JPS6243180Y2 - - Google Patents

Info

Publication number
JPS6243180Y2
JPS6243180Y2 JP1597583U JP1597583U JPS6243180Y2 JP S6243180 Y2 JPS6243180 Y2 JP S6243180Y2 JP 1597583 U JP1597583 U JP 1597583U JP 1597583 U JP1597583 U JP 1597583U JP S6243180 Y2 JPS6243180 Y2 JP S6243180Y2
Authority
JP
Japan
Prior art keywords
rings
driven
ring
driven ring
retainer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1597583U
Other languages
Japanese (ja)
Other versions
JPS59122464U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1597583U priority Critical patent/JPS59122464U/en
Publication of JPS59122464U publication Critical patent/JPS59122464U/en
Application granted granted Critical
Publication of JPS6243180Y2 publication Critical patent/JPS6243180Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Mechanical Sealing (AREA)

Description

【考案の詳細な説明】 本考案は主に高圧用として使用されるコンパク
トで経済的な静止型複式メカニカルシールに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compact and economical stationary dual mechanical seal mainly used for high pressure applications.

従来の複式メカニカルシール(以下単に「メカ
ニカルシール」という)は一般に第1図(要部断
面模式図)に示す構成を有する。即ち図に基づき
簡単に説明すれば、1は回転軸、2は該回転軸1
のシールボツクス、3a,3bは回転軸1に遊嵌
すると共にシールボツクス2内の両端近傍に一体
的に配設された各シートリングである。また4
a,4bはいずれも回転軸1と共に回転する従動
リングで夫々シートリング3a,3bと接触する
面が密封端面となるが、これら従動リング4a,
4bの回転機構は以下の構成による。
A conventional double mechanical seal (hereinafter simply referred to as a "mechanical seal") generally has a configuration shown in FIG. 1 (schematic sectional view of main parts). That is, to briefly explain based on the drawings, 1 is the rotation axis, 2 is the rotation axis 1
Seal boxes 3a and 3b are seat rings that loosely fit around the rotating shaft 1 and are integrally disposed near both ends inside the seal box 2. Also 4
Both driven rings a and 4b rotate together with the rotating shaft 1, and the surfaces in contact with the seat rings 3a and 3b respectively serve as sealed end faces.
The rotation mechanism 4b has the following configuration.

即ち5は、ねじ7によつて回転軸1に固定され
たリテーナであつて該リテーナ5の左右側に従動
リング押え6a,6bを配設すると共にこれらの
従動リング押え6a,6bの間に夫々複数の駆動
ピン8と中間ばね9が周方向に沿つて交互に内装
されている。また従動リング押え6a,6bには
夫々従動リング4a,4bが嵌合され、図に現わ
れない回り止めピンにより固定されている。即ち
従動リング4a,4bは従動リング押え6a,6
b駆動ピン8、リテーナ5、ねじ7を介して回転
軸1に固定されるので、回転軸1の回転に伴つて
回転する一方、中間ばね9によつて従動リング押
え6a,6bを夫々離れる方向に押圧付勢するこ
とにより、従動リング4a,4bは夫々シートリ
ング3a,3bと常に接触して安定な複式密封端
面が得られる様に構成されている。ところでこの
様にメカニカルシールは一般に使用圧力条件が90
〜100Kg/cm2程度以下の場合を考慮して設計され
ており、これをそのまま90〜100Kg/cm2以上特に
200Kg/cm2前後の高圧流体を取り扱う化学装置等
の回転軸の密封に用いた場合には後述するような
理由によつてシール効果が時間の経過と共に急激
に悪くなる為、上記の様な高圧下においても十分
なシール効果を発揮できるメカニカルシールの開
発が切望されていた。
That is, reference numeral 5 denotes a retainer fixed to the rotating shaft 1 with a screw 7, and driven ring holders 6a and 6b are provided on the left and right sides of the retainer 5, and between these driven ring holders 6a and 6b, respectively. A plurality of drive pins 8 and intermediate springs 9 are installed alternately along the circumferential direction. Further, driven rings 4a and 4b are fitted into the driven ring pressers 6a and 6b, respectively, and are fixed by rotation stop pins not shown in the figure. That is, the driven rings 4a, 4b are the driven ring pressers 6a, 6.
b Since it is fixed to the rotating shaft 1 via the drive pin 8, retainer 5, and screw 7, it rotates as the rotating shaft 1 rotates, while the intermediate spring 9 moves the driven ring in the direction in which it leaves the driven ring pressers 6a and 6b, respectively. By applying pressure to the driven rings 4a and 4b, the driven rings 4a and 4b are always in contact with the seat rings 3a and 3b, respectively, so that a stable double-sealed end surface is obtained. By the way, as shown above, mechanical seals generally have a working pressure condition of 90
It is designed considering the case of ~100Kg/cm 2 or less, and it is especially designed for cases of 90 to 100Kg/cm 2 or more.
When used to seal the rotating shaft of a chemical device, etc. that handles high-pressure fluids of around 200 kg/ cm2 , the sealing effect deteriorates rapidly over time due to the reasons described below. There has been a strong desire to develop a mechanical seal that can provide a sufficient sealing effect even at the bottom.

