 g or more, particularly about 8,000 g or more of olefin polymer per mmol. Can be done. For example, titanium,
A solid titanium catalyst component containing magnesium and halogen as essential components, containing amorphous magnesium halide, and its specific surface area is:
Preferably about 40 m 2 /g or more, particularly preferably about 40 m 2 /g or more
80 to about 800 m 2 /g can be exemplified. and electron donors such as organic acid esters, silicic acid esters, acid halides, acid anhydrides, ketones, acid amides, tertiary amines, inorganic acid esters,
It may contain phosphoric acid ester, phosphorous acid ester, ether, etc. This catalyst component contains, for example, about 0.5 to about 10% by weight of titanium, especially about 1 to about 8% by weight, and the titanium/magnesium (atomic ratio) is about 1/2 to about 1/100, especially about 1/2.
3 to about 1/50, halogen/titanium (atomic ratio) of about 4 to about 100, especially about 6 to about 80, electron donor/titanium (molar ratio) of 0 to about 10, especially 0 to about 6. Preferably the one in Many of these catalyst components have already been proposed and are widely known.

有機金属化合物触媒成分は、周期律表第1族な
いし第3族の金属と炭素の結合を有する有機金属
化合物であつて、その具体例としては、アルカリ
金属の有機化合物、アルカリ土類金属の有機金属
化合物、有機アルミニウム化合物などが挙げら
れ、例えば、アルキルリチウム、アリールナトリ
ウム、アルキルマグネシウム、アリールマグネシ
ウム、アルキルマグネシウムハライド、アリール
マグネシウムハライド、アルキルマグネシウムヒ
ドリド、トリアルキルアルミニウム、アルキルア
ルミニウムハライド、アルキルアルミニウムヒド
リド、アルキルアルミニウムアルコキシド、アル
キルリチウムアルミニウム、これらの混合物など
を例示できる。
The organometallic compound catalyst component is an organometallic compound having a bond between a metal of Groups 1 to 3 of the periodic table and carbon, and specific examples include organic compounds of alkali metals and organic compounds of alkaline earth metals. Examples include metal compounds, organoaluminum compounds, etc., such as alkyllithium, aryl sodium, alkylmagnesium, arylmagnesium, alkylmagnesium halide, arylmagnesium halide, alkylmagnesium hydride, trialkylaluminium, alkylaluminum halide, alkylaluminum hydride, alkyl Examples include aluminum alkoxide, alkyl lithium aluminum, and mixtures thereof.

前記2成分に加え、立体規則性、分子量、分子
量分布などを調節する目的で、水素、ハロゲン化
炭化水素、電子供与体触媒成分、例えば、有機酸
エステル、ケイ酸エステル、カルボン酸ハライ
ド、カルボン酸アミド、第三アミン、酸無水物、
エーテル、ケトン、アルデヒドなどを併用しても
よい。電子供与体成分は、重合に際し、予め有機
金属化合物触媒成分と錯化合物(又は付加化合
物)を形成させてから使用してもよく、またトリ
ハロゲン化アルミニウムのようなルイス酸の如き
他の化合物と錯化合物(又は付加化合物)を形成
した形で使用してもよい。
In addition to the above two components, for the purpose of adjusting stereoregularity, molecular weight, molecular weight distribution, etc., hydrogen, halogenated hydrocarbons, electron donor catalyst components, such as organic acid esters, silicate esters, carboxylic acid halides, carboxylic acids amides, tertiary amines, acid anhydrides,
Ethers, ketones, aldehydes, etc. may be used in combination. During polymerization, the electron donor component may be used after forming a complex compound (or addition compound) with the organometallic compound catalyst component in advance, or may be used with other compounds such as Lewis acids such as aluminum trihalides. It may be used in the form of a complex compound (or addition compound).

本発明方法において、重合に用いられるオレフ
インとしては、エチレン、プロピレン、1−ブテ
ン、1−ペンテン、1−ヘキセン、1−オクテ
ン、1−デセン、4−メチル−1−ペンテン、3
−メチル−1−ペンテン、スチレン、ブタジエ
ン、イソプレン、1・4−ヘキサジエン、ジシク
ロペンタジエン、5−エチリデン−2−ノルボル
ネンなどを例示でき、気相重合が可能な範囲でこ
れらの単独重合や共重合を行うことができる。
In the method of the present invention, the olefins used for polymerization include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 4-methyl-1-pentene, 3
-Methyl-1-pentene, styrene, butadiene, isoprene, 1,4-hexadiene, dicyclopentadiene, 5-ethylidene-2-norbornene, etc., and homopolymerization or copolymerization of these to the extent that gas phase polymerization is possible. It can be performed.

