JPH01295079A - Contactless mechanical seal - Google Patents

Contactless mechanical seal

Info

Publication number
JPH01295079A
JPH01295079A JP12407188A JP12407188A JPH01295079A JP H01295079 A JPH01295079 A JP H01295079A JP 12407188 A JP12407188 A JP 12407188A JP 12407188 A JP12407188 A JP 12407188A JP H01295079 A JPH01295079 A JP H01295079A
Authority
JP
Japan
Prior art keywords
sealing
sealing ring
stationary
retainer
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12407188A
Other languages
Japanese (ja)
Other versions
JPH0574750B2 (en
Inventor
Tadayuki Shimizu
清水 忠之
Toshihiko Fuse
敏彦 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP12407188A priority Critical patent/JPH01295079A/en
Publication of JPH01295079A publication Critical patent/JPH01295079A/en
Publication of JPH0574750B2 publication Critical patent/JPH0574750B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To uniformly obtain a clearance of a seal surface by forming the second sealing fluid-introducing groove between a stationary sealing ring and a retainer, in the case of a contactless mechanical seal introducing sealing fluid between a rotary sealing ring and the stationary sealing ring. CONSTITUTION:A casing 2 provides a stationary sealing ring 4 being opposed facing to a rotary sealing ring 3 fixedly provided in a rotary shaft 1. The stationary sealing ring 4 is urged in a direction of the rotary sealing ring 3 by a spring 9 through a retainer 5 from a back surface side. A sealing surface 3a is constituted between both the sealing rings 3, 4, and the first sealing fluid- introducing groove 11, loading a pressure of fluid to the sealing surface 3a, is formed. The second sealing fluid-introducing groove 12 is formed between the retainer 5 and the stationary sealing ring 4. By loading a pressure of fluid between the retainer 5 and the stationary sealing ring 4, the stationary sealing ring 4 is loaded in good balance from both sides, holding a clearance of a sealing surface 4a to a fixed value.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種の流体機器の軸封装置として適用される
非接触式メカニカルシールに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a non-contact mechanical seal that is applied as a shaft sealing device for various fluid devices.

(従来の技術) この種の非接触式メカニカルシールとして、例えば第7
図に示すものが知られている0図においてAは回転軸(
回転側)で、Xは機内側(高圧側)、Yは機外側(低圧
側)を示し、ケーシング(固定側)Bの中心部に回転軸
Aが回転自在に設けられて、この回転軸Aとケーシング
Bとの環状空間に非接触式メカニカルシールが装着され
ている。
(Prior art) As this type of non-contact mechanical seal, for example,
What is shown in the figure is known. In figure 0, A is the axis of rotation (
On the rotating side), X indicates the inside of the machine (high pressure side), Y indicates the outside of the machine (low pressure side), and a rotating shaft A is rotatably provided in the center of the casing (fixed side) B. A non-contact mechanical seal is installed in the annular space between the casing B and the casing B.

このメカニカルシールは、回転軸Aに固設した回転密封
環りと、背面側に密接して位置するリテーナEを介して
軸移動可能かつ回転不能にケーシングBに保持され、さ
らにスプリングFにより回転密封環り側に付勢される静
止密封環Gを有し、両者り、Gの間で軸心に垂直なシー
ル面d、gを構成し、このシール面61g間に機内Xに
密封されている密封流体圧を動圧として負荷させる第1
密封流体導入用グループHを形成した構成、即ち回転密
封環り側にスパイラルグループを形成した構成になって
いる。
This mechanical seal is held in a casing B in a movable and non-rotatable manner via a rotary sealing ring fixed to the rotary shaft A and a retainer E closely located on the back side, and is further rotatably sealed by a spring F. It has a stationary sealing ring G that is biased toward the ring side, and between the two G, a sealing surface d and g that is perpendicular to the axis is formed, and the inside of the machine X is sealed between these sealing surfaces 61g. The first one applies the sealed fluid pressure as a dynamic pressure.
It has a configuration in which a sealing fluid introduction group H is formed, that is, a spiral group is formed on the rotating sealing ring side.

(発明が解決しようとする課題) ところで、非接触式メカニカルシールは、シール面d、
gの摩擦がなく、したかって、両帝封環り、Gの摩耗に
起因するシール破壊が起らないから、シール部の寿命が
半永久的であるとともに、トルク、動力損失が無視でき
るほど小さく、しかも高い密封性を得ることができる等
のすぐれた特性を有している。そして、高い密封性は密
封流体圧および諸寸法によって設定されるシール面d。
(Problem to be Solved by the Invention) By the way, the non-contact mechanical seal has sealing surfaces d,
Since there is no friction between G and G, there is no damage to the seal due to wear on both rings and G, so the life of the seal is semi-permanent, and torque and power loss are negligibly small. Moreover, it has excellent properties such as being able to obtain high sealing performance. The high sealing performance is determined by the sealing fluid pressure and various dimensions of the sealing surface d.

