JPS60222667A - Dynamic pressure type non-contact mechanical seal - Google Patents

Dynamic pressure type non-contact mechanical seal

Info

Publication number
JPS60222667A
JPS60222667A JP8088284A JP8088284A JPS60222667A JP S60222667 A JPS60222667 A JP S60222667A JP 8088284 A JP8088284 A JP 8088284A JP 8088284 A JP8088284 A JP 8088284A JP S60222667 A JPS60222667 A JP S60222667A
Authority
JP
Japan
Prior art keywords
dynamic pressure
area
seal ring
group
pressure generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8088284A
Other languages
Japanese (ja)
Other versions
JPS6333027B2 (en
Inventor
Tadayuki Shimizu
清水 忠之
Toshihiko Fuse
敏彦 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP8088284A priority Critical patent/JPS60222667A/en
Publication of JPS60222667A publication Critical patent/JPS60222667A/en
Publication of JPS6333027B2 publication Critical patent/JPS6333027B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3404Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal
    • F16J15/3408Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface
    • F16J15/3412Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member and characterised by parts or details relating to lubrication, cooling or venting of the seal at least one ring having an uneven slipping surface with cavities

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Sealing (AREA)

Abstract

PURPOSE:To facilitate designing and calculating generated dynamic pressure by dividing a seal surface into a dynamic pressure generating area and a non-dynamic pressure generating area which have several grooves different in depth in a mechanical seal comprising a rotary seal ring and a fixed seal ring which are set opposite in contact with each other. CONSTITUTION:A mechanical seal comprises a rotary seal ring 9 fixed to the rotation side and a fixed seal ring (not shown) retained by a spring in such a manner as to move axially on fixed side which are set opposite in contact with each other. A seal surface 10 of the rotary seal ring 9 that is opposite in contact with the fixed seal ring is peripherally divided into a dynamic pressure generating area A and a non-dynamic pressure generating area B alternately. In this case, the area A is set narrower than the area B, and each area A is etched to form an equal number of grooves 11 having a comparative shallow depth with angle of advance. One deep groove 12 extending over the width of the area is similarly formed in each area B in such a manner as to have angle of advance.

Description

【発明の詳細な説明】 本発明は、回転機器の軸封装置として多用される動圧非
接触メカニカルシールに関し、さらに詳し゛くは、油の
如き高粘度液・高周速条件のために発生動圧が大きくな
る軸封部分を主として対象とする動圧形弁接触メカ二を
ルシールの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a dynamic pressure non-contact mechanical seal that is often used as a shaft sealing device for rotating equipment, and more specifically, the present invention relates to a dynamic pressure non-contact mechanical seal that is often used as a shaft sealing device for rotating equipment. This invention relates to the improvement of Lucille's dynamic pressure type valve contact mechanism, which is mainly intended for shaft seal parts where dynamic pressure increases.

この種、動圧形弁接触メカニカルシール(以下ではメカ
ニカルシールと略記する)の通常的な構成は第3図に示
す通りで、ケーシングlに対し回転軸2が挿通され、図
面右方を低圧側、図面左方を高圧側とする時に、回転軸
2に回転シールリング3が装備され、ケーシング1側に
バックアップリング4および押えリング5牽介し固定シ
ールリング6が装備され、しかして両シールリング3.
6を回転軸軸線方向と平行同方向に対面させ、ベローズ
7にて固定シールリング6とバックアップリング4を背
部から受支している。また、回転シールリング3には固
定シールリング6とのシール面にグ/L=−ブと称呼さ
れるスパイラル状の溝(以下、グループと称す)8が回
転軸2の回転方向に前進角を有して切削される。このグ
ループ8はその先端が高圧側に開口されている。そして
、このメカニカルシール構造において、回転軸2が回転
すれば、その回転方向に前進角を有するグループ8に流
体が進入して回転シールリング3と固定シールリング6
との間に動圧が発生し、この圧力とベローズ7との圧力
バランスによって両シール1ノング3,6が非接触状態
に保たれる。
The typical configuration of this type of dynamic pressure type valve contact mechanical seal (hereinafter abbreviated as mechanical seal) is as shown in Fig. 3, in which the rotating shaft 2 is inserted into the casing l, and the right side of the figure is the low pressure side. , when the left side of the drawing is the high pressure side, the rotary shaft 2 is equipped with a rotary seal ring 3, and the casing 1 side is equipped with a backup ring 4 and a holding ring 5, and a fixed seal ring 6, so that both seal rings 3 ..
The fixed seal ring 6 and the backup ring 4 are supported from the back by a bellows 7, with the seal ring 6 facing parallel to and in the same direction as the axis of the rotating shaft. In addition, the rotary seal ring 3 has a spiral groove (hereinafter referred to as a group) 8 on the sealing surface with the fixed seal ring 6, which changes the forward angle in the rotational direction of the rotary shaft 2. It is cut by cutting. The tip of this group 8 is opened to the high pressure side. In this mechanical seal structure, when the rotary shaft 2 rotates, fluid enters the group 8 having an advancing angle in the direction of rotation, causing the rotary seal ring 3 and the fixed seal ring 6
A dynamic pressure is generated between the two seals 1 and the bellows 7, and the balance between this pressure and the bellows 7 keeps both seals 1 tongues 3 and 6 out of contact.