本発明方法は、好ましくは、エチレン又はプロ
ピレンの単独重合、エチレンと他のオレフインと
の共重合、プロピレンと他のオレフインの共重合
を行う場合には好適に利用できる。
The method of the present invention can be preferably used for homopolymerization of ethylene or propylene, copolymerization of ethylene and other olefins, and copolymerization of propylene and other olefins.

気相重合は、流動層重合器、撹拌流動層重合器
などのような混合型重合器を用いて行うことがで
きる。反応温度は、オレフイン重合体の融点以
下、好ましくは融点より約10℃以上低く、かつ室
温ないし約130℃、とくには約40ないし110℃程度
である。また重合圧力は、例えば、大気圧ないし
約150Kg/cm2、とくに約2ないし約70Kg/cm2の範
囲が好ましい。重合に際して任意に使用される水
素は、例えばオレフイン1モルに対し約0.001な
いし約20モル、とくには約0.02ないし約10モルの
範囲で用いるのが好ましい。また重合熱を除去す
るために、液状の易揮発性炭化水素、例えばプロ
パンやブタンを供給し、重合帯域中で気化されて
もよい。
Gas phase polymerization can be carried out using a mixed type polymerization vessel such as a fluidized bed polymerization vessel, a stirred fluidized bed polymerization vessel, or the like. The reaction temperature is below the melting point of the olefin polymer, preferably about 10°C or more lower than the melting point, and from room temperature to about 130°C, particularly about 40 to 110°C. The polymerization pressure is preferably in the range of, for example, atmospheric pressure to about 150 kg/cm 2 , particularly about 2 to about 70 kg/cm 2 . Hydrogen optionally used in the polymerization is preferably used in an amount of, for example, about 0.001 to about 20 mol, particularly about 0.02 to about 10 mol, per 1 mol of olefin. Furthermore, in order to remove the heat of polymerization, a liquid easily volatile hydrocarbon such as propane or butane may be supplied and vaporized in the polymerization zone.

前記の如き、遷移金属化合物触媒成分、有機金
属化合物触媒成分、電子供与体触媒成分等を用い
る場合には、反応床容積1当り、遷移金属化合
物触媒成分が遷移金属原子に換算して約0.0005な
いし約1ミリモル、とくには約0.001ないし約0.5
ミリモル、有機金属化合物触媒成分を、該金属/
遷移金属(原子比)が約1ないし約2000、とくに
約1ないし約500となるような割合で用いるのが
好ましい。また電子供与体触媒成分を、有機金属
化合物触媒成分1モル当り、0ないし約1モル、
とくに0ないし約0.5モル程度の割合で用いるの
が好ましい。
When using a transition metal compound catalyst component, an organometallic compound catalyst component, an electron donor catalyst component, etc. as described above, the amount of the transition metal compound catalyst component is about 0.0005 to 0.0005 to 1,000,000 in terms of transition metal atoms per 1 volume of the reaction bed. about 1 mmol, especially about 0.001 to about 0.5
millimoles of the organometallic compound catalyst component to the metal/
It is preferable to use the transition metal (atomic ratio) in a proportion of about 1 to about 2000, particularly about 1 to about 500. In addition, the electron donor catalyst component is added in an amount of 0 to about 1 mol per 1 mol of the organometallic compound catalyst component.
In particular, it is preferable to use it in a proportion of about 0 to about 0.5 mol.

オレフイン類の重合は実質的に連続的に行うの
がよい。すなわち、触媒成分、オレフイン、必要
に応じて水素、希釈剤などを、連続的に重合器に
供給し、気体成分によつて触媒を含有する重合体
を浮遊流動させながら重合を行う方法を採用する
のが工業的に有利である。連続重合においては、
重合器中の重合体量をほぼ一定に維持するよう
に、重合体を連続的(又は間欠的)に重合器から
抜き出し、一方、実質的な重合帯域である重合体
の浮遊流動域を通過した未反応ガス流(場合によ
り水素や希釈剤などを含む)は、微粉状重合体を
同伴して重合帯域から実質的に連続的に排出され
る。これをサイクロンに導き、未反応ガス流中の
微粉重合体を捕集する。微粉重合体が除去された
未反応ガスは、冷却器、ブロワーなどの諸機器に
適宜通した後、重合帯域に循環させ再使用するこ
とができる。
The polymerization of olefins is preferably carried out substantially continuously. That is, a method is adopted in which the catalyst component, olefin, hydrogen, diluent, etc. are continuously supplied to the polymerization vessel as necessary, and the polymerization is carried out while the polymer containing the catalyst is floated and fluidized by the gas component. is industrially advantageous. In continuous polymerization,
The polymer was continuously (or intermittently) withdrawn from the polymerization vessel so as to maintain the amount of polymer in the polymerization vessel approximately constant, while passing through a floating flow zone of the polymer, which was the substantial polymerization zone. The unreacted gas stream (optionally containing hydrogen, diluent, etc.) is substantially continuously discharged from the polymerization zone, entraining the finely divided polymer. This is led to a cyclone to collect the finely divided polymer in the unreacted gas stream. The unreacted gas from which the fine powder polymer has been removed can be appropriately passed through various devices such as a cooler and a blower, and then circulated to the polymerization zone for reuse.

