JPS6243323B2 - - Google Patents

Info

Publication number
JPS6243323B2
JPS6243323B2 JP55051197A JP5119780A JPS6243323B2 JP S6243323 B2 JPS6243323 B2 JP S6243323B2 JP 55051197 A JP55051197 A JP 55051197A JP 5119780 A JP5119780 A JP 5119780A JP S6243323 B2 JPS6243323 B2 JP S6243323B2
Authority
JP
Japan
Prior art keywords
oxide
silver
electrode
sintered body
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55051197A
Other languages
Japanese (ja)
Other versions
JPS56147406A (en
Inventor
Akihiro Takami
Takeshi Hosokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5119780A priority Critical patent/JPS56147406A/en
Publication of JPS56147406A publication Critical patent/JPS56147406A/en
Publication of JPS6243323B2 publication Critical patent/JPS6243323B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 本発明は酸化亜鉛を主体とする積層型電圧非直
線抵抗器の製造方法に関するものであり、その目
的は安価でしかも製造の容易な積層型電圧非直線
抵抗器を提供することにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a multilayer voltage non-linear resistor mainly made of zinc oxide, and its purpose is to provide a multi-layer voltage non-linear resistor that is inexpensive and easy to manufacture. It's about doing.

積層型電圧非直線抵抗器は小型でしかも大きな
サージ耐量が期待されることから、実用化に向つ
て種々検討されている。しかしながら、従来の製
造法は酸化亜鉛を主成分とし、酸化ビスマス、酸
化コバルト、酸化マンガン等を添加した粉体に有
機バインダーを加え、スラリー化し、これをシー
ト状に引き、このシート上に内部電極として白金
ペーストを塗布する。そして、これらを適当枚数
重ね、プレスで圧着させる。次に、この積層シー
トを適当な形状に切断し、空気中で1200゜〜1400
℃で焼結し、焼結体を得る。この焼結体に銀など
からなる外部電極を塗布し、800゜〜900℃の温度
で空気中で焼付け、積層型電圧非直線抵抗器を得
ている。
Multilayer voltage nonlinear resistors are compact and are expected to have large surge resistance, and various studies are being conducted to put them into practical use. However, the conventional manufacturing method is to add an organic binder to a powder containing zinc oxide as the main component and add bismuth oxide, cobalt oxide, manganese oxide, etc. to form a slurry, draw this into a sheet, and apply the internal electrodes on this sheet. Apply platinum paste. Then, a suitable number of these sheets are stacked and pressed together using a press. Next, cut this laminated sheet into a suitable shape and heat it in the air at 1200° to 1400°.
Sinter at ℃ to obtain a sintered body. This sintered body is coated with an external electrode made of silver or the like and baked in air at a temperature of 800° to 900°C to obtain a multilayer voltage nonlinear resistor.

このように従来の積層型電圧非直線抵抗器は内
部電極を素子の焼結と同時に形成するから、内部
電極材料は融点が1200゜〜1400℃以上のものでな
ければならない。また、素体には酸化亜鉛や酸化
ビスマス等が含まれているから、高温下でもこれ
ら酸化物に侵されにくい材料が必要である。以上
のことから、内部電極材料として通常、白金
(Pt)が使用されている。また、電圧非直線抵抗
器の使用目的の一つにサージ電流の吸収があり、
これによる素子の発熱がある。この発熱により、
内部電極が溶融してなくならないためにはある程
度の電極厚みが必要である。以上の点から、内部
電極としての白金(Pt)の量はかなり必要とな
る。昨今の貴金属の高騰から考えて白金の使用は
積層型電圧非直線抵抗器のコストを大巾に上げる
ことになり、実用化の上で大きな問題になつてい
た。
As described above, in the conventional multilayer voltage nonlinear resistor, the internal electrodes are formed at the same time as the element is sintered, so the internal electrode material must have a melting point of 1200 DEG -1400 DEG C. or higher. Furthermore, since the element body contains zinc oxide, bismuth oxide, etc., it is necessary to use a material that is not easily attacked by these oxides even at high temperatures. For the above reasons, platinum (Pt) is usually used as the internal electrode material. Also, one of the purposes of voltage nonlinear resistors is to absorb surge currents.
This causes the element to generate heat. This fever causes
A certain level of electrode thickness is required to prevent the internal electrodes from melting and disappearing. From the above points, a considerable amount of platinum (Pt) is required as the internal electrode. Considering the recent rise in the price of precious metals, the use of platinum would significantly increase the cost of multilayer voltage nonlinear resistors, posing a major problem in practical application.