ところで従来のメカニカルシールは動圧効果を大きく取
ることを重点として構造・形状が設計されており、気体
のような低粘度流体を対象とする場合には好ましかった
が、油のような高粘度流体を高周速条件でシールする場
合は、グループ8における発生動圧が過大となり、上記
Iくランス時の両シールリング3.6のシール面間隙が
大となって高圧側から低圧側への洩れ量が多くなる。ま
た、高動圧に基づくシール面の過大な歪により両シール
リング3.6が面接触してしまう不都合が発生し、ここ
に種々の工夫が第4図乃至第8図の構成に見られるよう
に案出されるに至った。
By the way, the structure and shape of conventional mechanical seals were designed with emphasis on maximizing the dynamic pressure effect, which was preferable when dealing with low-viscosity fluids such as gas, but when dealing with high-viscosity fluids such as oil. When sealing a viscous fluid under high circumferential speed conditions, the dynamic pressure generated in group 8 becomes excessive, and the gap between the sealing surfaces of both seal rings 3.6 at the time of lancing increases, causing pressure to flow from the high pressure side to the low pressure side. The amount of leakage increases. In addition, due to excessive distortion of the sealing surface due to high dynamic pressure, there is an inconvenience that both seal rings 3.6 come into surface contact. It came to be devised.

即ち、第4図はグループ8の半径方向(奥行き)の長さ
立を短縮し、第5図はグループ8の前進角αを浅くシ、
第6図はグループ8の暢dを細くし、第7図は逆にグル
ープ8の面積を極端に広くして、それぞれ動圧低下を図
っている。また、第8図は浅くグループ8aと深いグル
ープ9bを交互に設けた併用構造である。
That is, in FIG. 4, the length in the radial direction (depth) of group 8 is shortened, and in FIG. 5, the advance angle α of group 8 is shallowed.
In Fig. 6, the width d of group 8 is narrowed, and in Fig. 7, on the contrary, the area of group 8 is made extremely wide, in order to reduce the dynamic pressure. Further, FIG. 8 shows a combination structure in which shallow groups 8a and deep groups 9b are alternately provided.

しかし、第4図乃至第6図構成によれば、グループ8の
切削加工が煩雑であり、加工精度の低下により発生動圧
の理論値と実際値との差が大きく、設計計算が困難であ
ると共に、信頼性に欠ける難点がある。また、第6図構
成によればグループ幅dが狭いのでスラリーや摩耗粉の
堆積にて動圧を発生しなくなったり、圧力分布が複雑で
動圧計算が難かしい難点がある。また、第4図乃至第8
図のいずれの構成においてもシール面面積が広く、シー
ル面内での発熱量が大きく、歪の問題t±解消できなか
った。
However, according to the configurations shown in FIGS. 4 to 6, the cutting process for group 8 is complicated, and the difference between the theoretical value and the actual value of the generated dynamic pressure is large due to the decrease in machining accuracy, making design calculation difficult. At the same time, there is a problem of lack of reliability. Further, according to the configuration shown in FIG. 6, since the group width d is narrow, dynamic pressure cannot be generated due to the accumulation of slurry and abrasion powder, and the pressure distribution is complicated, making calculation of dynamic pressure difficult. Also, Figures 4 to 8
In any of the configurations shown in the figure, the sealing surface area is large, the amount of heat generated within the sealing surface is large, and the problem of distortion t± could not be solved.

従って、本発明の目的は、加工が容易であり、かつ発生
動圧の設計計算が簡易であると共に、熱歪が発生しない
構造のメカニカルシールの提供にある。
Therefore, an object of the present invention is to provide a mechanical seal that is easy to process, allows easy design calculation of generated dynamic pressure, and has a structure that does not generate thermal strain.

即ち、本発明は、回転シールリングと固定シールリング
とを対接させ、動圧発生用グループによる発生動圧を用
い、両リングを非接触状態に保ちつつシールするにあた
り、シール面を交互にかつ円周方向に動圧発生領域と非
動圧発生領域とに区分し、動圧発生領域にあっては浅い
溝深さを有するグループを形成し、非動圧発生領域にあ
っては深い溝深さを有するグループを形成することを特
徴とする。
That is, the present invention places a rotating seal ring and a stationary seal ring in contact with each other, and uses the dynamic pressure generated by the dynamic pressure generation group to seal the two rings while keeping them in a non-contact state. It is divided into a dynamic pressure generation area and a non-dynamic pressure generation area in the circumferential direction, and in the dynamic pressure generation area, a group with a shallow groove depth is formed, and in the non-dynamic pressure generation area, a group with a deep groove depth is formed. It is characterized by forming a group with a

本発明によれば、動圧発生領域にあってはその浅いグル
ープによる顕著な動圧発生が見られ、非動圧発生領域に
あってはその深いグループにより発生動圧がなくなる。
According to the present invention, in the dynamic pressure generating region, remarkable dynamic pressure is generated due to the shallow groups, and in the non-dynamic pressure generating region, the generated dynamic pressure disappears due to the deep groups.

このように動圧発生領域をシール面円周方向上の数箇所
の狭い範囲に限定し、動圧を発生しない領域との境界を
明確に区別しているため1回転時、 の圧力分布が正確
に推定でき、従って、正確な設計計算が可能となる。
In this way, the area where dynamic pressure is generated is limited to a few narrow areas on the circumferential direction of the seal surface, and the boundaries between areas where no dynamic pressure is generated are clearly distinguished, so that the pressure distribution during one rotation is accurate. can be estimated, thus allowing accurate design calculations.

しかも、動圧発生領域のグループの長さ見や前進角αお
よび輻dには手を加えないので、グループの切削可能が
容易であり、加工精度が良く、これからも一層正確な発
生動圧の推定ができる。
Moreover, since the length of the group in the dynamic pressure generation area, the advance angle α, and the radius d are not modified, it is easy to cut the group, and the machining accuracy is high. Can be estimated.

また、動圧発生領域を限定(狭く)シているため、該領
域での発生動圧が大きくても、シール面のオープニング
フォースは小さくできる。
Further, since the dynamic pressure generation area is limited (narrow), even if the dynamic pressure generated in the area is large, the opening force on the sealing surface can be small.

