JPH0152809B2 - - Google Patents

Info

Publication number
JPH0152809B2
JPH0152809B2 JP56017248A JP1724881A JPH0152809B2 JP H0152809 B2 JPH0152809 B2 JP H0152809B2 JP 56017248 A JP56017248 A JP 56017248A JP 1724881 A JP1724881 A JP 1724881A JP H0152809 B2 JPH0152809 B2 JP H0152809B2
Authority
JP
Japan
Prior art keywords
groove
gap
glass
welding
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56017248A
Other languages
Japanese (ja)
Other versions
JPS57133516A (en
Inventor
Toshiaki Wada
Yoshiaki Katsuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP1724881A priority Critical patent/JPS57133516A/en
Publication of JPS57133516A publication Critical patent/JPS57133516A/en
Publication of JPH0152809B2 publication Critical patent/JPH0152809B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/187Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
    • G11B5/23Gap features
    • G11B5/232Manufacture of gap

Description

【発明の詳細な説明】 利用産業分野 この発明は、ビデオテープレコーダ用画像ヘツ
ドの如き狭トラツク幅かつ高周波域で使用される
磁気ヘツドの製造方法に係り、フエライトコアの
接合強度とギヤツプ長寸法精度を向上させるとと
もに、従来の2種類の高、低融点ガラスを使い分
けガラスボンデイング工程を1回とした磁気ヘツ
ドコアの製造方法に関する。
Detailed Description of the Invention Field of Application This invention relates to a method of manufacturing a magnetic head used in a narrow track width and high frequency range, such as an image head for a videotape recorder, and is concerned with the bonding strength of ferrite cores and gap length dimensional accuracy. The present invention relates to a method for manufacturing a magnetic head core, which improves the performance of magnetic head cores, and which uses two types of conventional high- and low-melting-point glasses and performs a single glass bonding process.

従来の技術 今日のVTR用画像ヘツドは、トラツク幅が20
〜30μmの狭トラツク幅であるばかりでなく、ギ
ヤツプ長さが0.3μm、さらに狭ギヤツプ化されよ
り高周波域での使用が望まれている。
Prior Art Today's VTR picture heads have a track width of 20 mm.
It not only has a narrow track width of ~30 μm, but also has a gap length of 0.3 μm, making it even narrower and desirable for use in higher frequency ranges.

従つて、かかる磁気ヘツドの製造は精密な加
工、特に表面歪のない加工が必要であり、複雑な
工程を経て作製されている。
Therefore, manufacturing such a magnetic head requires precise machining, especially machining without surface distortion, and is manufactured through complicated processes.

このVTR用画像ヘツドの一般的な製造方法を
説明すると、Mn−Zn単結晶フエライトの磁性材
料から一対の平板を切り出し、平板の所定面に一
方向の例えばU字形溝を穿設して、これを突合せ
てトラツク幅に該当する部分を形成し、平板より
適当なブロツクを切り出し、一方のブロツクに巻
線用溝並びに溶着用横溝を加工してコ字形ブロツ
クとし、両ブロツクのU字形溝に補強用ガラスを
充填し、突合せするギヤツプ形成面を鏡面研摩し
たのち、所定のギヤツプを構成すめための非磁性
体のスペーサーを付着させ、スペーサーを介して
両ブロツクを圧力をかけて突合せ、上述の補強ガ
ラスより溶融温度の低い接合ガラスを巻線用溝と
溶着横溝に入れて加熱溶着させて磁気ヘツドコア
を作製していた。
To explain the general manufacturing method of this VTR image head, a pair of flat plates are cut out of a magnetic material such as Mn-Zn single-crystal ferrite, and a U-shaped groove is bored in one direction on a predetermined surface of the flat plate. Butt them together to form a part corresponding to the track width, cut out a suitable block from the flat plate, cut out winding grooves and welding horizontal grooves on one block to make a U-shaped block, and reinforce the U-shaped grooves of both blocks. After the gap forming surfaces to be butted are mirror-polished, a non-magnetic spacer is attached to form the specified gap, and both blocks are butted together by applying pressure through the spacer, and the above-mentioned reinforcement is applied. A magnetic head core was manufactured by placing bonded glass, which has a lower melting temperature than glass, into the winding groove and welding lateral groove and welding it by heating.