本考案者等もそうした要望に対応すべく高圧用
メカニカルシールの開発に鋭意取り組んできたも
のであり、高圧流体雰囲気下における従来型メカ
ニカルシールの挙動をつぶさに観察したところ、
下記の事実が判明した。即ち第1図に基づいて説
明すれば、シートリング3a及び従動リング4a
の各内周面と回転軸1の外周面との間の間隙10
には容器本体12からの高圧(例えば100Kg/
cm2)流体が負荷されており、この様な条件下でシ
ール面を安定に保持するにはシールボツクス2内
に少なくともそれ以上の圧力(例えば120Kg/cm2
前後)を負荷しなければならない。尚空間13は
大気圧である。このとき第2図(第1図の部拡
大図)に示す様に従動リング4aの先端部Aには
大きな曲げ応力が負荷し、後端部Bは従動リング
押え6aの側周面Yに強く押し付けられる。とこ
ころで側周面Yは従動リング押え6aにおける
字状溝の底面を形成するものであり、このような
底面の仕上げとしてはいわゆるラツプ仕上げ加工
を施すことができず、仕上げ精度は低い。例えば
研削又は精密中グリ加工等によつてその表面あら
さμをせいぜいμ=0.003(mm)程度にまで加工
できるのが限度である。この為前記曲げ応力がか
かつて従動リング4aの後端部Bに大きな歪みが
発生し、この歪み分だけ先端部Aにも歪みが生じ
た場合にはミクロ的に見てシール面の全面接触が
確保できなくなり、特に圧力が高ければ高いほど
その全面接触の割合が小さくなるのでシール性は
急激に低下してくる。そこでこの様な歪みを吸収
してなおシール面での全面接触を確保するために
は先端部Aを厚くする(勿論シートリング3aも
同様の厚みとする)ことも一応考えられるが、こ
のときの厚み例えば50Kg/cm2程度以下で使用して
いた場合に比べて少なくとも5倍程度にしなけれ
ばならず、更に従動リング押え6a,6bも同様
に拡径しなければならなくなつてメカニカルシー
ルの構成が大きくなり、製作コストが高くなる
為、良い解決手段とは言えない。
The inventors of the present invention have been working diligently to develop high-pressure mechanical seals in response to such demands, and after closely observing the behavior of conventional mechanical seals in a high-pressure fluid atmosphere, they found that:
The following facts were discovered. That is, to explain based on FIG. 1, the seat ring 3a and the driven ring 4a
A gap 10 between each inner circumferential surface of and the outer circumferential surface of the rotating shaft 1
high pressure from the container body 12 (e.g. 100Kg/
cm 2 ) fluid is loaded, and in order to maintain the seal surface stably under such conditions, the seal box 2 must have at least a pressure higher than that (e.g. 120 kg/cm 2 ) .
before and after). Note that the space 13 is at atmospheric pressure. At this time, as shown in Figure 2 (an enlarged view of Figure 1), a large bending stress is applied to the leading end A of the driven ring 4a, and the rear end B is strongly applied to the side peripheral surface Y of the driven ring holder 6a. Being pushed. Incidentally, the side circumferential surface Y forms the bottom surface of the character-shaped groove in the driven ring presser 6a, and so-called lap finishing cannot be applied to finish such a bottom surface, and the finishing accuracy is low. For example, by grinding or precision boring, the surface roughness μ can be processed to a maximum of about 0.003 (mm). For this reason, when the bending stress increases, a large strain occurs at the rear end B of the driven ring 4a, and when the tip A is also strained by the amount of this strain, the entire sealing surface is in contact from a microscopic perspective. In particular, the higher the pressure, the smaller the proportion of the entire surface contact, and the sealing performance will rapidly decrease. Therefore, in order to absorb such distortion and still ensure full contact on the sealing surface, it may be possible to make the tip A thicker (of course, the seat ring 3a should have the same thickness), but in this case, The thickness must be at least five times that of the case where the thickness is, for example, 50 kg/cm 2 or less, and the diameter of the driven ring retainers 6a and 6b must also be enlarged, resulting in a change in the structure of the mechanical seal. This is not a good solution because it increases the size and production cost.