従って平衡時の圧力バランスがとりやすくなり、シール
面の間隙も狭くできるから、漏液量の少ないシール構造
の設計ができる。
Therefore, it becomes easier to balance the pressure at equilibrium, and the gap between the sealing surfaces can be narrowed, making it possible to design a sealing structure with less leakage.

さらに非動圧発生領域のグルニブ溝を深くとることによ
って、シール面間流体の粘性剪断゛による発熱を抑止で
き、シール面の熱歪を小さく抑える ゛ことができる。
Furthermore, by making the glu nib groove deep in the non-dynamic pressure generation area, heat generation due to viscous shear of the fluid between the seal surfaces can be suppressed, and thermal distortion of the seal surface can be suppressed to a small level.

同時に該領域を循環する封液量が多くなり、シール部の
冷却効果が向上する。
At the same time, the amount of sealing liquid circulating in the area increases, improving the cooling effect of the sealing part.

以下、本発明の一実施例を第1図乃至第3図を用いて説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.

回転シールリング9において、固定シールリング6と対
接するシール面10は、その円周方向に交互に動圧発生
領域Aと非動圧発生領域Bとに区分される。動圧発生領
域Aは第1図から明らかなように非動圧発生領域Bに比
べ狭く限定されると共に、各動圧発生領域Aは等しい領
域幅を有し、従って各非動圧発生領域Bも等しい領域幅
を有する。
In the rotary seal ring 9, the seal surface 10 that is in contact with the fixed seal ring 6 is divided into a dynamic pressure generating area A and a non-dynamic pressure generating area B alternately in the circumferential direction. As is clear from FIG. 1, the dynamic pressure generating area A is narrower than the non-dynamic pressure generating area B, and each dynamic pressure generating area A has the same area width, so each non-dynamic pressure generating area B also have equal region widths.

そして各動圧発生領域Aには等しい数のグループ11が
低粘度液・低周速条件下で従来切削加工されていたもの
とほぼ同様な比較的浅い溝深さで前進角を有し、て切削
加工され、他方各非動圧発生領域Bにあってはその領域
幅にわたり一個の深い溝深さを有したグループ12が同
じく前進角を有して切削加工される。その他の面部は従
来通リフラットな面であり、また固定シールリング6の
シール面も同様にフラットである。
In each dynamic pressure generation area A, an equal number of groups 11 have a relatively shallow groove depth and an advancing angle similar to those conventionally cut under low viscosity liquid and low circumferential speed conditions. On the other hand, in each non-dynamic pressure generating region B, a group 12 having one deep groove depth over the width of the region is also machined with an advancing angle. The other surfaces are conventionally flat surfaces, and the sealing surface of the fixed seal ring 6 is also flat.

かく構成されたグループ構造を有するメカニカルシール
にあっては、動圧発生領域Aではその浅い溝深さを有す
るグループ11故に高い動圧が発生されるが、非動圧発
生領域Bではそのグループ12の溝深さが深いのでほと
んど動圧発生が見られない、故に回転シールリング9と
固定シールリング6とのシール面間隙は動圧発生領域A
の発生動圧とベローズ7との圧力バランスで決定される
しかして、動圧発生領域Aでの発生動圧が油等の高粘度
流体・高周速のために高くとも1.該領域Aがシール面
円周方向の数箇所に限定して設けられているから、シー
ル面lO全周に動圧を発生させる従来タイプのものに比
べ総和としての発生動圧は低く、故にシール面間隙は狭
く抑えられる。
In the mechanical seal having such a group structure, high dynamic pressure is generated in the dynamic pressure generation area A due to the group 11 having a shallow groove depth, but in the non-dynamic pressure generation area B, the group 12 is generated. Because the groove depth is deep, almost no dynamic pressure is generated.Therefore, the sealing surface gap between the rotating seal ring 9 and the stationary seal ring 6 is in the dynamic pressure generation area A.
The dynamic pressure generated in the dynamic pressure generation area A is determined by the pressure balance between the generated dynamic pressure and the bellows 7. However, due to the high viscosity fluid such as oil and high circumferential speed, the generated dynamic pressure in the dynamic pressure generation area A is at most 1. Since the area A is limited to a few places in the circumferential direction of the seal surface, the total dynamic pressure generated is lower than that of the conventional type, which generates dynamic pressure around the entire circumference of the seal surface lO, and therefore the seal The surface gap can be kept narrow.

また、非動圧発生領域Bを設けて核部のグループ12の
溝を深く取れば、回転シールリング9と固定シールリン
グ6とのシール面面積が上記領域(B)分実質的に減少
し、そのために発熱面の面積を少なくできる。しかも、
回転に伴いグループ12に多量の流体が流入し、かつ流
出することでシール面に発生する熱は奪熱され、冷却作
用が効果的に行なわれ、熱歪が抑止される。
Furthermore, if the non-dynamic pressure generating region B is provided and the groove of the core group 12 is made deep, the sealing surface area between the rotary seal ring 9 and the stationary seal ring 6 is substantially reduced by the region (B). Therefore, the area of the heat generating surface can be reduced. Moreover,
As a large amount of fluid flows into and out of the group 12 as it rotates, heat generated at the sealing surface is removed, cooling is effectively performed, and thermal distortion is suppressed.

なお、動圧発生部Aの形成数、および領域AとBの割合
は密封条件によって最適値が変わり、高粘度Φ高周速と
なるほど領域Aの割合を小さくする必要があるが、動圧
を発生する領域Aとしない領域Bとが明確に区別されて
いるので、発生動圧の設計計算が容易であり、実際値と
の差をなくすることができ、実用的である。
The optimal values for the number of dynamic pressure generating parts A and the ratio of regions A and B change depending on the sealing conditions.The higher the viscosity and the higher the circumferential speed, the smaller the ratio of region A needs to be. Since the region A where generation occurs and the region B where it does not occur are clearly distinguished, the design calculation of the generated dynamic pressure is easy and the difference from the actual value can be eliminated, which is practical.