従来技術の問題点 この従来の製造方法において問題となるのは、
上述の如くガラスボンデイング工程が2回必要な
こと、そして、ギヤツプ形成面における表面歪の
ない加工が困難なことの2点にある。
Problems with the conventional technology The problems with this conventional manufacturing method are:
There are two problems: as mentioned above, the glass bonding process is required twice, and it is difficult to process the gap forming surface without surface distortion.

すなわち、ガラスボンデイング工程が2回必要
なため、工程が繁雑となり、しかも2種類の高、
低融点ガラスを使い分ける必要があり、これにと
もなう熱処理工程の長時間化によりギヤツプ形成
面がガラスの熱侵蝕にさらされるのである。
In other words, the glass bonding process is required twice, which makes the process complicated.
It is necessary to use different low-melting point glasses, and the accompanying heat treatment process is prolonged, exposing the gap-forming surface to thermal erosion of the glass.

また、磁気ヘツドの性能を左右するヘツドギヤ
ツプを構成するための上記のギヤツプ形成面は、
表面歪のないことが理想とされるため、通常の鏡
面研摩に加えて、電解研摩や化学的エツチングに
よつて表面歪の少ない加工が施され、高周波域で
の特性改善が図られている。
In addition, the above-mentioned gap forming surface for forming the head gap, which affects the performance of the magnetic head, is
Since it is ideal to have no surface distortion, in addition to regular mirror polishing, electrolytic polishing and chemical etching are used to reduce surface distortion and improve characteristics in the high frequency range.

一方、メカノケミカル研摩の適用も提案されて
いるが、かかるVTR用画像ヘツドの如き小片の
フエライトコアにおいて、トラツク構成溝や巻線
用及びガラス溶着用溝が加工された面をメカノケ
ミカル研摩することは困難である。
On the other hand, the application of mechanochemical polishing has also been proposed; however, in a small piece of ferrite core such as an image head for a VTR, mechanochemical polishing is applied to the surface on which track forming grooves, winding grooves, and glass welding grooves have been processed. It is difficult.

すなわち、ギヤツプ長の相対的な寸法からみる
と、加工溝のエツジ部分は機械的強加工の影響に
より破砕されているため、メカノケミカル研摩の
際にピツチングが発生して無歪の加工とすること
が困難である。
In other words, from the relative dimension of the gap length, the edge portion of the machined groove is fractured due to the influence of strong mechanical processing, so pitting occurs during mechanochemical polishing and distortion-free processing cannot be achieved. is difficult.

同様に、トラツク幅溝成溝に補強用ガラスを充
填し固化させた複合面をメカノケミカル研摩する
ことも、フエライトとガラスの複合面であるた
め、両材質を均等にかつ無歪の超精密研摩するこ
とは極めて困難となる。
Similarly, since it is a composite surface of ferrite and glass, it is possible to mechanochemically polish a composite surface made by filling the track width groove with reinforcing glass and solidifying it. Because it is a composite surface of ferrite and glass, both materials can be polished evenly and with no distortion using ultra-precise polishing. It would be extremely difficult to do so.

以上の如く、従来の製造方法は、かかる磁気ヘ
ツドの高周波特性を向上させることが容易でな
く、しかも複雑な工程により製造しなければなら
なかつた。
As described above, in the conventional manufacturing method, it is not easy to improve the high frequency characteristics of such a magnetic head, and moreover, the manufacturing process has to be complicated.

そこでこの発明は、所要の高周波特性を得るこ
とができ、しかもフエライトコアの接合強度とギ
ヤツプ長寸法精度を向上させるとともに、前述し
たガラス溶着を1回とした簡易な方法の狭トラツ
ク幅の磁気ヘツドの製造方法を目的とする。
Therefore, the present invention has developed a magnetic head with a narrow track width, which can obtain the required high frequency characteristics, improve the bonding strength of the ferrite core and the gap length dimensional accuracy, and which is a simple method that requires only one glass welding process. The purpose is a manufacturing method.