本発明方法においては、前記サイクロンに捕集
された微粉状重合体が、器壁付着や閉塞のトラブ
ルを生ずるような時間の滞留を防止するため、サ
イクロン下部から吸引力を作用させ、微粉状重合
体を強制的に取除き、しかる後速かに、この除去
した微粉状重合体を気相重合帯域に循環させるの
がよい。
In the method of the present invention, in order to prevent the fine powdery polymer collected by the cyclone from staying for a long time that may cause troubles such as adhesion to the vessel wall or clogging, suction force is applied from the lower part of the cyclone, and the fine powdery polymer is It is preferable to forcibly remove the coalescence and then quickly circulate the removed finely divided polymer to the gas phase polymerization zone.

この実施に好適な手段としては、サイクロンの
下部を横切る高速ガス流を作用させる手段が挙げ
られる。この際生ずるエジエクター効果によつて
微粉状重合体はサイクロンから吸引除去されると
共に、該高速ガス流中に吸引されるので、この高
速ガスをそのまま気相重合帯域に供給すれば、微
粉状重合体の循環ができる。
Suitable means for accomplishing this include applying a high velocity gas flow across the lower part of the cyclone. Due to the ejector effect generated at this time, the fine powder polymer is suctioned away from the cyclone and is also sucked into the high-speed gas flow. Therefore, if this high-speed gas is directly supplied to the gas phase polymerization zone, the fine powder polymer can be circulated.

高速ガスによる吸引は、連続的に行つてもよい
が、未反応ガスの高速ガス流への洩れ量を調節す
る意味から、サイクロン下部と高速ガス流管の間
にロータリー弁やタイマー弁などの如き弁機構を
設け、間欠的に行つてもよい。いずれにしても強
制的な吸引除去によつて、微粉状重合体のサイク
ロン中での滞留時間を短縮させることが可能とな
り、壁付着や閉塞などのトラブルを未然に防止す
ることができる。又、気相重合帯域に戻される微
粉状重合体は、触媒を含有するものは重合活性を
示し、触媒効率改善に寄与するばかりでなく、自
身はより大きな粒子に成長するので、再び未反応
ガスに同伴される可能性は少なくなる。
Suction with high-speed gas may be performed continuously, but in order to control the amount of unreacted gas leaking into the high-speed gas flow, a rotary valve, timer valve, etc. should be installed between the lower part of the cyclone and the high-speed gas flow pipe. A valve mechanism may be provided to perform the operation intermittently. In any case, forced suction removal makes it possible to shorten the residence time of the finely divided polymer in the cyclone, thereby making it possible to prevent problems such as wall adhesion and blockage. In addition, the fine powder polymer returned to the gas phase polymerization zone shows polymerization activity if it contains a catalyst, and not only contributes to improving the catalyst efficiency, but also grows into larger particles, so that the unreacted gas is recycled again. less likely to be accompanied by

以上のような目的に用いられる微粉状重合体の
吸引作用及び随伴用ガス作用を兼ねた高速ガス
は、重合に悪影響を及ぼさないものであればよ
い。例ば、重合に用いられるオレフイン類、希釈
剤、水素、あるいはこれらの混合物などが利用で
きる。高速ガスの流通速度は、サイクロン下部と
の連通部で充分な吸引力を示せばよく、例えば1
m/secないし100m/sec程度の速度とすればよ
い。該連通部の管径を適当に細くしておけば、高
速ガス量を過大にする必要はないので、重合帯域
に戻しても重合状態が乱されることはない。重合
帯域に戻す方法として、直接重合体の浮遊流動域
に供給する方法、該域上部から該域に吹付ける方
法などを採用することができる。
The high-velocity gas used for the above-mentioned purpose, which serves both the suction action and accompanying gas action for the finely powdered polymer, may be any gas that does not adversely affect the polymerization. For example, olefins, diluents, hydrogen, or mixtures thereof used in polymerization can be used. The flow velocity of the high-speed gas only needs to show sufficient suction power at the communication part with the lower part of the cyclone, for example, 1
The speed may be approximately m/sec to 100 m/sec. If the pipe diameter of the communicating portion is appropriately reduced, there is no need to increase the amount of high-speed gas, so that the polymerization state will not be disturbed even if the gas is returned to the polymerization zone. As a method of returning the polymer to the polymerization zone, a method of directly supplying the polymer to the floating flow region, a method of spraying it into the region from above the region, etc. can be adopted.