本考案はこの点に鑑み、高圧下でも従動リング
4aの後端部Bに歪みが生じない様な構造とする
ことにより、該リング4aの先端部Aの厚みを特
に大きくせずとも密封端面のシール効果を十分良
好に保持し得る様なコンパクトで経済的なメカニ
カルシールを提供すべく更に研究の結果完成した
ものであり、この様な本考案のメカニカルシール
とは、リテーナの両側面を完全な平面に形成する
と共に該両平面に従動リングの相対向側端面を当
接せしめ、且つ各従動リングの外周面と前記従動
リング押え内周面との密接面にはOリングを配置
してなる点に要旨を有するものである。
In view of this point, the present invention has a structure that does not cause distortion in the rear end B of the driven ring 4a even under high pressure, so that the sealed end surface can be maintained without particularly increasing the thickness of the tip A of the ring 4a. It was completed as a result of further research in order to provide a compact and economical mechanical seal that can maintain a sufficiently good sealing effect. It is formed into a flat surface, and the opposite end surfaces of the driven rings are brought into contact with each other, and O-rings are arranged on the surfaces in close contact between the outer circumferential surface of each driven ring and the inner circumferential surface of the driven ring presser. The main points are as follows.

以下実施例図面を参照しつつ本考案の構成及び
作用効果を説明する。第3図は本考案に係るメカ
ニカルシールを、重合反応容器(圧力条件は約
200Kg/cm2)における撹拌羽根の回転軸に適用し
た場合の要部縦断面説明図で、31は回転軸、3
2は該回転軸31のシールボツクスである。又3
3a,33bはシールボツクス32内に所定間隔
をおいて配設される各シートリングである。そし
てこの配設に当つては、シールボツクス32内の
両端に固定された静止リング受け34a,34b
に静止リング35a,35bを、周方向に沿つて
夫々複数のピン36とばね37を交互に介在させ
て嵌装せしめ、更に該静止リング35a,35b
にもピン38を介してシートリング33a,33
bを取り付けると共に、シートリング33a及び
静止リング35aに対して又シートリング33b
及び静止リング35bに対して夫々カバー39a
39bを嵌装し、且つ静止リング受け34a,3
4bに取り付けている。尚ピン36,38は各ピ
ン穴に遊嵌されており、ルーズなピン結合状態を
形成せしめている。即ち静止リング35a,35
bは夫々静止リング受け34a,34bに対して
前後上下に多少の移動が可能である様に取り付け
られ、且つシートリング33a,33bも夫々静
止リング35a,35bに対して同様に多少の揺
動が可能である様に取り付けられている。そして
シートリング33a,33bは後記する従動リン
グ40a,40bと接触して複式密封端面を構成
する。
The configuration and effects of the present invention will be explained below with reference to the drawings. Figure 3 shows the mechanical seal according to the present invention in a polymerization reaction vessel (pressure conditions are approx.
200Kg/cm 2 ) is a longitudinal cross-sectional view of the main part when applied to the rotation shaft of a stirring blade, 31 is the rotation shaft, 3
2 is a seal box for the rotary shaft 31. Also 3
3a and 33b are seat rings disposed within the seal box 32 at predetermined intervals. In this arrangement, stationary ring receivers 34a and 34b fixed at both ends inside the seal box 32 are used.
Stationary rings 35a and 35b are fitted along the circumferential direction with a plurality of pins 36 and springs 37 interposed alternately, and the stationary rings 35a and 35b are
Also seat rings 33a, 33 via pins 38.
b, and seat ring 33b to seat ring 33a and stationary ring 35a.
and a cover 39a for the stationary ring 35b, respectively.
39b and stationary ring receivers 34a, 3
It is attached to 4b. The pins 36 and 38 are loosely fitted into each pin hole, forming a loose pin connection. That is, stationary rings 35a, 35
b are attached so as to be able to move slightly back and forth and up and down relative to the stationary ring receivers 34a and 34b, respectively, and the seat rings 33a and 33b are also mounted to be able to swing slightly relative to the stationary rings 35a and 35b, respectively. installed as possible. The seat rings 33a and 33b come into contact with driven rings 40a and 40b, which will be described later, to form a double-sealed end surface.