発明の概要 この発明は、 磁気回路を構成する一対の単結晶Mn−Znフエラ
イトコアのギヤツプ形成(100)面を機械研摩後
に粒径70〜200ÅのSiO2微細粉の純水中懸濁液を
酸性領域に調整して、無歪仕上ポリツシングし、 ポリツシユした各ギヤツプ形成面にギヤツプ形成
面にギヤツプを構成する非磁性体膜を被着したの
ち、 ヘツドのトラツク幅を構成する縦溝を加工して
コアの一方に設けた巻線用横溝に縦溝先端が連通
するよう構成すると共にガラス溶着用後方溝を形
成し、 これらの1対のコアをトラツク幅が一致するよう
対向させ組合せ、溶着用後方溝を上にしてこの後
方溝と巻線用横溝にギヤツプ形成膜とほぼ同一温
度で溶着できるガラス棒を挿入し、一対のコアを
加熱圧着することを要旨とする。
Summary of the Invention This invention involves mechanically polishing the gap-forming (100) faces of a pair of single-crystal Mn-Zn ferrite cores constituting a magnetic circuit, and then applying a suspension of SiO 2 fine powder with a particle size of 70 to 200 Å in pure water. Adjust to the acidic region, polish to a strain-free finish, coat each polished gap forming surface with a non-magnetic film that forms the gap, and then process vertical grooves that form the track width of the head. The tip of the vertical groove is configured to communicate with the transverse groove for winding provided on one side of the core, and a rear groove for glass welding is formed.These pair of cores are placed facing each other so that their track widths match, and are assembled for welding. The gist is to insert a glass rod that can be welded at approximately the same temperature as the gap forming film into the rear groove and the winding lateral groove with the rear groove facing upward, and to heat and press the pair of cores together.

また、磁気ヘツドのフエライトコアに用いられ
るMn−Zn単結晶フエライトにおいて、各種結晶
面に関しては、無歪ポリツシングを施した場合、
形状精度として重要な表面粗度については各結晶
面とも差異は見出されなかつた。
In addition, in the Mn-Zn single crystal ferrite used for the ferrite core of the magnetic head, when various crystal planes are subjected to strain-free polishing,
No difference was found among the crystal planes in terms of surface roughness, which is important for shape accuracy.

(1) 残留加工歪については、結晶面(100)面が
もつとも少なく、また (2) 化学エツチングによる残留歪の測定を実施し
た結果では、(100)面にはエツチングした後、
スクラツチ等の表面粗度の劣化は全くみられ
ず、 (3) 無歪ポリツシユの研摩速度は、(100)面が最
も早い等の大きな差異が見出された。
(1) Regarding residual machining strain, the (100) crystal plane has the least amount of strain, and (2) the results of measuring residual strain by chemical etching show that the (100) plane has less after etching.
There was no deterioration in surface roughness such as scratches, and (3) significant differences were found in the polishing speed of the strain-free polish, with the (100) surface being the fastest.

以上の如く、(1)(2)の残留歪の残存については磁
気ヘツドのギヤツプ形成を行なつたとき、形状精
度とは別に最も磁気特性の劣化を招来し、(3)に関
しては生産性の面で重要である。
As mentioned above, regarding (1) and (2) remaining residual strain, when forming a gap in the magnetic head, it causes the greatest deterioration of magnetic properties apart from shape accuracy, and regarding (3), it causes the greatest deterioration of magnetic properties. important in terms of

この発明において、一対の単結晶Mn−Znフエ
ライトコアのギヤツプ形成面に、結晶面(100)
面を用いた理由は上記の理由による。
In this invention, a gap forming surface of a pair of single crystal Mn-Zn ferrite cores has a crystal plane (100).
The reason for using the surface is the above reason.