どの隙間の大きさを径方向にわたって−様な大きさに保
持することで得られる。そして、シール面d、gの隙間
を径方向にわたって−様な大きさに保持するためには、
シール面d、gが平坦であること、即ち密封流体圧によ
る圧力歪および密封流体熱による熱歪等が影響したとし
ても、シール面d、gがともに軸心に垂直であることが
要請される。
This can be achieved by maintaining the size of the gap at a -like size across the radial direction. In order to maintain the gap between the seal surfaces d and g at a similar size in the radial direction,
It is required that the sealing surfaces d and g are flat, that is, that both the sealing surfaces d and g are perpendicular to the axis even if pressure distortion due to the sealed fluid pressure and thermal distortion due to the heat of the sealed fluid are affected. .

一方、非接触式メカニカルシールでは、一般に回転密封
環りをセラミックス等の超硬質材で形成し、リテーナE
はステンレス鋼等の硬質材で形成するとともに、静止密
封環Gはカーボンを主成分とする比較的軟質材で形成し
ている。即ち、三者り、E、Gの圧力歪および熱歪特性
が相異している。しかも、圧力歪量および熱歪量が互い
に異なるリテーナEと静止密封環Gが軸方向に密接して
いる構成、つまり静止密封環Gの背面にリテーナEが密
接している構成では、密封流体圧が静止密封環Gのシー
ル面gとリテーナEのフランジ部eに負荷されて両者G
、Eが強く押し付けられることになる。したがって、静
止密封環Gにはシール面gに負荷されるリテーナ側への
偏った密封流体圧により圧力歪を生じてシール面gの平
坦度が損なわれるとともに、リテーナEにはフランジ部
eに負荷される静止密封環への偏った密封流体圧により
静止密封環Gの圧力歪量よりも小さい歪量で圧力歪を生
じ、このリテーナEの圧力歪が静止密封環Gに影響して
、静止密封環Gの歪量をさらに増大させ、シール面gの
平坦度が大きく損なわれることになる。その結果、シー
ル面d1gの隙間を径方向にわたって−様な大きさに保
持できなくなって、密封性が損なわれ、場合によっては
シール面61g間に接触トラブルが起こるおそれを有し
ている。
On the other hand, in non-contact mechanical seals, the rotating sealing ring is generally made of ultra-hard material such as ceramics, and the retainer E
is made of a hard material such as stainless steel, and the stationary sealing ring G is made of a relatively soft material whose main component is carbon. That is, the pressure strain and thermal strain characteristics of the three, E and G, are different. Moreover, in a configuration in which the retainer E and the stationary sealing ring G are in close contact with each other in the axial direction with different amounts of pressure strain and thermal strain, that is, in a configuration in which the retainer E is in close contact with the back surface of the stationary sealing ring G, the sealing fluid pressure is applied to the sealing surface g of the stationary sealing ring G and the flange portion e of the retainer E, causing both G
, E will be strongly pressed. Therefore, in the stationary sealing ring G, pressure strain is generated due to the biased sealing fluid pressure toward the retainer side, which is loaded on the sealing surface g, and the flatness of the sealing surface g is impaired. The biased sealing fluid pressure on the stationary sealing ring causes pressure strain with an amount of strain smaller than the amount of pressure strain on the stationary sealing ring G, and this pressure strain on the retainer E affects the stationary sealing ring G, causing the stationary sealing This further increases the amount of distortion in the ring G, and the flatness of the sealing surface g is greatly impaired. As a result, it becomes impossible to maintain the gap between the seal surfaces d1g at a -like size across the radial direction, which impairs the sealing performance, and in some cases, there is a risk that contact trouble may occur between the seal surfaces 61g.

また、静止密封環GとリテーナEには、密封流体熱によ
る熱歪が生じる、この熱歪も前述の圧力歪と同様に干渉
し合って悪影響を及ぼし、シール面gの平坦度を損なわ
せることになる。
In addition, thermal distortion occurs in the stationary sealing ring G and retainer E due to the heat of the sealed fluid. Similar to the pressure distortion described above, this thermal distortion also interferes with each other and has an adverse effect, impairing the flatness of the sealing surface g. become.