動圧発生領域Aには図面ではスパイラルグループを用い
てるが、公知のレイリーステップ形状でも良い。
Although a spiral group is used in the drawings for the dynamic pressure generating region A, a known Rayleigh step shape may be used.

シール面lOの材質はグループ加工する部位では耐摩耗
性の関係で硬質材とする必要があるが、フラットな部位
はカーボンのような軟質材で支障ない。
The material of the sealing surface IO needs to be a hard material in terms of wear resistance in the parts to be group-processed, but a soft material such as carbon can be used in the flat parts.

また、前記実施例説明では動圧発生部Aをシールリング
9の外径側に、そしてシール部を内径側に形成したが、
シール条件によってはこれらの関係を逆としても良い。
Furthermore, in the above embodiment description, the dynamic pressure generating portion A was formed on the outer diameter side of the seal ring 9, and the seal portion was formed on the inner diameter side.
Depending on the sealing conditions, these relationships may be reversed.

さらに本発明が高粘度液・高周速条件の他に。Furthermore, the present invention can be used in addition to high viscosity liquid and high peripheral speed conditions.

中粘度液・中周速条件下でも利用できることは勿論であ
る。
Of course, it can also be used under conditions of medium viscosity liquid and medium circumferential speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の一実施例を示し、第1図
は回転シールリングの正面図、第2図は第1図のII 
−II線矢視切断図である。第3図は動圧形非接触メカ
ニカルシール構造を説明するための断面図、第4図乃至
第8図は高粘度液・高周速条件に対する従来の動圧発生
対策を示すそれぞれシール面の要部正面図である。 l・・・ケーシング(固定側) 2・・・回転軸(回転側) 6・・・固定シールリング 7・・・ベローズ 9・・・回転シールリング 11・・・浅い溝深さのグループ 12・・・深い溝深さのグループ A・・・動圧発生領域 B・・・非動圧発生領域 特許出願人 日本ピラー工業株式会社 代 理 人 弁理士 鈴江 孝− 第1図 第2図 第4図 第5図 第8図 手続補正書 4日 特許庁長官 若杉 和夫 殿 1、 本件の表示 特願昭59−80882号 2、 発明の名称 動圧形弁接触メカニカルシール 日本ビラー工業株式会社 − 自発的 6、 補正の対象 明細書及び図面 7、 補正の内容 別紙の通り (1) 明細書の全文を別紙の如く補正する。 (2) 図面中、第8図を別紙の如く補正する。 以上 □ 、″ 明細書 11発明の名称 動圧形弁接触メカニカルシール 2、特許請求の範囲 (1)回転側に固装した回転シールリングと、固定側に
スプリングを介し軸方向可動に保持した固定シールリン
グとを対接させ、かつシール面に前進角を有する動圧発
生用グループ(溝)を形成するものにおいて、上記シー
ル面を交互にかつ円周方向に動圧発生領域と非動圧発生
領域とに区分し、動圧発生領域にあっては浅い溝深さを
有するグループを形成し、非動圧発生領域にあっては深
い溝深さを有するグループを形成してなる動圧形弁接触
メカニカルシール。 3、発明の詳細な説明 本発明は、回転機器の軸封装置として多用される動圧非
接触メカニカルシールに関し、さらに詳しくは、油の如
き高粘度液・高周速条件のために発生動圧が大きくなる
軸封部分を主として対象とする動圧形弁接触メカニカル
シールの改良に関する。 この種動圧形非接触メカニカルシール(以下で 。 はメカニカルシールと略記する)の通常的な構成は第3
図に示す通りで、ケーシングlに対し回転軸2が挿通さ
れ、図面右方を低圧側、図面左方を高圧側とする時に、
回転軸2に回転シールリング3が装備され、ケーシング
l側に固定したフ、ランジ5にバックアップリング4を
介し固定シールリング6が装備され、しかして両シール
リング3゜6を回転軸軸線方向と平行同方向に対面させ
、スプリング7にて固定シールリング6とバックアップ
リング4を背部から受支している。また、回転シールリ
ング3には固定シールリング6とのシール面にグループ
と称呼されるスパイラル状の溝(J、tT、ヶ2.−7
よ□、871.12゜、ヵ゛1に前進角を有して加工さ
れる。このグループ8はその先端が高圧側に開口されて
いる。そして、このメカニカルシール構造において、−
転軸2が回転すれば、その回転方向に前進角を有するグ
ループ8に流体が進入して回転シールリング3と固定シ
ールリング6との間に動圧が発生し、この圧力とスプリ
ング7との圧力バランスによって両シールリング3,6
が非接触状態に保たれる。 ところで従来のメカニカルシールは動圧効果を大きく取
ることを重点として構造・形状が設計されており、気体
のような低粘度流体を対象とする場合には好ましかった
が、油のような高粘度流体を高周速条件でシールする場
合は、グループ8における発生動圧が過大となり、上記
バランス時の両シールリング3.6のシール面間隙が大
となって高圧側から低圧側への洩れ量が多くなる。また
、高動圧に基づくシール面の過大な歪により両シールリ
ング3.6が面接触してしまう不都合が発生し、ここに
種々の工夫が第4図乃至M47図の構成に見られるよう
に案出されるに至った。 即ち、第4図はグループ8の半径方向(奥行き)の長さ
文を短縮し、第5図はグループ8の前進角αを浅くし、
第6図はグループ8の幅dを細くし、第7図は逆にグル
ープ8の面積を極端に広くして、それぞれ動圧低下を図
っている。 しかし、第4図乃至第7図構成によれば、グループ8の
加工誤差の影響が大きく且つ煩雑であり、加工精度の低
下により発生動圧の理論値と実際値・との差が大きく、
設計計算が困難であると共に、信頼性に欠ける難点があ
る。また、第6図構成によればグループ幅dが狭いので
スラリーや摩耗粉が堆積して動圧を発生しなくなったり
、圧力分布が複雑で動圧計算が難かしい難点があ゛る。 また、第4図乃至第7図のいずれの構成においてもシー
ル面面積が広く、シール面内での発熱量が大きく、歪の
問題は解消できなかった。 従って、本発明の目的は、加工が容易であり、かつ発生
動圧の理論計算が簡易であると共に、熱歪が僅少な構造
のメカニカルシールの提供にある即ち、本発明は、回転
シールリングと固定シールリングとを対接させ、動圧発
生用グループによる発生動圧を用い、両リングを非接−
状態に保ちつつシールするにあたり、シール面生交互に
かつ円周方向に動圧発生領域と弁動圧発生領域とに区分
し、動圧発生領域にあっては浅い溝深さを有するグルー
プを形成し、非動圧発生領域にあっては深い溝深さを有
するグループを形成することを特徴とする。 本発明によれば、動圧発生領域にあってはその浅いグル
ープによる顕著な動圧発生が見られ、′非動圧発生領域
にあってはその深いグループにより発生動圧がなくなる
。 このように動圧発生領域をシール面円周方向上の数箇所
の狭い範囲に限定し、動圧を発生しない領域との境界を
明確に区別しているため、回転時の圧力分布が正確に推
定でき、従って、予め正確な理論計算が可能となる。 しかも、動圧発生領域のグループの長さ文や前進角αお
よび幅dには手を加えないので、グループの加工が容易
であり、加工精度が良く、これからも一層正確な発生動
圧の推定ができる。 また、動圧発生領域を限定(狭く)シているため、該領
域での発生動圧が大きくても、シール面全体のオープニ
ングフォースは小さくできる。 従って平衡時の圧力バランスがとりやすくなり、シール
面の間隙も狭くできるから、漏液量の少ないシール構造
にできる。 さらに非動圧発生領域のグループ溝を深くとることによ
って、シール面間流体の粘性剪断による発熱を抑止でき
、シール面の熱歪を小さく抑えることができる。同時に
該領域を循環する封液量が多くなり、シール部の冷却効
果が向上する。 以下、本発明の一実施例を第1図乃至第3図を用いて説
明する。 回転シールリング9において、固定シールリング6と対
接するシール面10は、その円周方向に交互に動圧発生
領域Aと非動圧発生領域Bとに区分される。動圧発生領
域Aは第1図から明らかなように非動圧発生領域Bに比
べ狭く限定されると共に、各動圧発生領域Aは等しい領
域幅を有し、従って各非動圧発生領域Bも等しい領域幅
を有する。 そし4各動圧発生領域Aには等しい数のグループ11が
低粘度液拳低周速条件下で従来加工されていたものとほ
ぼ同様な比較的浅い瀦深さで前進角を有してエツチング
加工され、他方各非動圧発生領域Bにあってはその領域
幅にわたり一個の深い溝深さを有したグループ12が同
じく前進角を有して加工される。その他の面部は従来通
リフラットな面であり、また固定シールリング6のシー
ル面も同様にフラットである。 かく構成されたグループ構造を有するメカニカルシール
にあっては、動圧発生領域Aではその浅い溝深さを有す
るグループ11故に高い動圧が発生されるが、非動圧発
生領域Bではそのグループ12の溝深さが深いのでほと
んど動圧発生が見られない、故に回転シールリング9と
固定シールリング6とのシール面間隙は動圧発生領域A
の発生動圧とスプリング7との圧力バランスで決定され
る。 しかして、動圧発生領域Aでの発生動圧が油等の高粘度
流体・高周速のために高くとも、該領域Aがシール面円
周方向の数箇所に限定して設けられているから、シール
面lO全周に動圧を発生させる従来タイプのものに比べ
総和としての発生動圧は低く、故にシール面間隙は狭く
抑えられる。 また、非動圧発生領域Bを設けて鎖部のグループ12の
溝を深く取れば、回転シールリング9と固定シールリン
グ6とのシール面面積が上記領域(B)公案質的に減少
し、そのために発熱面の面積を少なくできる。しかも、
回転に伴いグループ12に多量の流体が流入し、かつ流
出することで ゛ゝシール面に発生する熱は奮然され、
冷却作用が効 1果的に行なわれ、熱歪が抑止される。  ′なお、動圧発生部Aの形成数、および領域Aと □
゛□ Bの割合は密封条件によって最適値が変わり、高 、粘
度・高周速となるほど領域Aの割合を小さくする必要が
あるが、動圧を発生する領域Aとしない領域Bとが明確
に区別されているので、発生動圧の理論計算が・容易で
あり、実際値との差をなくすることができ、実用的であ
る。 また、動圧発生領域Aとして第1図ないし第3 、図で
はスパイラルグループを用い、たが、本発明の他の実施
例として、第8図に示す回転シールリング13を用いて
もよく、この回転シールリング13は、第1図に示した
回転シールリング9と同様に動圧発生領域Aと非動圧発
生領域Bとを円周方向に沿って交互に設けており、動圧
発生領域Aには、いわゆるレイリーステップ形状になし
た浅い溝深さのグループ14を形成したものでもよい。 つまり、第8図の浅い溝の深さのグールブ14は1回転
シールリング13の正面からみて、略矩形状の浅い深さ
の溝で、かつ回転シールリング13の回転方向に対し、
溝の一端を開口させた構成となしている。 おな、実施例で説明したシール面lOの材質はグールブ
加工する部位では耐摩耗性の関係で硬質材とする必要が
あるが、フラットな部位はカーボンのような軟質材で支
障ない。 また、前記実施例説明では動圧発生部Aをシールリング
9の外径側に、そしてシール部を内径側に形成したが、
シール条件によってはこれらの関係を逆としても良い。 さらに本発明が高粘度液・高周速条件の他に、中粘度液
・中間速条件下でも利用できることは勿論である。 4、図面の簡単な説明 第1図および第2図は本発明の一実施例を示し、第1図
は回転シールリングの正面図、第2図は第1図の■−■
線矢視切断図である。第3図は動圧形弁接触メカニカル
シール構造を説明するための断面図、第4図乃至第7図
は高粘度液・高周速条件に対する従来の動圧発生対策を
示すそれぞれシール面の要部正面図であり、第8図は本
発明の他の実施例を示す非回転シールリングの正面図で
ある。 1・・・ケーシング(固定側) 2・・・回転軸(回転側) 6・・・固定シールリング 7・・・スプリング 9・・・回転シールリング 11.14・・・浅い溝深さのグループ12・・−深い
溝深さのグループ A・・・動圧発生領域 B・・・非動圧発生領域 特許出願人 日本ビラー工業株式会社 代 理 人 弁理士 鈴江 孝− II8Ii
1 and 2 show one embodiment of the present invention, FIG. 1 is a front view of a rotary seal ring, and FIG. 2 is an II of FIG. 1.