発明の効果 この発明による製造方法によつて、単結晶Mn
−Znフエライトからなる磁気ヘツドコアチツプ
は、ギヤツプ形成面の(100)面を特定条件の無
歪のメカノケミカル研摩し、ギヤツプ形成膜を被
着した後、トラツク幅を構成する縦溝と他の溝を
加工しているために、トラツク部においてチツピ
ングの発生が少なく、しかも無歪加工を施したこ
とにより磁気ヘツドの特性が向上する。
Effects of the Invention By the production method according to the present invention, single crystal Mn
- Magnetic head core chips made of Zn ferrite are manufactured by mechanochemically polishing the (100) plane of the gap forming surface under specific conditions without strain, and after applying a gap forming film, the vertical grooves and other grooves that make up the track width are formed. Because of the machining, chipping is less likely to occur in the track portion, and the characteristics of the magnetic head are improved due to the strain-free machining.

しかも、ガラス溶着が1回で完了するのみなら
ず、ギヤツプ形成膜に用いる非磁性体とトラツク
幅部分の補強用ガラスおよびコア溶着用のガラス
がほぼ同一溶融温度を有しているため、熱処理工
程によるギヤツプ形成面の熱侵蝕が減少し、磁気
ヘツドの特性が向上する。
Moreover, not only is glass welding completed in one step, but the non-magnetic material used for the gap forming film, the glass for reinforcing the track width portion, and the glass for core welding have almost the same melting temperature, so the heat treatment process Thermal corrosion of the gap forming surface due to this phenomenon is reduced, and the characteristics of the magnetic head are improved.

さらには、1回のガラス溶着でいずれの部分に
おいても、強固な溶着力が得られるため強度の高
い磁気ヘツドが製造できる。
Furthermore, since a strong welding force can be obtained in any part by one glass welding, a magnetic head with high strength can be manufactured.

発明の図面に基づく開示 第1図から第4図はこの発明による製造方法の
工程を示すフエライトコアの説明図である。以下
に、図面に基づいてこの発明を詳述する。
Disclosure of the Invention Based on Drawings FIGS. 1 to 4 are explanatory diagrams of a ferrite core showing the steps of the manufacturing method according to the present invention. The present invention will be explained in detail below based on the drawings.

まず第1図に示す如く、単結晶Mn−Znフエラ
イト素材のブロツクを所定寸法に切出し、磁気ヘ
ツドを構成する一対のコア1,1aを準備する。
First, as shown in FIG. 1, a block of single-crystal Mn--Zn ferrite material is cut to a predetermined size to prepare a pair of cores 1 and 1a constituting a magnetic head.

このコア1,1aを対向させ、ギヤツプを構成
するギヤツプ形成面の(100)面を、ダイヤモン
ドパウダーによる機械研摩を施し、その後に加工
歪を取るための特定条件のメカノケミカル研摩に
よるポリツシングを行なう。
The cores 1 and 1a are opposed to each other, and the gap forming surfaces (100) forming the gap are mechanically polished using diamond powder, and then polished using mechanochemical polishing under specific conditions to remove processing distortion.

次に、この研摩した単結晶Mn−Znフエライト
の(100)面の各々のギヤツプ形成面に、所定の
ギヤツプ長寸法の1/2の厚みに相当する非磁性体
からなるギヤツプ形成膜2,2aを、蒸着法また
はスパツター法により被着させる。
Next, gap forming films 2, 2a made of a non-magnetic material having a thickness equivalent to 1/2 of a predetermined gap length are applied to each gap forming surface of the (100) plane of this polished single crystal Mn-Zn ferrite. is deposited by vapor deposition or sputtering.

さらに、第2図に示すように、コア1,1aの
ギヤツプ形成膜2,2aを被着した面に、トラツ
ク幅を規制する縦溝3を所定間隔で溝加工し、一
対のコア1,1aのうち、一方のコア1aに縦溝
3先端が連通するように、断面がコ字形で巻線を
収容しかつガラス溶着にも使用する横溝4を溝加
工する。
Furthermore, as shown in FIG. 2, vertical grooves 3 for regulating the track width are formed at predetermined intervals on the surfaces of the cores 1, 1a on which the gap forming films 2, 2a are applied. A horizontal groove 4 having a U-shaped cross section, accommodating the winding wire, and also used for glass welding, is formed so that the tip of the vertical groove 3 communicates with one of the cores 1a.

そしてこのコア1aには、縦溝3とは反対側の
面に、コア1と突合せたとき溶着用溝となるべき
後方溝5を加工する。
A rear groove 5 is formed on the surface of the core 1a opposite to the longitudinal groove 3 to become a welding groove when the core 1 abuts against the core 1a.