一方、連続的又は間欠的に抜き出される重合体
は、必要に応じ適当な後処理をして製品とした
り、あるいは多段重合方式の場合には、次の重合
に使用することもできる。
On the other hand, the polymer extracted continuously or intermittently can be used as a product after appropriate post-treatment if necessary, or can be used in the next polymerization in the case of a multi-stage polymerization method.

以下、添付図面を用いて本発明方法実施の一例
を示す。
An example of implementing the method of the present invention will be described below using the accompanying drawings.

実施例 第1図は本発明の一実施態様を示す図面であ
る。流動層重合器3には、多孔板6の上部に流動
層4が形成されている。遷移金属化合物触媒成分
と有機金属化合物触媒成分を予め別の容器中で少
量のオレフインで予備重合処理することによつて
得られた触媒懸濁液を管1からヒーター2を通し
て液状媒体を気化させた後、重合器3に供給す
る。原料オレフイン、必要に応じて使用される水
素や希釈剤を、管5及び管11から新たにあるい
は循環によつて重合器に供給し、流動層4を流動
させつつ重合反応を行わしめる。流動層を通過し
た未反応ガスは、微粉状重合体を同伴しているの
で管7から排出後、サイクロン8に導き、粉末重
合体を取り除く。微粉状重合体が除去された未反
応ガスは、管11から冷却器13及び循環ブロワ
ー16を通つて重合器に循環される。サイクロン
8の下部はタイマー弁9を介してベンチユリー部
10に連結されている。ベンチユリー部には管1
2を通つて高速ガスが流されており、タイマー弁
9が開いたときにサイクロンに捕集された微粉重
合体は高速ガス中に吸引され、そのまま高速ガス
に同伴されて重合器3に循環される。一方、重合
体は、流動層高さがほぼ一定となるように調節弁
14から管15を通つて抜き出される。
Embodiment FIG. 1 is a drawing showing one embodiment of the present invention. In the fluidized bed polymerizer 3, a fluidized bed 4 is formed above a perforated plate 6. A catalyst suspension obtained by prepolymerizing a transition metal compound catalyst component and an organometallic compound catalyst component with a small amount of olefin in separate containers was passed through a tube 1 to a heater 2 to vaporize the liquid medium. After that, it is supplied to the polymerization vessel 3. The raw material olefin, hydrogen and diluent used as necessary are supplied to the polymerization vessel from the pipes 5 and 11 either freshly or by circulation, and the polymerization reaction is carried out while the fluidized bed 4 is fluidized. The unreacted gas that has passed through the fluidized bed is accompanied by a finely powdered polymer, so after being discharged from a pipe 7, it is led to a cyclone 8 to remove the powdery polymer. The unreacted gas from which the fine powder polymer has been removed is circulated from the pipe 11 through the cooler 13 and circulation blower 16 to the polymerization vessel. The lower part of the cyclone 8 is connected to a ventilator section 10 via a timer valve 9. There is a tube 1 in the ventilate part.
A high-speed gas is flowing through 2, and when the timer valve 9 opens, the fine powder polymer collected by the cyclone is sucked into the high-speed gas, and is entrained in the high-speed gas and circulated to the polymerization vessel 3. Ru. On the other hand, the polymer is withdrawn from the control valve 14 through the pipe 15 so that the height of the fluidized bed remains approximately constant.