-II line arrow sectional view. Figure 3 is a cross-sectional view for explaining the dynamic pressure type non-contact mechanical seal structure, and Figures 4 to 8 show the main points of the sealing surface, respectively, showing conventional measures for generating dynamic pressure against high viscosity liquid and high circumferential speed conditions. FIG. l... Casing (fixed side) 2... Rotating shaft (rotating side) 6... Fixed seal ring 7... Bellows 9... Rotating seal ring 11... Shallow groove depth group 12. ...Deep groove depth Group A...Dynamic pressure generating area B...Non-dynamic pressure generating area Patent applicant Nippon Pillar Industries Co., Ltd. Agent Patent attorney Takashi Suzue - Figure 1 Figure 2 Figure 4 Figure 5 Figure 8 Procedural Amendment 4th Director of the Japan Patent Office Kazuo Wakasugi1, Indication Patent Application No. 1988-808822, Title of Invention Dynamic Pressure Type Valve Contact Mechanical Seal Nippon Biller Kogyo Co., Ltd. - Voluntary 6 , Description and Drawing 7 to be amended Contents of amendment As shown in the attached sheet (1) The entire text of the description is amended as shown in the attached sheet. (2) In the drawings, Figure 8 is amended as shown in the attached sheet. Above □, ″ Description 11 Name of the invention Dynamic pressure type valve contact mechanical seal 2, Claims (1) A rotary seal ring fixed on the rotating side and a fixed member held movable in the axial direction via a spring on the stationary side. In a seal ring that faces the seal ring and forms a dynamic pressure generating group (groove) having an advancing angle on the sealing surface, the sealing surface is arranged alternately in the circumferential direction with a dynamic pressure generating area and a non-dynamic pressure generating area. A dynamic pressure type valve that is divided into two regions, and forms a group with a shallow groove depth in the dynamic pressure generation area, and a group with a deep groove depth in the non-dynamic pressure generation area. Contact mechanical seal. 3. Detailed description of the invention The present invention relates to a dynamic pressure non-contact mechanical seal that is often used as a shaft sealing device for rotating equipment. This invention relates to the improvement of dynamic pressure type valve contact mechanical seals that are mainly targeted at shaft seal parts where the dynamic pressure generated is large. The composition is the third
As shown in the figure, when the rotating shaft 2 is inserted into the casing l and the right side of the figure is the low pressure side and the left side of the figure is the high pressure side,
The rotary shaft 2 is equipped with a rotary seal ring 3, and the flange and flange 5 fixed to the casing L side are equipped with a fixed seal ring 6 via a backup ring 4, so that both seal rings 3°6 are aligned in the axial direction of the rotary shaft. A fixed seal ring 6 and a backup ring 4 are supported from the back by a spring 7 so as to face each other in parallel and the same direction. In addition, the rotary seal ring 3 has a spiral groove (J, tT, 2.-7
It is machined with an advancing angle of □, 871.12°, and □1. The tip of this group 8 is opened to the high pressure side. In this mechanical seal structure, −
When the rotating shaft 2 rotates, fluid enters the group 8 having an advance angle in the direction of rotation, generating dynamic pressure between the rotating seal ring 3 and the stationary seal ring 6, and the interaction between this pressure and the spring 7. Depending on the pressure balance, both seal rings 3 and 6
is kept in a contactless state. By the way, the structure and shape of conventional mechanical seals were designed with emphasis on maximizing the dynamic pressure effect, which was preferable when dealing with low-viscosity fluids such as gas, but when dealing with high-viscosity fluids such as oil. When sealing a viscous fluid under high circumferential speed conditions, the dynamic pressure generated in group 8 becomes excessive, and the gap between the sealing surfaces of both seal rings 3 and 6 during the above balance increases, causing leakage from the high pressure side to the low pressure side. The amount increases. In addition, due to excessive distortion of the sealing surface due to high dynamic pressure, there is an inconvenience that both seal rings 3.6 come into surface contact, and various measures have been taken to solve this problem, as shown in the configurations shown in Figures 4 to M47. It came to be devised. That is, in FIG. 4, the length in the radial direction (depth) of group 8 is shortened, and in FIG. 5, the advance angle α of group 8 is made shallow,
In FIG. 6, the width d of group 8 is narrowed, and in FIG. 7, on the contrary, the area of group 8 is made extremely wide, in order to reduce the dynamic pressure. However, according to the configurations shown in FIGS. 4 to 7, the influence of machining errors in group 8 is large and complicated, and the difference between the theoretical value and the actual value of the generated dynamic pressure is large due to a decrease in machining accuracy.
It is difficult to perform design calculations and is unreliable. Further, according to the configuration shown in FIG. 6, since the group width d is narrow, there are disadvantages in that slurry and abrasion particles accumulate and no dynamic pressure is generated, and the pressure distribution is complicated, making calculation of the dynamic pressure difficult. Further, in any of the configurations shown in FIGS. 4 to 7, the sealing surface area was large, the amount of heat generated within the sealing surface was large, and the problem of distortion could not be solved. Therefore, an object of the present invention is to provide a mechanical seal having a structure that is easy to process, allows easy theoretical calculation of generated dynamic pressure, and has a structure with minimal thermal distortion. The fixed seal ring is placed in contact with the ring, and the dynamic pressure generated by the dynamic pressure generation group is used to make both rings non-contact.
In order to seal while maintaining the condition, the seal surface is divided alternately and circumferentially into a dynamic pressure generation area and a valve operating pressure generation area, and a group with a shallow groove depth is formed in the dynamic pressure generation area. However, in the region where no dynamic pressure is generated, a group having a deep groove depth is formed. According to the present invention, in the dynamic pressure generating region, remarkable dynamic pressure is generated due to the shallow groups, and in the non-dynamic pressure generating region, the generated dynamic pressure disappears due to the deep groups. In this way, the area where dynamic pressure is generated is limited to a few narrow areas on the circumferential direction of the seal surface, and the boundaries between areas where no dynamic pressure is generated are clearly distinguished, so the pressure distribution during rotation can be accurately estimated. Therefore, accurate theoretical calculations can be made in advance. Moreover, since the length, advance angle α, and