以上の如く、ギヤツプ形成膜2,2aを被着し
たのち溝加工を施した各コア1,1aを第3図の
a図に示すように、ギヤツプ形成膜2,2aを突
合せ、さらにトラツク幅を規制する縦溝3を相合
致するよう組合せて両側から加圧する。
As shown in FIG. 3A, each of the cores 1 and 1a which have been coated with the gap forming films 2 and 2a and subjected to groove processing is butted against each other, and the track width is further adjusted. The regulating vertical grooves 3 are combined so as to match each other, and pressure is applied from both sides.

そして、このギヤツプ形成膜2,2aとほぼ同
一の溶融温度を有する溶着用ガラス棒6,7を、
後方溝5側を上方にし、後方溝5と横溝4内に挿
入し、両コア1,1aを接合中心へ加圧した状態
で、所定の温度まで加熱し保持する。
Then, glass rods 6 and 7 for welding having almost the same melting temperature as the gap forming films 2 and 2a are used.
It is inserted into the rear groove 5 and the lateral groove 4 with the rear groove 5 side facing upward, and heated to a predetermined temperature and held while both cores 1 and 1a are pressurized toward the joining center.

このとき、横溝3内に挿入したガラス棒7は溶
融して連通する対溝3内へも流入し、トラツク部
の補強ガラスを形成する。
At this time, the glass rod 7 inserted into the transverse groove 3 is melted and flows into the communicating pair groove 3, forming reinforcing glass for the track portion.

このようにして、溶着が完了したのち冷却し、
第3図のb図に示す如く、1点鎖線上、すなわち
縦溝3の中央部でブロツクをスライスし、その両
面をラツプ仕上げする。
In this way, after welding is completed, it is cooled,
As shown in Figure 3b, the block is sliced along the dashed line, that is, at the center of the vertical groove 3, and both sides are lapped.

すると第4図に示すように、磁気ヘツド用のフ
エライトコアチツプ8が得られる。
Then, as shown in FIG. 4, a ferrite core chip 8 for a magnetic head is obtained.

上記の1回のガラスボンデイングによつて、ト
ラツク面の補強ガラス7′と横溝における補強ガ
ラス7′が共有され、さらにバツクサイドの溶着
用ガラス6′とが同時に溶着され、熱侵蝕による
性能の劣化が少なく、寸法精度のすぐれたフエラ
イトコアチツプ8が得られる。
Through the above-mentioned one-time glass bonding, the reinforcing glass 7' on the track surface and the reinforcing glass 7' on the lateral groove are shared, and the welding glass 6' on the back side is also welded at the same time, thereby preventing performance deterioration due to thermal corrosion. A ferrite core chip 8 with a small quantity and excellent dimensional accuracy can be obtained.

しかも、ギヤツプ形成面は機械研摩して、特定
粒径のSiO2微細粉を懸濁した酸性領域の懸濁液
中にて無歪メカノケミカル研摩を施した後、ギヤ
ツプ形成膜を被着してあり、さらにその後に溝加
工を行なうため、トラツク部のチツピングの発生
が少なく、上記の無歪加工も施されているため、
得られる磁気ヘツドの特性が大きく向上する。
Moreover, the gap-forming surface is mechanically polished and subjected to strain-free mechanochemical polishing in an acidic suspension containing SiO 2 fine powder of a specific particle size, and then a gap-forming film is applied. In addition, since the grooves are processed after that, there is less chipping in the track part, and the distortion-free process described above is also applied.
The characteristics of the resulting magnetic head are greatly improved.

実施例 以下にこの発明による実施例を示しその効果を
明らかにする。
Examples Examples according to the present invention will be shown below to clarify its effects.