そこで、本発明は従来の積層型電圧非直線抵抗
器のように内部電極として白金(Pt)を用いず、
銀を用いた安価な積層型電圧非直線抵抗器を提供
しようとするものである。
Therefore, the present invention does not use platinum (Pt) as the internal electrode unlike the conventional multilayer voltage nonlinear resistor.
The purpose is to provide an inexpensive multilayer voltage nonlinear resistor using silver.

以下、添付図面である第1図〜第3図に示す一
実施例を用いて本発明の積層型電圧非直線抵抗器
の製造法を詳述する。
EMBODIMENT OF THE INVENTION Hereinafter, the manufacturing method of the laminated voltage nonlinear resistor of this invention will be explained in detail using one Example shown in FIGS. 1-3 which are attached drawings.

図において、1は酸化亜鉛を主成分とする電圧
非直線抵抗体の焼結体、2は焼結体1の両端面に
塗布した内部電極の銀電極である。3は焼結体1
を積層化した時、内部電極2の一端部と接続して
いる外部電極の銀電極である。
In the figure, 1 is a sintered body of a voltage nonlinear resistor whose main component is zinc oxide, and 2 is a silver electrode of an internal electrode coated on both end surfaces of the sintered body 1. 3 is sintered body 1
This is the silver electrode of the external electrode connected to one end of the internal electrode 2 when laminated.

まず、酸化亜鉛(ZnO)の粉末に酸化ビスマス
(Bi2O3)、酸化コバルト(CoO)、酸化マンガン
(MnO)、酸化アンチモン(Sb2O3)、酸化ニツケ
ル(NiO)、酸化アルミニウム(Al2O3)、酸化チ
タン(TiO2)の粉末をそれぞれ0.001〜10モル%
添加し、十分に混合した。これをタテ50mm、ヨコ
50mm、高さ40mmの直方体に圧縮成型した。この成
型体を空気中で1200゜〜1400℃で焼成し、タテ約
40mm、ヨコ約40mm、高さ約30mmの焼結体を得た。
この焼結体を切断機を用いて、タテ約30mm、ヨコ
約40mm、高さ0.1〜0.2mmの薄板に形成した。一
方、ガラスフリツト1〜5重量部、銀粉40〜50重
量部、有機バインダ5〜10重量部を十分混練し、
銀ペーストを作成する。ガラスフリツトとしては
酸化ビスマス(Bi2O3)60〜35重量%、酸化珪素
(SiO2)5〜20重量%、酸化ホウ素5〜20重量%
よりなる混合物を1200℃、30分間溶融してガラス
物質を形成させ、これを水中に投入し急冷して得
られた粒状ガラスを粉砕し、作成した。このよう
にして作成した銀ペーストをスクリーン印刷によ
り、上記の焼結体薄板の両面に内部電極を塗布し
た。そして、この薄板を必要枚数重ね合わせた。
この場合、第3図に示すように互いに重なり合う
薄板のうち、上側の薄板の底面銀電極と下側の薄
板の上面銀電極が接し合うようにする。次に、こ
の重ね合わせた薄板を空気中で800゜〜900℃の温
度で焼付けた。次に、これと第1図に示すように
電極区分毎に切断機により切断しチツプ形状にす
る。そして、第3図に示すようにチツプ端面に銀
ペーストを塗布し、外部電極3を形成した。次
に、このチツプを空気中で800゜〜900℃の温度で
焼付け、積層形電圧非直線抵抗器を得た。
First, zinc oxide (ZnO) powder is mixed with bismuth oxide (Bi 2 O 3 ), cobalt oxide (CoO), manganese oxide (MnO), antimony oxide (Sb 2 O 3 ), nickel oxide (NiO), and aluminum oxide (Al). 2 O 3 ) and titanium oxide (TiO 2 ) powder from 0.001 to 10 mol% each.
Add and mix thoroughly. This is 50mm vertically and horizontally
It was compression molded into a rectangular parallelepiped of 50 mm and height of 40 mm. This molded body is fired in air at 1200° to 1400°C, and the length is approximately
A sintered body measuring 40 mm, width approximately 40 mm, and height approximately 30 mm was obtained.
This sintered body was formed into a thin plate with a length of about 30 mm, a width of about 40 mm, and a height of 0.1 to 0.2 mm using a cutting machine. Meanwhile, 1 to 5 parts by weight of glass frit, 40 to 50 parts by weight of silver powder, and 5 to 10 parts by weight of organic binder were thoroughly kneaded.
Create silver paste. As the glass frit, bismuth oxide (Bi 2 O 3 ) 60 to 35% by weight, silicon oxide (SiO 2 ) 5 to 20% by weight, and boron oxide 5 to 20% by weight are used.
A glass substance was formed by melting the mixture at 1200°C for 30 minutes, which was then poured into water and rapidly cooled to produce granular glass. Internal electrodes were applied to both surfaces of the sintered thin plate using the silver paste thus prepared by screen printing. Then, the required number of thin plates were stacked on top of each other.
In this case, as shown in FIG. 3, of the overlapping thin plates, the bottom silver electrode of the upper thin plate and the top silver electrode of the lower thin plate are brought into contact with each other. Next, the stacked sheets were baked in air at a temperature of 800° to 900°C. Next, as shown in this and FIG. 1, each electrode section is cut into a chip shape using a cutting machine. Then, as shown in FIG. 3, a silver paste was applied to the end face of the chip to form external electrodes 3. Next, this chip was baked in air at a temperature of 800° to 900°C to obtain a multilayer voltage nonlinear resistor.