本発明は、このような事情に鑑みなされたもので、静止
密封環およびリテーナに対して密封流体圧をバランスよ
〈軸方向両側から負荷させて互いに相手側に干渉する圧
力歪が発生するのを防止し、かつ軟質の静止密封環に圧
力歪を生じたとしてもこの圧力歪と両者の熱歪が静止密
封環に悪影響を及ぼす不都合を回避して、静止密封環シ
ール面の平坦度を確保し1回転密封環のシール面と静止
密封環のシール面の隙間が径方向にわたって−様な大き
さに保持されて、高い密封性を得ることができる非接触
式メカニカルシールを提供することを目的とする。
The present invention has been developed in view of the above circumstances, and is aimed at balancing the sealing fluid pressure with respect to the stationary sealing ring and retainer. In addition, even if pressure strain occurs in the soft static seal ring, this pressure strain and the thermal strain of both can adversely affect the static seal ring, and the flatness of the static seal ring seal surface can be ensured. The purpose of the present invention is to provide a non-contact type mechanical seal in which the gap between the sealing surface of a one-rotation sealing ring and the sealing surface of a stationary sealing ring is maintained at a uniform size in the radial direction, thereby achieving high sealing performance. do.

(課題を解決するための手段) 前記目的を達成するために本発明は1回転密封環との間
でシール面を形成し、かつ流体圧を負荷させる第1密封
流体導入用グループを形成している静止密封環と、該静
止密封環の背面側に位置するリテーナの間に前記流体圧
を静止密封環に背圧として負荷させる第2密封流体導入
用グループを形成したものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention forms a first sealing fluid introduction group that forms a sealing surface with the one-rotation sealing ring and applies fluid pressure. A second sealing fluid introduction group is formed between the stationary sealing ring and the retainer located on the back side of the stationary sealing ring, which applies the fluid pressure to the stationary sealing ring as back pressure.

(作用) 本発明によれば、第1および第2密封流体導入用グルー
プに流体を導入して静止密封環の軸方向両側から流体圧
をバランスよく負荷させることができるから、圧力歪に
よって静止密封環がリテーナに干渉しない。
(Function) According to the present invention, since fluid can be introduced into the first and second sealing fluid introduction groups and fluid pressure can be applied in a well-balanced manner from both sides in the axial direction of the stationary seal ring, the stationary seal is sealed by pressure strain. The ring does not interfere with the retainer.

また、第2密封流体導入用グループに導入された流体圧
によって、静止密封環の背面とリテーナの正面に隙間が
形成され、しかもリテーナにもその軸方向両側から流体
圧をバランスよく負荷させることができるから、圧力歪
によってリテーナが静止密封環に干渉しない、また、流
体熱による熱歪で静止密封環のシール面の平坦度が損な
われることがない。
Furthermore, due to the fluid pressure introduced into the second sealed fluid introduction group, a gap is formed between the back surface of the stationary seal ring and the front surface of the retainer, and the fluid pressure can also be applied to the retainer from both sides in the axial direction in a well-balanced manner. Therefore, the retainer does not interfere with the stationary sealing ring due to pressure strain, and the flatness of the sealing surface of the stationary sealing ring is not impaired due to thermal strain due to fluid heat.

(実施例) 以下、本発明の実施例を図面に基いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示す半裁断面図であり、図
において1は回転軸(回転側)で、Xは機内側(高圧側
)、Yは機外側(低圧側)を示し、ケーシング2の中心
部に回転軸1が回転自在に設けられ、この回転軸1とケ
ーシング2との環状空間に非接触式メカニカルシールが
装着されている。
FIG. 1 is a half-cut sectional view showing an embodiment of the present invention, in which 1 is the rotation axis (rotation side), X is the inside of the machine (high pressure side), Y is the outside of the machine (low pressure side), A rotating shaft 1 is rotatably provided in the center of a casing 2, and a non-contact mechanical seal is installed in an annular space between the rotating shaft 1 and the casing 2.

このメカニカルシールは、回転密封環3、静止密封環4
およびリテーナ5を有し1回転密封環3は例えば超硬単
体および超硬コーティング、セラミックスのような超硬
質材で形成され回転軸lに同時回転可能に固設されてい
る。そして、内周部に形成した環状溝に0リング6を回
転軸1の外周に圧接させることで両者1.3間のシール
性を確保している。
This mechanical seal consists of a rotating sealing ring 3 and a stationary sealing ring 4.
The one-rotation sealing ring 3 having a retainer 5 and a retainer 5 is made of a super hard material such as a carbide single body, a carbide coating, or ceramics, and is fixed to the rotating shaft l so as to be rotatable at the same time. The O-ring 6 is brought into pressure contact with the outer periphery of the rotary shaft 1 in an annular groove formed on the inner periphery, thereby ensuring sealing between the two.

