JPS6243248B2 - - Google Patents

Info

Publication number
JPS6243248B2
JPS6243248B2 JP53087195A JP8719578A JPS6243248B2 JP S6243248 B2 JPS6243248 B2 JP S6243248B2 JP 53087195 A JP53087195 A JP 53087195A JP 8719578 A JP8719578 A JP 8719578A JP S6243248 B2 JPS6243248 B2 JP S6243248B2
Authority
JP
Japan
Prior art keywords
glass
groove
grooves
block
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53087195A
Other languages
Japanese (ja)
Other versions
JPS5514558A (en
Inventor
Takayuki Kumasaka
Noryoshi Arakawa
Teizo Tamura
Makoto Konosu
Takeshi Kimura
Hideo Fujiwara
Sanehiro Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8719578A priority Critical patent/JPS5514558A/en
Publication of JPS5514558A publication Critical patent/JPS5514558A/en
Publication of JPS6243248B2 publication Critical patent/JPS6243248B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 本発明は、高密度の磁気記録再生用磁気ヘツド
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a magnetic head for high-density magnetic recording and reproducing.

高密度磁気記録を達成するためには、記録媒体
への高密度の記録が必要であり、これに用いる磁
気記録再生ヘツドとして、より狭い記録再生ギヤ
ツプおよび狭いトラツク幅のものが要求される。
ところが、同時に高性能化が要求され、材料の特
性向上、機械加工の高精度化とその製造方法はま
すます難かしくなつている。
In order to achieve high-density magnetic recording, it is necessary to perform high-density recording on a recording medium, and the magnetic recording/reproducing head used therefor is required to have a narrower recording/reproducing gap and narrower track width.
However, at the same time, higher performance is required, and improving the properties of materials, increasing the precision of machining, and manufacturing methods are becoming increasingly difficult.

従来、高密度磁気記録再生における磁気ヘツド
の狭トラツク化に対してはコア幅自身を狭くする
方法をとつていたが、最近のように60〜40μmの
トラツク幅では、コア幅を狭くすることによる機
械的強度、加工精度および磁気回路における磁気
抵抗の増大などの理由によつてフロントギヤツプ
近傍のみを狭トラツク加工する方法がとられてい
る。
Conventionally, in order to narrow the tracks of the magnetic head in high-density magnetic recording and reproduction, the method used was to narrow the core width itself, but recently, with track widths of 60 to 40 μm, it is necessary to narrow the core width. For reasons such as increased mechanical strength, processing accuracy, and magnetic resistance in the magnetic circuit, a method has been adopted in which narrow tracks are processed only in the vicinity of the front gap.

すなわち、高透磁率磁性体からなる1対の長方
形ブロツクの少くとも一方に、ブロツクの長手方
向に磁気ヘツドのトラツク幅を規制する溝を設
け、これにガラスを充填することによりトラツク
部を補強するようにしていた。例えば、特開昭53
−70417号公報に示されている。
That is, at least one of a pair of rectangular blocks made of a high magnetic permeability magnetic material is provided with a groove for regulating the track width of the magnetic head in the longitudinal direction of the block, and the track portion is reinforced by filling this groove with glass. That's what I was doing. For example, JP-A-53
This is shown in Publication No.-70417.

しかし、どのように加工されたブロツクを用い
てギヤツプを形成する時に、トラツク幅を規制す
るための溝にガラスを充填する工程において、加
熱状態において溝部にガラスを吸入する場合、溝
幅がガラス充填率に影響することを見出した。
However, when forming a gap using a processed block, in the process of filling glass into the groove to regulate the track width, when glass is sucked into the groove in a heated state, the width of the groove becomes smaller than the glass filling. It was found that there was an effect on the rate.