上記態様によつて、オレフイン類の気相重合
を、連続して長期間に亘り、円滑に行うことがで
きた。
According to the above embodiment, the gas phase polymerization of olefins could be carried out continuously and smoothly over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施態様を示す図面であ
る。
FIG. 1 is a drawing showing one embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 オレフイン類の気相重合帯域から排出される
微粉状重合体含有未反応ガス流をサイクロンに導
いて、該微粉状重合体を捕集し、該サイクロン下
部から吸引力を作用させて、捕集された該微粉状
重合体をサイクロンから吸引除去し、この除去し
た微粉状重合体を上記気相重合帯域に循環させる
ことを特徴とするオレフイン類の気相重合法。 2 該吸引力が、該除去した微粉状重合体を該気
相重合帯域に循環させる随伴用ガスによるエジエ
クター作用により与えられる特許請求の範囲第1
項記載の気相重合法。
[Claims] 1. A flow of unreacted gas containing a finely divided polymer discharged from the gas phase polymerization zone of olefins is guided to a cyclone to collect the finely divided polymer, and a suction force is applied from the lower part of the cyclone. A method for gas phase polymerization of olefins, characterized in that the collected fine powder polymer is removed by suction from a cyclone, and the removed fine powder polymer is circulated to the gas phase polymerization zone. 2. Claim 1, wherein the suction force is provided by an ejector action by an accompanying gas that circulates the removed fine powder polymer into the gas phase polymerization zone.
Gas phase polymerization method described in section.
JP1443081A 1981-02-04 1981-02-04 Vapor-phase polymerizing method of olefin Granted JPS57128706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1443081A JPS57128706A (en) 1981-02-04 1981-02-04 Vapor-phase polymerizing method of olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1443081A JPS57128706A (en) 1981-02-04 1981-02-04 Vapor-phase polymerizing method of olefin

Publications (2)

Publication Number Publication Date
JPS57128706A JPS57128706A (en) 1982-08-10
JPS6243442B2 true JPS6243442B2 (en) 1987-09-14

Family

ID=11860800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1443081A Granted JPS57128706A (en) 1981-02-04 1981-02-04 Vapor-phase polymerizing method of olefin

Country Status (1)

Country Link
JP (1) JPS57128706A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4640963A (en) * 1985-02-15 1987-02-03 Standard Oil Company (Indiana) Method and apparatus for recycle of entrained solids in off-gas from a gas-phase polyolefin reactor
JP5292754B2 (en) * 2007-09-27 2013-09-18 住友化学株式会社 Process for producing olefin polymer
EP2348056A1 (en) 2010-01-26 2011-07-27 Ineos Europe Limited Process for the gas phase polymerisation of olefins
US8198384B1 (en) 2011-01-10 2012-06-12 Westlake Longview Corporation Method for preventing or reducing clogging of a fines ejector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240350A (en) * 1975-09-26 1977-03-29 Nippon Kogaku Kk <Nikon> Device for extinguishing polarized light in an optical system having an analyzer
JPS5514694A (en) * 1978-06-09 1980-02-01 Philips Nv Automatic exposure controller for xxray generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5240350A (en) * 1975-09-26 1977-03-29 Nippon Kogaku Kk <Nikon> Device for extinguishing polarized light in an optical system having an analyzer
JPS5514694A (en) * 1978-06-09 1980-02-01 Philips Nv Automatic exposure controller for xxray generator

Also Published As

Publication number Publication date
JPS57128706A (en) 1982-08-10

Similar Documents

Publication Publication Date Title
JPH029045B2 (en)
JPH0333164B2 (en)
KR101081670B1 (en) Method and apparatus for preparing and supplying catalyst slurry to polymerisation reactor
JPH0135002B2 (en)
JPH0313246B2 (en)
EP0107105B1 (en) Direct conversion of a polymerization reaction catalyzed by a ziegler-type catalyst into one catalyzed by a chromium-based catalyst
CS214856B2 (en) Method of making the resin olefine polymere
JP2006521455A (en) Mineral oil-based chromium catalyst for polyethylene production
JPH09501733A (en) Vapor phase polymerization of α-olefins
JPH0867708A (en) Polymerizing method for olefin using catalyst component containing solid titanium halide particle
JPS6411651B2 (en)
US7482411B2 (en) Gas-phase olefin polymerization process
JPS6243442B2 (en)
JPS5941648B2 (en) Exothermic polymerization in a vertical fluidized bed reactor system with cooling means and its equipment
JPH0571601B2 (en)
JPH0796563B2 (en) Method for injecting catalyst in Ziegler polymerization
JP2000336112A (en) Organic silicon compound, catalyst for production of olefin polymer and production of olefin polymer
JPS6243444B2 (en)
JPH0333165B2 (en)
JP2984947B2 (en) Method for producing polyolefin
JPS6243441B2 (en)
TWI834880B (en) Process and reactor assembly for the enhancement of hydrodynamics in a gas-solids fluidized bed reactor
FI78485B (en) OLEFINPOLYMERISATIONSKATALYSATORER ANPASSADE FOER GASFAS PROCESSER, DERAS PREKURSOR, FRAMSTAELLNING OCH ANVAENDNING.
EP0004646B2 (en) Process for preparing polymerization catalyst and process for ethylene homopolymerization
JPS6243443B2 (en)