フエライトコアに、Mn−Zn単結晶フエライト
の10×5×1.6mmブロツクを2個使用し、その結
晶面(100)をギヤツプ形成面とし、ダイヤモン
ド1/2μm砥粒による機械研摩を施し、さらに粒径
70〜200ÅのSiO2パウダーを使用し、酸性領域で
行なうメカノケミカル研摩を施して、先の機械研
摩による加工歪を除去した。
Two 10 x 5 x 1.6 mm blocks of Mn-Zn single crystal ferrite are used as the ferrite core, and the crystal plane (100) is used as the gap forming surface, mechanically polished with diamond 1/2 μm abrasive grains, and further grain diameter
Mechanochemical polishing was performed in an acidic region using 70-200 Å SiO 2 powder to remove processing distortion caused by the previous mechanical polishing.

こうして得られたギヤツプ形成面に、各々厚さ
0.15μmのガラス層をスパツタリングによつて被
着してギヤツプ形成膜とした。
Thickness is applied to each gap forming surface obtained in this way.
A 0.15 μm glass layer was deposited by sputtering to form a gap-forming film.

ギヤツプ形成膜を被着したのち、縦溝は溝幅
200μm、溝深さ400μmで切残し、幅20μm、すな
わちトラツク幅20μmとなるように溝加工し、さ
らに横溝、後方溝を加工した。
After applying the gap forming film, the vertical grooves are made with a groove width.
A groove of 200 μm and a groove depth of 400 μm was left uncut, and a groove was processed to have a width of 20 μm, that is, a track width of 20 μm, and a horizontal groove and a rear groove were further processed.

次に、ギヤツプ形成膜を対向させてフエライト
コアを所定位置に組み、加熱条件750℃×1.5時間
で加熱圧着した。
Next, the ferrite core was assembled in a predetermined position with the gap forming films facing each other, and heat and pressure bonding was performed under heating conditions of 750° C. for 1.5 hours.

この際溶着用ガラスには、0.5mmφの鉛ガラス
棒を使用した。
At this time, a lead glass rod with a diameter of 0.5 mm was used as the glass for welding.

さらに溶着完了後、冷却させ、スライス後、ラ
ツプ仕上げを行ない、0.2mmtのフエライトコア
チツプに仕上げた。
Further, after welding was completed, it was cooled, sliced, and lapped to produce a 0.2 mmt ferrite core chip.

この結果、この発明方法によるVTR画像ヘツ
ド用フエライトコアチツプは、ギヤツプ寸法精度
も所定の0.3μmに対して±5%の範囲内となり、
トラツク幅は所定どおりにおさまつており、ギヤ
ツプ形成面は完全に溶着され、補強ガラスによる
溶着強度も高くなつている。
As a result, the ferrite core chip for VTR image heads produced by the method of the present invention has gap dimensional accuracy within a range of ±5% with respect to a predetermined 0.3 μm.
The track width is within the specified range, the gap forming surface is completely welded, and the welding strength due to the reinforced glass is also high.

そして、この発明において、無歪メカノケミカ
ル研摩を完全に実施できたため、従来の機械研摩
のみの加工によつて鏡面仕上げを行ない従来方法
で磁気ヘツドに組立てた場合と比較して、この発
明による磁気ヘツドの場合は、その出力差が、
5MHzで+3dB、8MHzで6dBとなり、再生出力が
大きく増加した。
In addition, in this invention, distortion-free mechanochemical polishing could be completely performed, so compared to the case where a mirror finish was achieved by conventional mechanical polishing alone and assembled into a magnetic head by the conventional method, the magnetic head according to this invention In the case of a head, the output difference is
The playback output increased significantly, with +3dB at 5MHz and 6dB at 8MHz.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第4図はこの発明による製造方法の
工程を示すフエライトコアの説明図である。 1,1a……コア、2,2a……ギヤツプ形成
膜、3……縦溝、4……横溝、5……後方溝、
6,7……溶着用ガラス棒、6′……溶着ガラス、
7′……補強ガラス、8……コアチツプ。
1 to 4 are explanatory diagrams of a ferrite core showing the steps of the manufacturing method according to the present invention. 1, 1a... Core, 2, 2a... Gap forming film, 3... Vertical groove, 4... Horizontal groove, 5... Rear groove,
6, 7...Glass rod for welding, 6'...Welding glass,
7'... Reinforced glass, 8... Core chip.