すなわち、溝幅が広い場合、ガラスの充填不足
によるボイド、表面張力によるガラスの窪みが発
生する。これらの原因によつて発生する磁気ヘツ
ドコアのテープ対向面に露出するボイドはテープ
走行中にテープかすやゴミ等がつまり記録信号の
減磁を招く原因となつたり、テープキズやヘツド
のギヤツプづまり等の原因となる場合があつた。
That is, when the groove width is wide, voids occur due to insufficient filling of glass and depressions in the glass occur due to surface tension. The voids exposed on the tape facing surface of the magnetic head core caused by these causes can become clogged with tape particles and dust while the tape is running, causing demagnetization of the recorded signal, and can also cause tape scratches, head gap clogging, etc. There were cases where this could be the cause.

一つの解決法は、ガラスの量、温度プロフアイ
ル等によつてある程度解決されるが、十分なもの
ではない。例えば、ガラス量の増加や高温保持の
方法においてはコイル巻線窓までガラスが吸い上
がり、窓づまりを起す。また高温では磁気ヘツド
コア材との反応を起す原因となる。
One solution is to some extent dependent on the amount of glass, temperature profile, etc., but is not sufficient. For example, if the amount of glass is increased or the temperature is maintained at a high temperature, the glass will be sucked up to the coil winding window, causing the window to become clogged. Furthermore, high temperatures may cause a reaction with the magnetic head core material.

本発明は前記従来の問題点を解決し、溝部のガ
ラス充填率を向上し安定に多量生産できる磁気ヘ
ツドの製造方法を提供せんとするものである。
SUMMARY OF THE INVENTION The present invention aims to solve the above-mentioned conventional problems and to provide a method for manufacturing a magnetic head that improves the glass filling rate of the groove and allows stable mass production.

本発明は、複数本の狭トラツク規制用の溝を形
成した一対のブロツクを用いてギヤツプを形成す
ると同時に長手方向全長に渡つてボイドのないガ
ラス充填を行なうため、その溝形状に工夫を加え
たものであつて、前記ガラスを充填するブロツク
の複数本の溝のうち2本を1組として設け、この
1組のガラス充填溝の間に残る平担部をトラツク
幅となし、隣接する各組のガラス充填溝の間のコ
ア切断部に平担部を残し、その間の溝幅を0.3mm
以下となるようにすることを特徴とする磁気ヘツ
ドの製造方法である。
The present invention uses a pair of blocks each having a plurality of grooves for restricting narrow tracks to form a gap, and at the same time fills the glass without voids over the entire length in the longitudinal direction. Two of the plurality of grooves in the block filled with glass are provided as one set, and the flat portion remaining between this one set of glass filling grooves is defined as the track width, and each adjacent set is Leave a flat part at the core cutting part between the glass filled grooves, and make the groove width between them 0.3mm.
This is a method of manufacturing a magnetic head characterized by the following steps.

具体的には各組のトラツク幅規制溝の間のコア
切断切すて部に平担部を形成し、この平担部によ
つてガラス充填溝幅を決める。前記平担部はコア
切断用の刃物幅によつて決り、溝幅はガラスの流
入時に形成される窪みの深さによつて決る。
Specifically, a flat portion is formed in the core cutting portion between each set of track width regulating grooves, and the width of the glass filling groove is determined by this flat portion. The width of the flat portion is determined by the width of the cutting tool for cutting the core, and the width of the groove is determined by the depth of the recess formed when the glass flows in.