従動リング40a,40bはいずれも回転軸3
1に一体的に取り付けることによつて該回転軸3
1と共に回転可能とするが、その取付構造は下記
する通りであつて、本考案の特徴点でもある。即
ちリテーナ41は両側面が完全な平面に形成され
ており、該両平面には夫々従動リング40a,4
0bの相対向側端面を夫々図に現われない回り止
めピンを介して当接せしめると共に、これらの従
動リング40a,40bは上側従動リング押え4
4及び下側従動リング押え43によりリテーナ4
1の左右側に一体的に配設されている。またリテ
ーナ41の両側面は予めラツプ加工され、超精密
な平面(表面あらさで言えばμ=0.0003mm程度、
平坦度で0.7μm以下程度)に仕上げられてい
る。尚従動リング40a,40bの相対向側端面
及び密封端面がラツプ加工されていることは勿論
である。こうして従動リング40a,40bを左
右に有するリテーナ41は更に回転軸31の段付
部31aに嵌装して位置決めすると共に、スリー
ブ45及びねじ46によつて回転軸31に固定さ
れている。
The driven rings 40a and 40b are both connected to the rotating shaft 3.
1 by integrally attaching the rotating shaft 3 to
1, and its mounting structure is as described below, which is also a feature of the present invention. That is, both side surfaces of the retainer 41 are formed into perfect planes, and driven rings 40a and 4 are provided on both planes, respectively.
The opposite end surfaces of the two driven rings 40a and 40b are brought into contact with each other via locking pins not shown in the figure, and these driven rings 40a and 40b are connected to the upper driven ring retainer 4.
4 and the lower driven ring retainer 43
It is integrally arranged on the left and right sides of 1. In addition, both sides of the retainer 41 are lapped in advance to create an ultra-precise flat surface (in terms of surface roughness, μ = 0.0003 mm).
The flatness is approximately 0.7μm or less). It goes without saying that the opposing end faces and sealed end faces of the driven rings 40a and 40b are lapped. In this way, the retainer 41 having the left and right driven rings 40a and 40b is further fitted onto the stepped portion 31a of the rotary shaft 31 for positioning, and is fixed to the rotary shaft 31 by the sleeve 45 and the screw 46.

又47a,47a′は高圧冷却液入口、47bは
高圧冷却出口であり、シールボツクス32内の空
間48に高温密封流体(圧力約200Kg/cm2)より
少し高めの圧力(約220Kg/cm2)を負荷させて密
封端面の熱歪み発生を可及的に防止すると共に、
静止リング35a、シートリング3a及び静止リ
ング35b、シートリング33bを夫々従動リン
グ40a,40bに十分押圧付勢せしめて、安定
な密封端面が形成される様に構成されている。
Further, 47a and 47a' are high-pressure cooling liquid inlets, and 47b is a high-pressure cooling outlet, and a pressure (approximately 220 kg/cm 2 ) slightly higher than the high-temperature sealing fluid (pressure approximately 200 kg/cm 2 ) is applied to the space 48 within the seal box 32. In addition to applying a load to prevent thermal distortion of the sealed end surface as much as possible,
The stationary ring 35a, the seat ring 3a, the stationary ring 35b, and the seat ring 33b are sufficiently pressed against the driven rings 40a, 40b, respectively, so that a stable sealed end surface is formed.