静止密封環4は、例えばカーボンを主成分とする軟質材
によって形成されケーシング2内に軸移動のみ可能に嵌
合保持されている。即ち静止密封環4の背面には、例え
ばステンレス鋼のような非発錆性の硬質材で形成したリ
テーナ5が軸移動のみ可能に配置されており、このリテ
ーナ5と静止密封環4とが円周方向に等間隔で設けられ
た複数の回り止めどン7(但し1図面には1つの回り止
めどン7のみが示されている)によって相対回転不能に
結合されるとともに、リテーナ5とケーシング2とが円
周方向に等間隔で設けられた複数の回り止めピン8(但
し、図面には1つの回り止めどン8のみが示されている
)に相対回転不能に結合されている。そして、圧縮コイ
ルスプリング9によりリテーナ5を介して静止密封環4
を回転密封環3側に付勢している。また、ケーシング2
の内周部に形成した環状溝に0リングIOを嵌合し、こ
の0リング10をリテーナ5の筒状部5Aの外周に圧接
させることで、両者2.5間のシール性を確保している
The stationary sealing ring 4 is formed of a soft material mainly composed of carbon, for example, and is fitted and held within the casing 2 so as to be able to move only axially. That is, on the back side of the stationary sealing ring 4, a retainer 5 made of a non-corrosive hard material such as stainless steel is arranged so as to be able to move only in the axis, and this retainer 5 and the stationary sealing ring 4 are arranged in a circle. The retainer 5 and the casing 2 are connected in a relatively non-rotatable manner by a plurality of detents 7 provided at equal intervals in the circumferential direction (however, only one detent 7 is shown in one drawing). is coupled to a plurality of detent pins 8 provided at equal intervals in the circumferential direction (however, only one detent pin 8 is shown in the drawing) in a relatively non-rotatable manner. Then, the stationary sealing ring 4 is inserted through the retainer 5 by the compression coil spring 9.
is urged toward the rotating sealing ring 3 side. Also, casing 2
By fitting the O-ring IO into the annular groove formed on the inner circumferential part of the retainer 5, and pressing this O-ring 10 into contact with the outer circumference of the cylindrical part 5A of the retainer 5, sealing performance between the two parts 2.5 is ensured. There is.

回転密封環3と静止密封環4の間で軸心Cに垂直なシー
ル面3a 、 4aを構成し、このシール面3a 、 
4B間に機内側Xに密封されている密封流体圧を動圧と
して負荷させる第1密封流体導入用グループ11を形成
している。即ち、本実施例では、第1密封流体導入用グ
ループ11を、第2A図および第2B図で示すように、
回転密封環3のシール面3aに形成した複数のスパイラ
ルグループIIAによって構成している。
Seal surfaces 3a, 4a perpendicular to the axis C are formed between the rotating seal ring 3 and the stationary seal ring 4, and the seal surfaces 3a, 4a are perpendicular to the axis C.
A first sealing fluid introduction group 11 is formed between the first sealing fluid introduction group 11 and applying the sealing fluid pressure sealed inside the machine interior X as a dynamic pressure. That is, in this embodiment, the first sealing fluid introduction group 11 is as shown in FIGS. 2A and 2B.
It is composed of a plurality of spiral groups IIA formed on the sealing surface 3a of the rotary sealing ring 3.

また、リテーナ5と静止密封環4の間に、密封流体圧を
静止密封環4に背圧として負荷させる第2密封流体導入
用グループ12を形成している。即ち、本実施例では、
第2密封流体導入用グループ12を、第3A図および第
3B図で示すように、リテーナ5の静止密封環側環状端
面5Bに形成した深さ0.1〜0.3mmの深い環状溝
12Aと、円周方向に等間隔で複数形成されて環状溝1
2Aをリテーナ5の外周に連通させる深さ2〜15ルm
の浅い放射溝12Bによって構成している。尚、第1図
の13はスリーブを示している。
Further, a second sealing fluid introduction group 12 is formed between the retainer 5 and the stationary sealing ring 4 to apply sealing fluid pressure to the stationary sealing ring 4 as back pressure. That is, in this example,
As shown in FIGS. 3A and 3B, the second sealing fluid introducing group 12 is formed with a deep annular groove 12A having a depth of 0.1 to 0.3 mm formed in the static seal ring side annular end surface 5B of the retainer 5. , a plurality of annular grooves 1 are formed at equal intervals in the circumferential direction.
2A to the outer periphery of the retainer 5 at a depth of 2 to 15 m
It is constituted by a shallow radial groove 12B. Note that 13 in FIG. 1 indicates a sleeve.