以下、本発明の実施例につき図面を参照して詳
細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図において、磁気ヘツドコア材としてMn
−Zn系フエライトを用い、これを第1図に示す
ように長方形の一対のブロツク1,2を用意し、
前記ブロツクの少なくとも一方にコイル巻線溝3
を形成する。次にギヤツプ対向面となるフロント
部の角にブロツクの長手方向にトラツク部を形成
するための溝を所定の同一ピツチで5,6のよう
に複数本形成し、次に5′,6′のように同様にし
て溝を形成して平担部4,4′が順次残され、磁
気ヘツドコアになつた時にトラツク幅となる。こ
の時、5,5′および6,6′のそれぞれ2本1組
の溝によつて4および4′のトラツク幅が規制さ
れ、同時に一方の2本1組の溝ともう一方の組の
溝との間に平担部7が形成されるようにする。こ
の平担部はコア切断時に切捨てられ実質的には後
に残らない。しかし、平担部7の効果は後述する
ごとく、最終的に補強材として溝にガラスを充填
する際にガラスの充填率を良くするために必要と
なる。
In Figure 1, Mn is used as the magnetic head core material.
- Using Zn-based ferrite, prepare a pair of rectangular blocks 1 and 2 as shown in Figure 1,
A coil winding groove 3 is provided in at least one of the blocks.
form. Next, a plurality of grooves such as 5 and 6 are formed at the same predetermined pitch to form a track portion in the longitudinal direction of the block on the corner of the front part that is the face facing the gap. Similarly, grooves are formed to leave flat portions 4, 4' in sequence, which will form the track width when the magnetic head core is formed. At this time, the track widths of 4 and 4' are regulated by a set of two grooves 5, 5' and 6, 6', and at the same time, one set of two grooves and the other set of grooves are regulated. A flat portion 7 is formed between the two. This flat portion is cut off when the core is cut and is not substantially left behind. However, as will be described later, the effect of the flat portion 7 is necessary in order to improve the filling rate of glass when the groove is finally filled with glass as a reinforcing material.

溝の形状は磁気ヘツドの性能面から主に決めら
れるが、ブロツクの状態においては性能面から決
められた形状をくづさない範囲において、前工程
例えば、加工の容易さ、あるいは溝に補強ガラス
を充填する方法によつて決まる。本発明は後者の
前工程における有利性を重点に置いたものであ
る。
The shape of the groove is mainly determined from the performance aspect of the magnetic head, but in the block state, the shape determined from the performance perspective can be changed depending on the pre-processing process, such as ease of processing, or adding reinforced glass to the groove. Depends on the method of filling. The present invention focuses on the advantages in the latter pre-process.

本発明の実施例では溝幅を約0.1mmとし、切込
み角度は約15゜としギヤツプ対向面の溝の深さH
はギヤツプ深さを決める巻線窓の頂部より表面ま
での深さhよりも深くしておき、hの深さまでは
少なくともトラツク幅が一定であるようにする。
前記深さhは最終的にコアになつた時にギヤツプ
深さを規定する加工を行ない50〜60μmとするた
め、ブロツクの状態ではこれより大きい値にして
ある。この溝の加工は刃厚0.1〜0.3mmのレジノイ
ドボンドダイヤモンドホイールを用い高速ダイサ
ーで行なうと有利である。
In the embodiment of the present invention, the groove width is approximately 0.1 mm, the cutting angle is approximately 15°, and the groove depth H on the face facing the gap is
is set to be deeper than the depth h from the top of the winding window to the surface, which determines the gap depth, and the track width is at least constant up to the depth h.
Since the depth h is 50 to 60 .mu.m after being processed to define the gap depth when the core is finally formed, the depth h is set to a larger value in the block state. It is advantageous to process this groove with a high-speed dicer using a resinoid bond diamond wheel with a blade thickness of 0.1 to 0.3 mm.

上記のような溝加工を同様な方法でもう一方の
ブロツクにも行なう。
Grooving as described above is performed on the other block in the same manner.

このように加工した一対のブロツクは次の工程
において磁気記録再生を行なうための作動ギヤツ
プを形成するために0.5μm程度の間隙ができる
ように非磁性ガラス材を介して接着(ガラスボン
デイング)される。この時同時に溝部にも補強の
ためのガラスが充填される。
In the next step, the pair of blocks processed in this way are bonded (glass bonded) through a non-magnetic glass material with a gap of approximately 0.5 μm to form an operating gap for magnetic recording and reproduction. . At this time, the grooves are also filled with glass for reinforcement.

本実施例においては、次のような方法によつて
行なつた。
In this example, the following method was used.