尚空間49には上述の如く圧力約200Kg/cm2
密封流体が負荷し、又空間50には大気圧が負荷
するので、密封端面以外におけるこれら相互間の
遮断を目的として適所にOリングを配設せしめて
いる。特に51〜54は、約200Kg/cm2の密封流体と
約220Kg/cm2の高圧冷却液との間のシールを考慮
して配設されたOリングであり、又55〜58は220
Kg/cm2の高圧冷却液と大気圧との間のシールを考
慮して配設されたOリングである。
As mentioned above, the space 49 is loaded with a sealing fluid with a pressure of about 200 kg/cm 2 , and the space 50 is loaded with atmospheric pressure, so an O-ring is placed in an appropriate place to isolate them from each other except at the sealed end surface. It is set up. In particular, 51 to 54 are O-rings arranged in consideration of sealing between sealing fluid of about 200 Kg/cm 2 and high-pressure cooling liquid of about 220 Kg/cm 2 , and 55 to 58 are O-rings of 220 Kg/cm 2.
This O-ring is designed to provide a seal between the high-pressure coolant of Kg/cm 2 and atmospheric pressure.

ところで上記の様に構成されたメカニカルシー
ルにおいて第4図(第3図の部拡大図)に示す
様に従動リング40aの先端部A′には大きな曲
げ応力が負荷し、後端部B′はリテーナ41の側周
面Ya′に強く押し付けられる。しかし従動リング
40aの後端部B′側端面及び側周面Ya′はいずれ
もラツプ加工されているので、この当接面に発生
する歪みはほとんど無視できるほど小さくするこ
とができ、その結果、先端都A′に生じる歪みを
密封端面のシール効果に影響を及ぼさない範囲に
抑えることができる。ただ従動リング40aの外
周面と上側従動リング押え44の内周面Xa′との
密接面における摺合せ精度はそれほど高くないの
で、従動リング40aの外周部、特に先端部
A′に近づく方向の外周部C′に発生する歪みが問
題となるが、前述の如く密接面の該当箇所にはO
リング56を配置せしめたので、約220Kg/cm2
圧冷却液と大気圧間のシール、即ち空間48から
上側従動リング押え44の内周面Xa′及びリテー
ナ41の側周面Xa′を経て空間50に連なる冷却
液洩れは完全に防止できる。
By the way, in the mechanical seal configured as described above, as shown in FIG. 4 (enlarged view of FIG. 3), a large bending stress is applied to the leading end A' of the driven ring 40a, and the rear end B' is It is strongly pressed against the side peripheral surface Ya' of the retainer 41. However, since both the rear end B' side end surface and the side circumferential surface Ya' of the driven ring 40a are lapped, the distortion generated on this contact surface can be reduced to an almost negligible level, and as a result, It is possible to suppress the distortion occurring at the tip end A' to a range that does not affect the sealing effect of the sealed end face. However, since the sliding precision at the close contact surface between the outer peripheral surface of the driven ring 40a and the inner peripheral surface Xa' of the upper driven ring holder 44 is not so high, the outer peripheral surface of the driven ring 40a, especially the tip
The problem is the distortion that occurs at the outer periphery C' in the direction approaching A', but as mentioned above, there is no
Since the ring 56 is arranged, a seal of about 220 kg/cm 2 is created between the high-pressure coolant and the atmospheric pressure, that is, the space is passed from the space 48 through the inner circumferential surface Xa' of the upper driven ring holder 44 and the side circumferential surface Xa' of the retainer 41. Coolant leakage that continues in the 50s can be completely prevented.