前記構成において、回転軸lが回転し、これとともに回
転密封環3が回転すれば、この回転密封環3のシール面
3aに形成されたスパイラルグループIIAで構成され
る第1密封流体導入用グループ11に流体が導入され、
回転密封環3と静止密封環4のシール面3a 、 4B
間に動圧が負荷され、この圧力によって両者3.4が非
接触状態に保たれる。
In the above configuration, when the rotating shaft l rotates and the rotating sealing ring 3 rotates together with it, the first sealing fluid introduction group 11 composed of the spiral group IIA formed on the sealing surface 3a of the rotating sealing ring 3 A fluid is introduced into the
Sealing surfaces 3a and 4B of the rotating sealing ring 3 and the stationary sealing ring 4
Dynamic pressure is applied between them, and this pressure keeps both parts 3.4 out of contact.

同時に静止密封環4とリテーナ5の間に形成している第
2密封流体導入用グループ12に流体が導入される。即
ちm2密封流体導入用グループ12を構成するために、
リテーナ5の静止密封環側環状端面5Bに形成した浅い
放射状の溝12Bを通って深い環状溝12Aに流体が導
入され、静止密封環4の背面とリテーナ5の正面間に静
圧が負荷され、この圧力によって両者4.5が非接触状
態に保たれる。
At the same time, fluid is introduced into the second sealing fluid introducing group 12 formed between the stationary sealing ring 4 and the retainer 5. That is, in order to configure the m2 sealing fluid introduction group 12,
Fluid is introduced into the deep annular groove 12A through the shallow radial groove 12B formed in the static seal ring side annular end surface 5B of the retainer 5, and static pressure is applied between the back surface of the static seal ring 4 and the front surface of the retainer 5. This pressure keeps both parts 4.5 out of contact.

そしてリテーナ5の筒状部5Aを除いたフランジ部5C
の背面にも、元々密封流体圧が静圧として負荷されてい
るから、静止密封環4とリテーナ5には、i4A図およ
び第4B図において矢印Pfで示す圧力分布で流体圧が
バランスよく軸方向両側から負荷されることになる。
And a flange portion 5C of the retainer 5 excluding the cylindrical portion 5A.
Since sealing fluid pressure is originally applied as static pressure to the rear surface of Loads will be applied from both sides.

したがって、静止密封環4のシール面4aの垂直度が損
なわれず、その結果シール面3a、4aの隙間を径方向
にわたって−様な大きさに保持できるから、この隙間に
導入された密封流体圧によって高い密封性を確保するこ
とができる。また、軟質の静止密封環4に対して軸方向
両側から流体圧が負荷されることで、たとえ軸方向の寸
法(厚さ)を若干縮小させる圧力歪が生じたとしても、
前記シール面4aの垂直度を損なうことがない。
Therefore, the perpendicularity of the sealing surface 4a of the stationary sealing ring 4 is not impaired, and as a result, the gap between the sealing surfaces 3a, 4a can be maintained at a size similar to that in the radial direction, so that the sealing fluid pressure introduced into this gap High sealing performance can be ensured. Furthermore, even if fluid pressure is applied to the soft static sealing ring 4 from both sides in the axial direction, pressure strain may occur that slightly reduces the axial dimension (thickness).
The perpendicularity of the sealing surface 4a is not impaired.

また、静止密封環4の背面とリテーナ5の静止密封環側
環状端面5Bの垂直度も損なわれることがない、したが
って、前記静止密封環4の背面とリテーナ5の環状端面
5Bの隙間を径方向にわたって−様な大きさに保持でき
るから、ここでも、この隙間に導入された密封流体圧に
よって高い密封性を確保することができるとともに、該
隙間によってリテーナ5と静止密封環4とが互いに干渉
しなくなり、かつ、リテーナ4の筒状部5Aを除くフラ
ンジ部5Cに圧力歪が生じないから、リテーナ5が静止
密封環4に干渉して静止密封環4のシール面4aの平坦
度を損なわせることがない、さらに、密封流体熱によっ
て、熱膨張率が互いに異なる静止密封環4とリテーナ5
に熱歪を生じたとしても、これらの熱歪は互いに干渉し
合うことがなくなるので、静止密封環4のシール面4a
の平坦度を保持できる。
Further, the perpendicularity between the back surface of the stationary seal ring 4 and the annular end surface 5B of the stationary seal ring side of the retainer 5 is not impaired. Therefore, the gap between the back surface of the stationary seal ring 4 and the annular end surface 5B of the retainer 5 is Since the retainer 5 and the stationary sealing ring 4 can be held at a similar size across the gap, high sealing performance can be ensured by the sealing fluid pressure introduced into the gap, and the gap prevents the retainer 5 and the stationary sealing ring 4 from interfering with each other. Moreover, since no pressure strain occurs in the flange portion 5C of the retainer 4 except for the cylindrical portion 5A, the retainer 5 will not interfere with the stationary seal ring 4 and impair the flatness of the seal surface 4a of the stationary seal ring 4. Moreover, due to the heat of the sealed fluid, the stationary sealing ring 4 and the retainer 5 have different coefficients of thermal expansion.
Even if thermal strain occurs in
flatness can be maintained.