width d of the group in the dynamic pressure generation area are not modified, the group is easy to process, the machining accuracy is high, and the estimation of the generated dynamic pressure will continue to be even more accurate. I can do it. Furthermore, since the dynamic pressure generation area is limited (narrow), even if the dynamic pressure generated in the area is large, the opening force on the entire sealing surface can be made small. Therefore, it becomes easier to balance the pressure at equilibrium, and the gap between the seal surfaces can be narrowed, resulting in a seal structure with less liquid leakage. Furthermore, by making the group grooves deep in the non-dynamic pressure generating region, it is possible to suppress heat generation due to viscous shear of the fluid between the seal surfaces, and it is possible to suppress thermal distortion of the seal surfaces to a small level. At the same time, the amount of sealing liquid circulating in the area increases, improving the cooling effect of the sealing part. An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. In the rotary seal ring 9, the seal surface 10 that is in contact with the fixed seal ring 6 is divided into a dynamic pressure generating area A and a non-dynamic pressure generating area B alternately in the circumferential direction. As is clear from FIG. 1, the dynamic pressure generating area A is narrower than the non-dynamic pressure generating area B, and each dynamic pressure generating area A has the same area width, so each non-dynamic pressure generating area B also have equal region widths. 4. In each dynamic pressure generation area A, an equal number of groups 11 are etched with a relatively shallow depth and an advancing angle, which is almost the same as that conventionally processed under low viscosity and low circumferential speed conditions. On the other hand, in each non-dynamic pressure generating region B, a group 12 having one deep groove depth over the width of the region is also machined with an advancing angle. The other surfaces are conventionally flat surfaces, and the sealing surface of the fixed seal ring 6 is also flat. In the mechanical seal having such a group structure, high dynamic pressure is generated in the dynamic pressure generation area A due to the group 11 having a shallow groove depth, but in the non-dynamic pressure generation area B, the group 12 is generated. Because the groove depth is deep, almost no dynamic pressure is generated.Therefore, the sealing surface gap between the rotating seal ring 9 and the stationary seal ring 6 is in the dynamic pressure generation area A.
It is determined by the pressure balance between the generated dynamic pressure and the spring 7. Therefore, even if the dynamic pressure generated in the dynamic pressure generation area A is high due to high viscosity fluid such as oil and high circumferential speed, the area A is limited to a few locations in the circumferential direction of the seal surface. Therefore, the total dynamic pressure generated is lower than that of the conventional type in which dynamic pressure is generated around the entire circumference of the sealing surface lO, and therefore the sealing surface gap can be kept narrow. Furthermore, if the non-dynamic pressure generating region B is provided and the groove of the chain group 12 is made deep, the sealing surface area between the rotary seal ring 9 and the stationary seal ring 6 will be qualitatively reduced in the region (B). Therefore, the area of the heat generating surface can be reduced. Moreover,
As a large amount of fluid flows into and out of group 12 as it rotates, the heat generated on the sealing surface is stimulated.
Cooling action is performed effectively and thermal strain is suppressed. 'In addition, the number of formed dynamic pressure generating parts A, and the area A and □
゛□ The optimal value for the ratio of B changes depending on the sealing conditions, and the higher the viscosity and circumferential speed, the smaller the ratio of area A needs to be. Since they are differentiated, the theoretical calculation of the generated dynamic pressure is easy, and the difference with the actual value can be eliminated, making it practical. Further, although a spiral group is used as the dynamic pressure generating area A in FIGS. 1 to 3, as another embodiment of the present invention, a rotary seal ring 13 shown in FIG. The rotary seal ring 13, like the rotary seal ring 9 shown in FIG. 1, has dynamic pressure generating areas A and non-dynamic pressure generating areas B alternately provided along the circumferential direction. Alternatively, a group 14 having a shallow groove depth in a so-called Rayleigh step shape may be formed. In other words, the groove 14 having a shallow depth shown in FIG.
One end of the groove is open. Note that the material of the sealing surface lO explained in the embodiment needs to be a hard material in terms of wear resistance in the groove-processed part, but a soft material such as carbon can be used in the flat part. Furthermore, in the above embodiment description, the dynamic pressure generating portion A was formed on the outer diameter side of the seal ring 9, and the seal portion was formed on the inner diameter side.
Depending on the sealing conditions, these relationships may be reversed. Furthermore, it goes without saying that the present invention can be utilized not only under conditions of high viscosity liquid and high circumferential speed, but also under conditions of medium viscosity liquid and intermediate speed. 4. Brief description of the drawings FIGS. 1 and 2 show an embodiment of the present invention. FIG. 1 is a front view of the rotary seal ring, and FIG.
It is a cutaway view taken along the line. Figure 3 is a cross-sectional view for explaining the contact mechanical seal structure of a dynamic pressure type valve, and Figures 4 to 7 show the main points of the sealing surface, respectively, showing conventional measures for generating dynamic pressure against high viscosity liquid and high circumferential speed conditions. FIG. 8 is a front view of a non-rotating seal ring showing another embodiment of the present invention. 1... Casing (fixed side) 2... Rotating shaft (rotating side) 6... Fixed seal ring 7... Spring 9... Rotating seal ring 11.14... Group with shallow groove depth 12...-Group A with deep groove depth...Dynamic pressure generation area B...Non-dynamic pressure generation area Patent applicant Nippon Biller Industries Co., Ltd. Agent Patent attorney Takashi Suzue - II8Ii