従動リング40b、リテーナ41及び下側従動
リング押え43の取付構成及びその作用効果につ
いても上記と同様であり、密封端面のシール効果
を保持すると共に、空間48から下側従動リング
押え43の内周面及びリテーナ41の側周面を経
て空間49に連なる冷却液洩れは完全に防止でき
る。
The mounting structure and the effects of the driven ring 40b, retainer 41, and lower driven ring holder 43 are the same as described above, and the sealing effect of the sealed end surface is maintained, and the inner circumference of the lower driven ring holder 43 is removed from the space 48. Leakage of the coolant into the space 49 via the surface and the side peripheral surface of the retainer 41 can be completely prevented.

上記した様にシールボツクス32内の空間48
に約220Kg/cm2の高圧冷却液を負荷せしめても、
密封端面のシール効果を十分維持し得るものであ
るが、この効果は、従動リング40a,40bと
リテーナ41の摺合せ面の精度を極めて高くする
ことにより各従動リング40a,40bの後端部
に歪みが生じない様にして、先端部の厚みを特に
大きくすることなく得られたものであり、しかも
従動リング40a,40bはつば状のリテーナ4
1の両側面に当接配置された構成であるから非常
にコンパクトである。更に従動リング40aと上
側従動リング押え44の密接面及び従動リング4
0bと下側従動リング押え43の密接面における
空間48方向に夫々Oリング56,52を配置し
て各先端部におけるOリングからの突出長さを可
及的に短かくし得たこともコンパクト化に寄与す
る構成要素と言える。従つてこの様なコンパクト
なメカニカルシールは非常に経済的でもある。
As mentioned above, the space 48 inside the seal box 32
Even when loaded with high-pressure coolant of approximately 220 kg/cm 2 ,
Although the sealing effect of the sealed end face can be sufficiently maintained, this effect can be achieved by making the sliding surfaces of the driven rings 40a, 40b and the retainer 41 extremely high in precision, so that the rear end of each driven ring 40a, 40b is This was achieved without causing distortion and without particularly increasing the thickness of the tip, and furthermore, the driven rings 40a and 40b are formed using the collar-shaped retainer 4.
Since the structure is arranged in contact with both sides of 1, it is very compact. Further, the close contact surfaces of the driven ring 40a and the upper driven ring presser 44 and the driven ring 4
The O-rings 56 and 52 are arranged in the direction of the space 48 on the close contact surface of the lower driven ring holder 43 and the O-rings 56 and 52, respectively, so that the length of protrusion from the O-ring at each tip can be made as short as possible, which also makes it more compact. It can be said that it is a component that contributes to Such a compact mechanical seal is therefore also very economical.

上記実施例は一代表例であつて本考案を限定す
る性質のものではなく、前述の趣旨に沿つて各部
品の材質、形状等の設計を変更することは全て本
考案の技術的範囲に属する。
The above embodiment is a representative example and does not limit the present invention, and any changes to the design of the material, shape, etc. of each part in accordance with the above-mentioned purpose are within the technical scope of the present invention. .

又本考案のメカニカルシールは上記の様な化学
装置の回転軸への適用に限られることなく、あら
ゆる産業機械をはじめ自動車、航空用タービン等
の回転軸に適用可能であり、密封流体も水溶液、
潤滑油、気体等いずれも適用対象となり得る。
Furthermore, the mechanical seal of this invention is not limited to application to the rotating shaft of the above-mentioned chemical equipment, but can be applied to the rotating shaft of any industrial machine, automobile, aviation turbine, etc., and the sealed fluid is also aqueous solution,
This can be applied to any type of material, including lubricating oils and gases.