Claims (1)

【特許請求の範囲】[Claims] 1 磁気回路を構成する一対の単結晶Mn−Znフ
エライトコアのギヤツプ形成(100)面を機械研
摩後に粒径70〜200ÅのSiO2微細粉の純水中懸濁
液を酸性領域に調整して無歪仕上ポリツシング
し、ポリツシユした各ギヤツプ形成面にギヤツプ
を構成する非磁性体膜を被着したのち、磁気ヘツ
ドのトラツク幅を構成する縦溝を形成してコアの
一方に設けた巻線用横溝に縦溝先端が連通するよ
う構成すると共にガラス溶着用後方溝を形成し、
これらの1対のコアをトラツク幅が一致するよう
対向させ組合せ、溶着用後方溝を上にしてこの後
方溝と巻線用横溝にギヤツプ形成膜とほぼ同一温
度で溶着できるガラス棒を挿入し、一対のコアを
加熱圧着することを特徴とする磁気ヘツドコアの
製造方法。
1 After mechanically polishing the gap-forming (100) surface of a pair of single-crystal Mn-Zn ferrite cores that constitute a magnetic circuit, a suspension of SiO 2 fine powder with a particle size of 70 to 200 Å in pure water was adjusted to an acidic region. After applying distortion-free polishing and coating each polished gap forming surface with a non-magnetic film forming the gap, vertical grooves forming the track width of the magnetic head are formed on one side of the core for winding. The tip of the vertical groove is configured to communicate with the horizontal groove, and a rear groove for glass welding is formed.
These pair of cores are assembled facing each other so that the track widths match, and a glass rod that can be welded at approximately the same temperature as the gap forming film is inserted into the rear groove and the winding lateral groove with the rear groove for welding facing upward. A method for manufacturing a magnetic head core, characterized by heat-pressing a pair of cores.
JP1724881A 1981-02-06 1981-02-06 Production of magnetic head core Granted JPS57133516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1724881A JPS57133516A (en) 1981-02-06 1981-02-06 Production of magnetic head core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1724881A JPS57133516A (en) 1981-02-06 1981-02-06 Production of magnetic head core

Publications (2)

Publication Number Publication Date
JPS57133516A JPS57133516A (en) 1982-08-18
JPH0152809B2 true JPH0152809B2 (en) 1989-11-10

Family

ID=11938642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1724881A Granted JPS57133516A (en) 1981-02-06 1981-02-06 Production of magnetic head core

Country Status (1)

Country Link
JP (1) JPS57133516A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239905A (en) * 1984-05-15 1985-11-28 Hitachi Ltd Magnetic head

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108409A (en) * 1977-03-03 1978-09-21 Matsushita Electric Ind Co Ltd Magnetic head and preparation thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108409A (en) * 1977-03-03 1978-09-21 Matsushita Electric Ind Co Ltd Magnetic head and preparation thereof

Also Published As

Publication number Publication date
JPS57133516A (en) 1982-08-18

Similar Documents

Publication Publication Date Title
JPS59142716A (en) Magnetic head and its manufacture
JPH0152808B2 (en)
JPH0152809B2 (en)
JPS6180512A (en) Magnetic head
JPH0778853B2 (en) Floating type magnetic head and manufacturing method thereof
JPS613309A (en) Magnetic head
JPS62236111A (en) Manufacture of magnetic head core
JP2589870B2 (en) Manufacturing method of magnetic head
JPH0766491B2 (en) Magnetic head
JPS63808A (en) Manufacture of composite magnetic head
JP2615557B2 (en) Composite magnetic head and method of manufacturing the same
JPH0476168B2 (en)
JPH0467246B2 (en)
JPH0198106A (en) Magnetic head and its production
JPH04324106A (en) Production of composite head
JPH0411306A (en) Composite-type magnetic head and its production
JPH01182906A (en) Magnetic head
JPH0344806A (en) Magnetic head
JPH04206007A (en) Combined head and manufacture thereof
JPH03178012A (en) Manufacture of magnetic head
JPS61227206A (en) Manufacture of magnetic head
JPH04206008A (en) Combined head and manufacture thereof
JPS63112813A (en) Composite magnetic head and its manufacture
JPH04319510A (en) Production of composite head
JPS61110311A (en) Production of magnetic head