前記実施例では、第2密封流体導入用グループ12を、
第3A図および第3B図で示すように、リテーナ5の正
面、つまり静止密封環側環状端面5Bに形成した深い環
状溝12Aと、この環状溝12Aをリテーナ5の外周に
連通させる複数の浅い放射溝12Bによって構成して説
明しているが、第5図に示すように、複数の架内部12
aを設けて、円周上、複数に分割された浅い円弧溝12
0に、それぞれ浅い放射溝12Bを連通させることによ
って、第2密封流体導入用グループ12を構成してもよ
い。
In the embodiment, the second sealing fluid introduction group 12 is
As shown in FIGS. 3A and 3B, there is a deep annular groove 12A formed on the front surface of the retainer 5, that is, on the stationary seal ring side annular end surface 5B, and a plurality of shallow radials that communicate the annular groove 12A with the outer periphery of the retainer 5. Although the explanation has been made with the grooves 12B, as shown in FIG.
A shallow circular groove 12 divided into a plurality of parts on the circumference by providing a
The second sealing fluid introduction group 12 may be configured by connecting the shallow radial grooves 12B to the second sealing fluid introducing group 12, respectively.

また、第1密封流体導入用グループ11は、回転密封環
3のシール面3aにスパイラルグループIIAを形成し
、動圧を負荷させるようにした構成で説明しているが、
第6図に示すように、静止密封環4のシール面4aに、
円周上、複数に分割した円弧状溝11B  (但し1図
面には1つの円弧状溝11Bのみが示されている)を形
成し、各円弧状溝11Bにオリフィス絞り14をもった
バイパス15を介して密封流体が導入されるようにして
第1密封流体導入用グループ11を形成してもよい。
Furthermore, the first sealing fluid introduction group 11 is described as having a spiral group IIA formed on the sealing surface 3a of the rotary sealing ring 3 to apply dynamic pressure.
As shown in FIG. 6, on the sealing surface 4a of the stationary sealing ring 4,
A plurality of arc-shaped grooves 11B (however, only one arc-shaped groove 11B is shown in one drawing) is formed on the circumference, and a bypass 15 having an orifice throttle 14 is provided in each arc-shaped groove 11B. The first sealing fluid introduction group 11 may be formed such that the sealing fluid is introduced through the first sealing fluid introduction group 11.

(発明の効果) 以上説明したように1本発明によれば、回転密封環との
間でシール面を形成し、かつ流体圧を負荷させる第1の
密封流体導入用グループを形成している静止密封環と、
該静止密封環の背面側に位置するリテーナの間に、流体
圧を静止密封環に背圧として負荷させる第2の密封流体
導入用グループを形成した構成としているので、第1お
よび第2密封流体導入用グループにそれぞれ流体を導入
して、静止密封環の軸方向両側から流体圧をバランスよ
く負荷させることができるので、静止密封環におけるシ
ール面の軸線に対する平坦度が損なわれず、回転密封環
のシール面と静止密封環のシール面の隙間を径方向にわ
たって−様な大きさに保持することができ、前記両シー
ル面間の接触トラブルを確実に回避し、かつ高い密封性
を得ることができる。
(Effects of the Invention) As explained above, according to one aspect of the present invention, a stationary member forming a first sealing fluid introduction group that forms a sealing surface with a rotating sealing ring and applies fluid pressure to the rotating sealing ring. a sealing ring;
A second sealing fluid introduction group is formed between the retainers located on the back side of the stationary sealing ring to apply fluid pressure to the stationary sealing ring as back pressure. Since fluid can be introduced into each introduction group and fluid pressure can be applied in a well-balanced manner from both sides of the stationary seal ring in the axial direction, the flatness of the seal surface of the stationary seal ring with respect to the axis is not impaired, and the flatness of the rotary seal ring is The gap between the sealing surface and the sealing surface of the stationary sealing ring can be maintained at a similar size in the radial direction, and contact trouble between the two sealing surfaces can be reliably avoided and high sealing performance can be obtained. .