尚、本実施例では薄板を作成するのに焼結体を
薄く切断する方法をとつたが、目的とする所はソ
リやカケのない均質な薄板を得ることであるか
ら、最初からシート状に成形し、焼結して薄板を
得ても何ら問題はない。
In this example, a method was used in which the sintered body was cut into thin pieces to create a thin plate, but since the objective was to obtain a homogeneous thin plate without warping or chips, it was necessary to cut the sintered body into thin sheets from the beginning. There is no problem in obtaining a thin plate by molding and sintering.

また、本実施例においてガラスフリツトの組成
として、酸化ビスマス、酸化珪素、酸化ホウ素の
3種を用いたが、ガラスフリツトの目的は銀電極
同志を接着させるところにあるから、その目的を
達することのできるガラス組成なら上記以外の組
成でも何らさしつかえない。
In addition, in this example, three types of glass frit, bismuth oxide, silicon oxide, and boron oxide, were used as the composition of the glass frit, but since the purpose of the glass frit is to bond silver electrodes together, a glass that can achieve that purpose is used. There is no problem with compositions other than those mentioned above.

また、本実施例において酸化亜鉛(ZnO)に対
して、酸化ビスマス(Bi2O3)、酸化コバルト
(CoO)、酸化マンガン(MnO)、酸化アンチモン
(Sb2O3)、酸化ニツケル(NiO)、酸化アルミニウ
ム(Al2O3)、酸化チタン(TiO2)を加えたものを
使用したが、さらに酸化鉛(PbO)、酸化カルシ
ウム(CaO)、酸化ストロンチウム(SrO)、酸化
バリウム(BaO)、酸化ウラン(UO2)および酸化
プラセオジウム(Pr2O3)などを加えてもよく、
酸化亜鉛焼結体において粒子の境界部分に電圧非
直線性を示す層を形成するものであれば有効であ
る。また、焼結体の抵抗値制御やその他の理由で
酸化マグネシウム(MgO)、酸化クロム
(Cr2O3)、酸化スズ(SnO2)、などを添加するこ
とがあるが、そのような場合においても本発明に
よる効果はなんら損なわれるようなことはない。
In addition, in this example, in place of zinc oxide (ZnO), bismuth oxide (Bi 2 O 3 ), cobalt oxide (CoO), manganese oxide (MnO), antimony oxide (Sb 2 O 3 ), and nickel oxide (NiO) were used. , aluminum oxide (Al 2 O 3 ), and titanium oxide (TiO 2 ) were used, but in addition, lead oxide (PbO), calcium oxide (CaO), strontium oxide (SrO), barium oxide (BaO), Uranium oxide (UO 2 ) and praseodymium oxide (Pr 2 O 3 ) may be added,
It is effective as long as it forms a layer exhibiting voltage nonlinearity at the boundary between particles in the zinc oxide sintered body. In addition, magnesium oxide (MgO), chromium oxide (Cr 2 O 3 ), tin oxide (SnO 2 ), etc. may be added to control the resistance value of the sintered body or for other reasons. However, the effects of the present invention are not impaired in any way.