第1図におけるギヤツプ対向面8,9にスパツ
タ蒸着によつてガラス膜を形成した。その膜構成
は第2図に示すようにフロント部(作動ギヤツプ
部)にSiO2膜10,11をそれぞれ0.2〜0.25μ
m形成し、バツクギヤツプ部12,13には鉛系
の低融点ガラスを0.25〜0.3μm形成した。作動
ギヤツプ部には長精度を高めるためと反応の問題
の少ないSiO2膜を選び、バツクギヤツプ部は接
着強度を重点に置いて低融点ガラスを用いた。
A glass film was formed on the gap facing surfaces 8 and 9 in FIG. 1 by sputter deposition. The film structure is as shown in Fig. 2, with SiO 2 films 10 and 11 of 0.2 to 0.25 μm each on the front part (operating gap part).
The back gap portions 12 and 13 were formed with lead-based low melting point glass to a thickness of 0.25 to 0.3 μm. For the actuating gap part, we chose SiO 2 film, which has fewer reaction problems, to improve length accuracy, and for the back gap part, we used low-melting-point glass with an emphasis on adhesive strength.

次に上記ブロツク1,2を互いに突合せ第3図
に示すガラスボンデイング治具14に設置し、無
酸素雰囲気中で加熱し接着してギヤツプ形成を行
なう。ギヤツプ形成は治具14にブロツク1,2
をスペーサー15,16で挾むように設置し押し
ネジ17で固定した。
Next, the blocks 1 and 2 are butted against each other, placed in a glass bonding jig 14 shown in FIG. 3, and heated and bonded in an oxygen-free atmosphere to form a gap. To form the gap, place blocks 1 and 2 on the jig 14.
were placed so as to be sandwiched between spacers 15 and 16, and fixed with push screws 17.

溝部の補強ガラス充填はガラス棒19を受皿1
8に乗せて、770℃〜800℃の加熱温度で3〜10分
間保持し、ガラス溶融温度で吸入充填した。
To fill the groove with reinforced glass, place the glass rod 19 into the saucer 1.
8 and held at a heating temperature of 770°C to 800°C for 3 to 10 minutes, and suction filled at the glass melting temperature.

補強ガラス棒19としては組成がZnO27wt
%、SiO220wt%、B2O327wt%その他Na2O、
Al2O3、BaOなるガラスを用い、この熱膨張係数
は0℃〜300℃の平均が約85×10-7/degで、軟化
温度575℃である。充填ガラスの量は多すぎると
巻線溝まで充填されてしまい、少ないと充填され
ない溝ができるため、適当な量が必要である。
The composition of the reinforcing glass rod 19 is ZnO27wt.
%, SiO 2 20wt%, B 2 O 3 27wt%, other Na 2 O,
Glasses such as Al 2 O 3 and BaO are used, and the average coefficient of thermal expansion from 0°C to 300°C is about 85×10 −7 /deg, and the softening temperature is 575°C. If the amount of filling glass is too large, even the winding grooves will be filled, and if it is too small, there will be grooves that are not filled, so an appropriate amount is required.

本実施例ではガラス棒の直径を0.27〜0.30mmφ
とした。ガラス量は溝の体積の約10〜30%増が好
適である。このようにギヤツプ形成され一体化さ
れたブロツク20を第4図に示す斜線位置23で
切断し、第5図に示すようにヘツドのテープ対向
面を円筒面形状に加工して、磁気ヘツドコア22
を完成する。
In this example, the diameter of the glass rod is 0.27 to 0.30 mmφ.
And so. The amount of glass is preferably about 10 to 30% more than the volume of the groove. The gap-formed and integrated block 20 is cut at the diagonally lined position 23 shown in FIG. 4, and the tape facing surface of the head is processed into a cylindrical shape as shown in FIG.
complete.

以上の実施例によつて得られた磁気ヘツドはそ
の記録トラツク幅すなわちトラツク部4の幅がコ
ア厚み21より小さい構造となつており、構部に
は補強ガラスが充填されているので、記録媒体と
機械的接触面積を十分確保できるので高寿命で、
高密度記録再生に有利である。
The magnetic head obtained in the above embodiment has a structure in which the recording track width, that is, the width of the track portion 4 is smaller than the core thickness 21, and the structural portion is filled with reinforcing glass, so that the recording medium It has a long lifespan because it has a sufficient mechanical contact area with the
This is advantageous for high-density recording and reproduction.