また、軸方向両側からバランスのよい流体圧が静止密封
環に負荷されるため、この流体圧によって、たとえ静止
密封環に軸方向の寸法(厚さ)を若干縮小させる圧力歪
が生じたとしてもシール面の平坦度を損なうことがない
In addition, since well-balanced fluid pressure is applied to the stationary seal ring from both sides in the axial direction, even if this fluid pressure causes a pressure strain that slightly reduces the axial dimension (thickness) of the stationary seal ring. The flatness of the sealing surface is not impaired.

さらに、流体圧によって熱膨張率が互いに異なる静止密
封環とリテーナとに熱歪を生じたとしてもこれらの熱歪
は互いに干渉し合うことがないので、静止密封環のシー
ル面の平坦度を保持して高い密封性を得ることができる
等の利点がある。
Furthermore, even if thermal distortion occurs in the stationary sealing ring and the retainer, which have different coefficients of thermal expansion due to fluid pressure, these thermal distortions do not interfere with each other, so the flatness of the sealing surface of the stationary sealing ring is maintained. It has the advantage of being able to obtain high sealing performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す半裁断面図。 第2A図は回転密封環のシール面の一部(円周の%)を
示す説明背面図、第2B図は第2A図のIIB −II
 B線に沿う断面図、第3A図はリテーナの一部(円周
局)を示す説明正面図、第3B図は第3A図のmB−m
B線に沿う断面図、第4A図は静止密封環に負荷される
圧力分布図、第4B図はリテーナに負荷される圧力分布
図、第5図は第2密封流体導入用グループを形成する溝
の他の実施例を示す正面図、第6図は第1密封流体導入
用グループの他の実施例を示す概略断面図、第7図は従
来例の半裁断面図である。 l・・・回転側(回転軸) 2・・・固定側(ケーシング) 3・・・回転電封環 3a・・・シール面 4・・・静止密封環 4a・・・シール面 5・・・リテーナ 9・・・スプリング 11・・・第1密封流体導入用グループ12・・・第2
密封流体導入用グループC・・・軸心 特許出願人 日本ピラー工業株式会社 代理人 弁理士 鈴 江 孝 − 第1ス 第2A図     128図 IJ 3A図       !33B図」 [B II 4A l        l 4B 図115図
FIG. 1 is a half-cut sectional view showing one embodiment of the present invention. Figure 2A is an explanatory rear view showing a part of the sealing surface (% of circumference) of the rotary sealing ring, and Figure 2B is IIB-II of Figure 2A.
A sectional view taken along line B, FIG. 3A is an explanatory front view showing a part of the retainer (circumferential station), and FIG. 3B is mB-m in FIG. 3A.
A sectional view taken along line B, FIG. 4A is a pressure distribution diagram applied to the stationary sealing ring, FIG. 4B is a pressure distribution diagram applied to the retainer, and FIG. 5 is a groove forming the second sealing fluid introduction group. 6 is a schematic sectional view showing another embodiment of the first sealing fluid introduction group, and FIG. 7 is a half-cut sectional view of the conventional example. l...Rotating side (rotating shaft) 2... Fixed side (casing) 3... Rotating electrosealing ring 3a... Seal surface 4... Stationary sealing ring 4a... Seal surface 5... Retainer 9...Spring 11...First sealing fluid introduction group 12...Second
Group C for introducing sealing fluid... Axial center Patent applicant Nippon Pillar Industries Co., Ltd. Agent Patent attorney Takashi Suzue - 1st stage Figure 2A Figure 128 Figure IJ Figure 3A! Figure 33B” [B II 4A l l 4B Figure 115

Claims (1)