以上述べたように、本発明によれば内部電極と
して銀が使用可能であり、銀ペーストによるガラ
スフリツトが焼付時に接着材の役割を果し、薄板
の積層化が可能となつた。同時に従来の方法では
内部電極の白金とシート成型体を同時に焼成する
ことになり、シート成型体が焼結時に大巾に収縮
するため、白金電極との間にひずみが生じ、積層
シート間でデラミネーシヨンが発生し、素子とし
て十分な性能を果すことができないことがあつた
が、本発明では以上のような問題点は全て解決す
ることができ、その産業性は大なるものである。
As described above, according to the present invention, silver can be used as the internal electrode, and the glass frit made of silver paste plays the role of an adhesive during baking, making it possible to laminate thin plates. At the same time, in the conventional method, the platinum of the internal electrode and the sheet molded body are fired at the same time, and the sheet molded body shrinks widely during sintering, causing strain between the platinum electrode and the laminated sheet. However, the present invention can solve all of the above problems and has great industrial efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による酸化亜鉛焼結体薄板のチ
ツプ1枚に銀ペーストを塗布したものの平面図、
第2図は上記チツプ1枚の断面図、第3図は酸化
亜鉛焼結体薄板を積層化し、それをチツプ形状に
して外部電極を塗布した時の断面図である。 1……酸化亜鉛焼結体薄板のチツプ、2……内
部電極(銀)、3……外部電極(銀)。
FIG. 1 is a plan view of one chip of zinc oxide sintered thin plate according to the present invention coated with silver paste;
FIG. 2 is a cross-sectional view of one of the above chips, and FIG. 3 is a cross-sectional view when zinc oxide sintered thin plates are laminated, formed into a chip shape, and coated with external electrodes. 1... Chip of zinc oxide sintered thin plate, 2... Internal electrode (silver), 3... External electrode (silver).

Claims (1)

【特許請求の範囲】[Claims] 1 酸化亜鉛を主成分とする電圧非直線抵抗体の
焼結体の両端面にガラスフリツトを含有する銀ペ
ーストを塗布したものを積層し、焼付けることに
より、銀電極を形成すると同時に積層した焼結体
同志を銀電極を介して接着したことを特徴とする
積層型電圧非直線抵抗器の製造方法。
1. Silver paste containing glass frit is applied to both end faces of a sintered body of a voltage non-linear resistor mainly composed of zinc oxide, and is laminated and baked to form a silver electrode and sintered at the same time. A method for manufacturing a multilayer voltage nonlinear resistor, characterized in that the resistors are bonded together via silver electrodes.
JP5119780A 1980-04-17 1980-04-17 Method of manufacturing laminated voltage nonlinear resistor Granted JPS56147406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5119780A JPS56147406A (en) 1980-04-17 1980-04-17 Method of manufacturing laminated voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5119780A JPS56147406A (en) 1980-04-17 1980-04-17 Method of manufacturing laminated voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JPS56147406A JPS56147406A (en) 1981-11-16
JPS6243323B2 true JPS6243323B2 (en) 1987-09-12

Family

ID=12880152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5119780A Granted JPS56147406A (en) 1980-04-17 1980-04-17 Method of manufacturing laminated voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS56147406A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078471U (en) * 1993-06-30 1995-02-07 株式会社イナックス Dew condensation prevention structure of electronic parts case

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58199501A (en) * 1982-05-17 1983-11-19 マルコン電子株式会社 Method of producing ceramic electronic part
JPH0273605A (en) * 1988-09-08 1990-03-13 Murata Mfg Co Ltd Laminated type varistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH078471U (en) * 1993-06-30 1995-02-07 株式会社イナックス Dew condensation prevention structure of electronic parts case

Also Published As

Publication number Publication date
JPS56147406A (en) 1981-11-16

Similar Documents

Publication Publication Date Title
US4296002A (en) Metal oxide varistor manufacture
JPH03161901A (en) Laminated varistor
KR940005542B1 (en) Ceramic composition and electronic component made therefrom
CN1983468B (en) Varistor and method of producing varistor
JPH0799105A (en) Varistor and its manufacture
JPH03173402A (en) Chip varistor
JPS6243323B2 (en)
JP3043826B2 (en) Varistor ink composition
JPH0214501A (en) Voltage nonlinear resistor
JPH0142612B2 (en)
JP2000228302A (en) Zinc oxide based porcelain laminated member, its manufacture and zinc oxide varistor
JP3245933B2 (en) Resistor
JP3245946B2 (en) Resistor
JPS5928961B2 (en) thick film varistor
JP3189419B2 (en) Resistor
JPS5832765B2 (en) Manufacturing method of three-terminal voltage nonlinear resistor
JPS6351361B2 (en)
JPH07201527A (en) Manufacture of conductive chip-type ceramic device
JPH02184552A (en) Porcelain composition for resistor of non-linear to voltage
JPH03173403A (en) Chip varistor
JPS6387706A (en) Manufacture of laminated ceramic varistor
JPS6325912A (en) Ceramic capacitor
JPH07226304A (en) Varistor
JPH03116902A (en) Manufacture of varistor
JPH02220403A (en) Manufacture of laminated ceramic varistor