次に前述の実施例のガラス補強溝形状の仕様が
ガラス充填に極めて有利である点を見出した実験
についてのべる。
Next, a description will be given of an experiment in which it was found that the specifications of the shape of the glass reinforcing groove in the above-mentioned embodiment were extremely advantageous for glass filling.

実験は第6図a,b,cに示す3種類の溝形状
を有するブロツクについてギヤツプ形成と同時に
溝部にガラス充填を行ないボイドの発生量を比較
し、これら溝形状の優劣を判断した。
In the experiment, the grooves were filled with glass at the same time as gap formation for blocks having three types of groove shapes shown in FIGS. 6a, b, and c, and the amount of voids generated was compared to determine the superiority or inferiority of these groove shapes.

実験に用いた磁気ヘツド材料はMn−Znフエラ
イトで、その配合組成はFe2O350mol%、
MnO30mol%、ZnO20mol%であり、熱膨張係数
は0℃〜300℃間平均約95×10-7/degである。ガ
ラス補強材料としてはその組成がZnO27wt%、
SiO20wt%、B2O327wt%、その他Na2O、
Al2O3、BaOを用い、この熱膨張係数は0℃〜
300℃の平均が約85×10-7/degである。ガラス充
填は一対の磁気ヘツドブロツクを互いに突合せ、
溝部に前記組成のガラス棒0.28mmφを配置し、窒
素雰囲気中で770℃に加熱して溶融し、溝内に表
面張力によつて吸引して充填を行なつた。
The magnetic head material used in the experiment was Mn-Zn ferrite, whose composition was Fe 2 O 3 50 mol%,
MnO is 30 mol%, ZnO is 20 mol%, and the thermal expansion coefficient is about 95×10 -7 /deg on average between 0°C and 300°C. As a glass reinforcement material, its composition is ZnO27wt%,
SiO20wt%, B2O3 27wt %, other Na2O ,
Al 2 O 3 and BaO are used, and the thermal expansion coefficient is 0℃~
The average temperature at 300°C is approximately 85×10 -7 /deg. Glass filling is done by abutting a pair of magnetic headblocks against each other.
A glass rod of 0.28 mmφ having the above composition was placed in the groove, heated to 770° C. in a nitrogen atmosphere to melt it, and was sucked into the groove by surface tension to fill the rod.

前記第6図aに示す連続溝を有するブロツク2
4のトラツク幅24は60μmとし、溝幅26は
0.1mm、0.2mm、0.3mm、0.5mm、0.8mmの5種類を作
り、溝深さを0.5mmに統一してガラス充填の実験
を行なつた結果、溝幅0.1mmおよび0.2mmではほと
んどボイドを生じることなく充填されることを確
かめた。一方、0.5mm、0.8mmではボイドの発生は
急激に増加し、充填率は50%以下になつた。0.3
mmでは場合によつてボイドの生ずる時があるが多
少の条件の違いによつて起る。安全の範囲は0.3
mm以下にする必要があり、0.1mm〜0.2mmが最適で
ある。
Block 2 having continuous grooves shown in FIG. 6a
The track width 24 of No. 4 is 60 μm, and the groove width 26 is
As a result of making 5 types of 0.1mm, 0.2mm, 0.3mm, 0.5mm, and 0.8mm and conducting a glass filling experiment with a uniform groove depth of 0.5mm, it was found that there were almost no voids in the groove widths of 0.1mm and 0.2mm. It was confirmed that the product was filled without causing any problems. On the other hand, at 0.5 mm and 0.8 mm, the occurrence of voids increased rapidly and the filling rate became less than 50%. 0.3
In mm, voids may occur in some cases, but they occur due to slight differences in conditions. The safe range is 0.3
It must be less than mm, and 0.1 mm to 0.2 mm is optimal.