【特許請求の範囲】[Claims] (1)回転側に固設した回転密封環と、背面側に位置す
るリテーナを介して軸移動可能に固定側に保持されかつ
スプリングにより前記回転密封環側に付勢される静止密
封環を具備し、これら両密封環の間でシール面が構成さ
れ、このシール面に流体圧を負荷させる第1密封流体導
入用グループを形成した非接触式メカニカルシールにお
いて、前記リテーナと静止密封環の間に前記流体圧を静
止密封環に背圧として負荷させる第2密封流体導入用グ
ループが形成されていることを特徴とする非接触式メカ
ニカルシール。
(1) Equipped with a rotating sealing ring fixedly installed on the rotating side, and a stationary sealing ring that is held on the stationary side so as to be able to move axially through a retainer located on the back side, and is urged toward the rotating sealing ring by a spring. In a non-contact mechanical seal in which a sealing surface is formed between the two sealing rings and a first sealing fluid introduction group is formed to apply fluid pressure to this sealing surface, there is a sealing surface between the retainer and the stationary sealing ring. A non-contact mechanical seal characterized in that a second sealing fluid introduction group is formed for applying the fluid pressure to the stationary sealing ring as a back pressure.
JP12407188A 1988-05-20 1988-05-20 Contactless mechanical seal Granted JPH01295079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12407188A JPH01295079A (en) 1988-05-20 1988-05-20 Contactless mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12407188A JPH01295079A (en) 1988-05-20 1988-05-20 Contactless mechanical seal

Publications (2)

Publication Number Publication Date
JPH01295079A true JPH01295079A (en) 1989-11-28
JPH0574750B2 JPH0574750B2 (en) 1993-10-19

Family

ID=14876221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12407188A Granted JPH01295079A (en) 1988-05-20 1988-05-20 Contactless mechanical seal

Country Status (1)

Country Link
JP (1) JPH01295079A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272581A (en) * 1991-02-27 1992-09-29 Nippon Pillar Packing Co Ltd Non-contact type sealing device
JPH0560247A (en) * 1991-08-26 1993-03-09 Nippon Pillar Packing Co Ltd Noncontact type mechanical seal
JP2008164059A (en) * 2006-12-28 2008-07-17 Nippon Pillar Packing Co Ltd Non-contact mechanical seal
JP2009079634A (en) * 2007-09-25 2009-04-16 Nippon Pillar Packing Co Ltd Non-contact type mechanical seal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53157255U (en) * 1977-05-16 1978-12-09
JPS60222667A (en) * 1984-04-20 1985-11-07 Nippon Pillar Packing Co Ltd Dynamic pressure type non-contact mechanical seal
JPS6215563U (en) * 1985-07-13 1987-01-30

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53157255U (en) * 1977-05-16 1978-12-09
JPS60222667A (en) * 1984-04-20 1985-11-07 Nippon Pillar Packing Co Ltd Dynamic pressure type non-contact mechanical seal
JPS6215563U (en) * 1985-07-13 1987-01-30

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272581A (en) * 1991-02-27 1992-09-29 Nippon Pillar Packing Co Ltd Non-contact type sealing device
JPH0560247A (en) * 1991-08-26 1993-03-09 Nippon Pillar Packing Co Ltd Noncontact type mechanical seal
JP2008164059A (en) * 2006-12-28 2008-07-17 Nippon Pillar Packing Co Ltd Non-contact mechanical seal
JP4528762B2 (en) * 2006-12-28 2010-08-18 日本ピラー工業株式会社 Non-contact mechanical seal
JP2009079634A (en) * 2007-09-25 2009-04-16 Nippon Pillar Packing Co Ltd Non-contact type mechanical seal

Also Published As

Publication number Publication date
JPH0574750B2 (en) 1993-10-19

Similar Documents

Publication Publication Date Title
JP2648816B2 (en) Cylindrical face seal
JPH0122509B2 (en)
WO1991014119A1 (en) A stationary seal ring assembly for use in dry gas face seal assemblies
JPS642824B2 (en)
JPH1113764A (en) Hydrostatic air bearing
JPS647263B2 (en)
JPH0560247A (en) Noncontact type mechanical seal
JPH04337165A (en) Non-contact type mechanical seal device
JPH01295079A (en) Contactless mechanical seal
JPH09292034A (en) Mechanical seal
US5700011A (en) Sealing unit with axial brushes controlled by static pressure in axial movement
JP3305196B2 (en) Shaft sealing device
JPH08277941A (en) Mechanical seal
JPH04296259A (en) Noncontact sealing device
JPH0714697Y2 (en) Non-contact sealing device
WO2022044956A1 (en) Sealing device
JP6742232B2 (en) Non-rotating mechanism
JP2645544B2 (en) Shaft sealing device
JPS633495Y2 (en)
JPH0225019Y2 (en)
US4558873A (en) Mechanical seal
JPH0129324Y2 (en)
JPS60222667A (en) Dynamic pressure type non-contact mechanical seal
US20220196152A1 (en) Sliding component
JPH0614150Y2 (en) Dry sliding mechanical seal