本考案は以上の様に構成されており、コンパク
トで経済的な高圧用の静止型複式メカニカルシー
ルを提供できることとなつた。
The present invention is constructed as described above, and it has become possible to provide a compact and economical stationary double mechanical seal for high pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のメカニカルシールを示す要部断
面模式図、第2図は第1図の部拡大図、第3図
は本考案に係るメカニカルシールを例示する要部
縦断面説明図、第4図は第3図の部拡大図であ
る。 1,31……回転軸、2,32……シールボツ
クス、3a,3b,33c,33b……シートリ
ング、4a,4b,40a,40b……従動リン
グ、5,41……リテーナ、6a,6b,43,
44……従動リング押え。
FIG. 1 is a schematic sectional view of the main part showing a conventional mechanical seal, FIG. 2 is an enlarged view of the part shown in FIG. 1, FIG. The figure is an enlarged view of a portion of FIG. 3. 1, 31... Rotating shaft, 2, 32... Seal box, 3a, 3b, 33c, 33b... Seat ring, 4a, 4b, 40a, 40b... Driven ring, 5, 41... Retainer, 6a, 6b ,43,
44... Driven ring presser.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 回転軸のシールボツクス内に所定間隔をおいて
配設された各シートリングの相対向側端面と、該
回転軸に固定されたリテーナの左右側に従動リン
グ押えにより夫々一体的に配設された各従動リン
グの相背面側端面とが夫々接触することにより各
密封端面を構成してなる静止型複式メカニカルシ
ールにおいて、前記リテーナの両側面を完全な平
面に形成すると共に該両平面に従動リングの相対
向側端面を当接せしめ、且つ各従動リングの外周
面と前記従動リング押え内周面との密接面にはO
リングを配置してなることを特徴とする静止型複
式メカニカルシール。
The seat rings are integrally arranged by the opposite end surfaces of the seat rings arranged at predetermined intervals in the seal box of the rotating shaft, and driven ring holders on the left and right sides of the retainer fixed to the rotating shaft. In a stationary compound mechanical seal in which each of the sealed end surfaces is formed by contacting the rear side end surfaces of each driven ring, both side surfaces of the retainer are formed into perfect flat surfaces, and the driven rings are formed on both flat surfaces. The opposite end surfaces are brought into contact with each other, and the contact surface between the outer circumferential surface of each driven ring and the inner circumferential surface of the driven ring presser is provided with an O.
A stationary double-acting mechanical seal characterized by an arrangement of rings.
JP1597583U 1983-02-04 1983-02-04 Stationary double action mechanical seal Granted JPS59122464U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1597583U JPS59122464U (en) 1983-02-04 1983-02-04 Stationary double action mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1597583U JPS59122464U (en) 1983-02-04 1983-02-04 Stationary double action mechanical seal

Publications (2)

Publication Number Publication Date
JPS59122464U JPS59122464U (en) 1984-08-17
JPS6243180Y2 true JPS6243180Y2 (en) 1987-11-09

Family

ID=30147279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1597583U Granted JPS59122464U (en) 1983-02-04 1983-02-04 Stationary double action mechanical seal

Country Status (1)

Country Link
JP (1) JPS59122464U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448372Y2 (en) * 1987-02-20 1992-11-13

Also Published As

Publication number Publication date
JPS59122464U (en) 1984-08-17

Similar Documents

Publication Publication Date Title
JP2648816B2 (en) Cylindrical face seal
CA2558415C (en) Self-energized gasket and manufacturing method therefor
JPWO2010004809A1 (en) Mechanical seal device
WO2014030423A1 (en) Double mechanical seal device
US20050242516A1 (en) Automatically disengaging spacing mechanism for a mechanical seal
JPS62132088A (en) Rotary-connector controllable in relation to pressure
JPS6243180Y2 (en)
JPS61502342A (en) Segment type sealing device for rotating equipment
JP2975923B1 (en) Rotary joint device
US3420535A (en) Floating face sealing ring
JPS6316931Y2 (en)
US2443151A (en) Rotary seal
CN216478932U (en) Novel double-end-face type mechanical sealing structure
JPH0231636Y2 (en)
JP2814133B2 (en) Rotary shaft sealing device
JP2518832Y2 (en) Sealing mechanism for rotary motion
JPS6243181Y2 (en)
JPH0231202Y2 (en)
JPS60146961A (en) Static double mechanical seal
JPS633495Y2 (en)
JP2524808Y2 (en) mechanical seal
JPH0628399Y2 (en) Stern tube shaft sealing device
JPS5817936Y2 (en) bearing device
JPH034858Y2 (en)
JPH01295079A (en) Contactless mechanical seal