第6図bは0.1mmのダイヤモンド砥石を用いて
加工されるが、最終的にブロツクから磁気ヘツド
コアを切り出す時にマルチワイヤーソーを用いて
一度で行なうためには、ワイヤーの径が0.15mm程
度あるため、溝幅27は0.3〜0.4程度必要とし、
0.1mmの砥石を2度通して加工される。このよう
な溝の場合ガラス充填におけるボイド対策として
はまだ不十分なものである。
Figure 6b is machined using a 0.1mm diamond grindstone, but in order to finally cut out the magnetic head core from the block in one go using a multi-wire saw, the diameter of the wire is about 0.15mm. , the groove width 27 is required to be about 0.3 to 0.4,
Processed by passing it through a 0.1mm grindstone twice. In the case of such a groove, it is still insufficient as a countermeasure against voids in glass filling.

そこで第6図cのように0.1mmの砥石を通す時
に中央部に細い平担部28を残すように溝を分離
することによつてガラス充填条件に適した溝を作
るようにして解決した。
Therefore, as shown in Fig. 6(c), we solved the problem by separating the grooves so as to leave a narrow flat part 28 in the center when passing through a 0.1 mm grindstone, thereby creating grooves suitable for the glass filling conditions.

以上、本発明によればガラス充填として極めて
安定した高充填率で磁気ヘツドが製造できる。
As described above, according to the present invention, a magnetic head can be manufactured with extremely stable glass filling at a high filling rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁気ヘツドを構成するための加工ブロ
ツクを示す図。第2図はギヤツプ形成におけるガ
ラス薄膜の構成を示す図。第3図はギヤツプ形成
および補強ガラスを充填するためのボンデイング
治具の組立図。第4図はブロツクから磁気ヘツド
コアを切断する位置を示す図。第5図は狭トラツ
ク磁気ヘツドを示す図。第6図は本発明における
ガラス充填溝の形状を説明する図。 1,2……ブロツク、4,4′,7……平坦
部、5,5′,6,6′……溝、8,9……ギヤツ
プ対向面、10,11……SiO2膜、12,13
……バツクギヤツプ部、14……ガラスボンデイ
ング治具、15,16……スペーサー、17……
押しネジ、18……受皿、19……ガラス棒、2
0,24……ブロツク、25……トラツク幅、2
6,27……溝幅、28……平坦部。
FIG. 1 is a diagram showing processing blocks for constructing a magnetic head. FIG. 2 is a diagram showing the structure of a glass thin film in forming a gap. FIG. 3 is an assembly diagram of a bonding jig for forming a gap and filling it with reinforcing glass. FIG. 4 is a diagram showing the position at which the magnetic head core is cut from the block. FIG. 5 shows a narrow track magnetic head. FIG. 6 is a diagram illustrating the shape of the glass-filled groove in the present invention. 1, 2...Block, 4, 4', 7...Flat part, 5, 5', 6, 6'...Groove, 8, 9...Gap opposing surface, 10, 11...SiO 2 film, 12 ,13
... Back gap part, 14 ... Glass bonding jig, 15, 16 ... Spacer, 17 ...
Push screw, 18...Saucer, 19...Glass rod, 2
0, 24...Block, 25...Track width, 2
6, 27...Groove width, 28...Flat portion.

Claims (1)