Claims (1)

【特許請求の範囲】[Claims] (1)回転側に固装した回転シールリングと、固定側に
ベローズを介し保持した固定シールリングとを対接させ
、かつシール面に前進角を有する動圧発生用グループ(
溝)を形成するものにおいて、上記シール面を交互にか
つ円周方向に動圧発生領域と非動圧発生領域とに区分し
、動圧発生領域にあっては浅い溝深さを有するグループ
を形成し、非動圧発生領域にあっては深い溝深さを有す
るグループを形成してなる動圧形弁接触メカニカルシー
ル。
(1) A dynamic pressure generating group (with a rotary seal ring fixed on the rotating side and a fixed seal ring held on the stationary side via a bellows) facing each other and having an advancing angle on the sealing surface.
grooves), the sealing surface is divided alternately and circumferentially into a dynamic pressure generating area and a non-dynamic pressure generating area, and in the dynamic pressure generating area, a group having a shallow groove depth is formed. A dynamic pressure type valve contact mechanical seal formed by forming a group with a deep groove depth in a non-dynamic pressure generating area.
JP8088284A 1984-04-20 1984-04-20 Dynamic pressure type non-contact mechanical seal Granted JPS60222667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8088284A JPS60222667A (en) 1984-04-20 1984-04-20 Dynamic pressure type non-contact mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8088284A JPS60222667A (en) 1984-04-20 1984-04-20 Dynamic pressure type non-contact mechanical seal