【特許請求の範囲】[Claims] 1 高透磁率磁性材料よりなる一対の長方形のブ
ロツクの少なくとも一方に、ブロツクの長手方向
に複数本の狭トラツク幅規制用の溝を設け、かつ
前記一対のブロツクの少なくとも一方にブロツク
の長手方向にコイル巻線窓となる溝を設け、これ
ら一対のブロツクを非磁性体のスペーサーを介し
て接合して記録再生ギヤツプとなし、同時に該一
対のブロツクを接合した状態で狭トラツク幅規制
用の溝にガラスを充填した後、切断して磁気ヘツ
ドコアを得る磁気ヘツドの製造方法において、前
記ガラスを充填したブロツク長手方向の複数本の
溝を2本1組として設け、この1組のガラス充填
溝の間に残る平坦部をトラツク幅となし、隣接す
る各組のガラス充填溝の間の切捨て部分に平坦部
を残し、ガラス充填溝の溝幅を0.1mm以上で0.3mm
以下とすることを特徴とする磁気ヘツドの製造方
法。
1 At least one of a pair of rectangular blocks made of a high permeability magnetic material is provided with a plurality of narrow track width regulating grooves in the longitudinal direction of the block, and at least one of the pair of blocks is provided with a plurality of narrow track width regulating grooves in the longitudinal direction of the block. A groove serving as a coil winding window is provided, and a pair of blocks is joined through a non-magnetic spacer to form a recording/reproducing gap.At the same time, with the pair of blocks joined, a groove for regulating narrow track width is formed. In a method for manufacturing a magnetic head in which a magnetic head core is obtained by cutting the block after filling it with glass, a plurality of grooves in the longitudinal direction of the block filled with glass are provided as a set of two, and a groove is formed between each set of glass-filled grooves. The flat part remaining in the groove is set as the track width, and the flat part is left in the cut-off part between each set of adjacent glass-filled grooves, and the groove width of the glass-filled groove is 0.1 mm or more and is 0.3 mm.
A method for manufacturing a magnetic head, characterized by:
JP8719578A 1978-07-19 1978-07-19 Manufacture for magnetic head Granted JPS5514558A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8719578A JPS5514558A (en) 1978-07-19 1978-07-19 Manufacture for magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8719578A JPS5514558A (en) 1978-07-19 1978-07-19 Manufacture for magnetic head

Publications (2)

Publication Number Publication Date
JPS5514558A JPS5514558A (en) 1980-02-01
JPS6243248B2 true JPS6243248B2 (en) 1987-09-12

Family

ID=13908194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8719578A Granted JPS5514558A (en) 1978-07-19 1978-07-19 Manufacture for magnetic head

Country Status (1)

Country Link
JP (1) JPS5514558A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063705A (en) * 1983-09-19 1985-04-12 Sanyo Electric Co Ltd Magnetic head

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267610A (en) * 1975-12-03 1977-06-04 Matsushita Electric Ind Co Ltd Method of preparation of magnetic head
JPS5267609A (en) * 1975-12-03 1977-06-04 Matsushita Electric Ind Co Ltd Method for preparation of magnetic hhad

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267610A (en) * 1975-12-03 1977-06-04 Matsushita Electric Ind Co Ltd Method of preparation of magnetic head
JPS5267609A (en) * 1975-12-03 1977-06-04 Matsushita Electric Ind Co Ltd Method for preparation of magnetic hhad

Also Published As

Publication number Publication date
JPS5514558A (en) 1980-02-01

Similar Documents

Publication Publication Date Title
CA1317749C (en) Process for producing magnetic head of floating type
EP0148014B1 (en) Magnetic head core and method for producing the same
EP0116451B1 (en) Magnetic transducer structure having reduced track width and a method of manufacturing thereof
JPS6243248B2 (en)
JPH0152808B2 (en)
US5016341A (en) A process for producing magnetic heads of the floating type
JPH06101090B2 (en) Floating type composite magnetic head
US5305166A (en) Magnetic head slider
US4732600A (en) Apparatus for filling notches provided in a workpiece with a soft filler material
JP2957319B2 (en) Method for manufacturing substrate material and method for manufacturing magnetic head
JPH0327965B2 (en)
JP2627322B2 (en) Manufacturing method of floating magnetic head
JP2805987B2 (en) Manufacturing method of magnetic head core chip
JPS6259365B2 (en)
JPS5812650B2 (en) Jikihetsudonoseizouhou
JPH04206008A (en) Combined head and manufacture thereof
JPS63808A (en) Manufacture of composite magnetic head
JPH01166304A (en) Manufacture of magnetic head substrate
JPS61217915A (en) Manufacture of magnetic head
JPH0152809B2 (en)
JPH0546919A (en) Magnetic head and manufacture thereof
JPH01102704A (en) Manufacture of magnetic head
JPH06124427A (en) Magnetic head and its manufacture
JPH0476168B2 (en)
JPH03181011A (en) Production of magnetic head