Publications (2)

Publication Number Publication Date
JPS60222667A true JPS60222667A (en) 1985-11-07
JPS6333027B2 JPS6333027B2 (en) 1988-07-04

Family

ID=13730711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8088284A Granted JPS60222667A (en) 1984-04-20 1984-04-20 Dynamic pressure type non-contact mechanical seal

Country Status (1)

Country Link
JP (1) JPS60222667A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295079A (en) * 1988-05-20 1989-11-28 Nippon Pillar Packing Co Ltd Contactless mechanical seal
US5496047A (en) * 1992-07-04 1996-03-05 John Crane Uk Limited Mechanical seal containing a sealing face with grooved regions which generate hydrodynamic lift between the sealing faces
US6142478A (en) * 1998-02-06 2000-11-07 John Crane Inc. Gas lubricated slow speed seal
WO2019013233A1 (en) * 2017-07-13 2019-01-17 イーグル工業株式会社 Sliding member
US11708911B2 (en) 2017-10-03 2023-07-25 Eagle Industry Co., Ltd. Sliding component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3109658A (en) * 1957-02-04 1963-11-05 Atomic Energy Authority Uk Viscosity groove type shaft seal
US3527465A (en) * 1966-10-28 1970-09-08 Etablis Pompes Guinard Sa Rotary packing for use in rotary machines and more particularly in pumps

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3109658A (en) * 1957-02-04 1963-11-05 Atomic Energy Authority Uk Viscosity groove type shaft seal
US3527465A (en) * 1966-10-28 1970-09-08 Etablis Pompes Guinard Sa Rotary packing for use in rotary machines and more particularly in pumps

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295079A (en) * 1988-05-20 1989-11-28 Nippon Pillar Packing Co Ltd Contactless mechanical seal
JPH0574750B2 (en) * 1988-05-20 1993-10-19 Nippon Pillar Packing
US5496047A (en) * 1992-07-04 1996-03-05 John Crane Uk Limited Mechanical seal containing a sealing face with grooved regions which generate hydrodynamic lift between the sealing faces
US6142478A (en) * 1998-02-06 2000-11-07 John Crane Inc. Gas lubricated slow speed seal
WO2019013233A1 (en) * 2017-07-13 2019-01-17 イーグル工業株式会社 Sliding member
JPWO2019013233A1 (en) * 2017-07-13 2020-07-09 イーグル工業株式会社 Sliding member
US11708911B2 (en) 2017-10-03 2023-07-25 Eagle Industry Co., Ltd. Sliding component

Also Published As

Publication number Publication date
JPS6333027B2 (en) 1988-07-04

Similar Documents

Publication Publication Date Title
US4323255A (en) Mechanical seal with eccentric seal faces
US5364192A (en) Diamond bearing assembly
US7377518B2 (en) Mechanical seal ring assembly with hydrodynamic pumping mechanism
US5368314A (en) Contactless pressurizing-gas shaft seal
JP3650954B2 (en) Non-contact mechanical seal for high speed
EP3508763A1 (en) Sliding component
JP7366945B2 (en) sliding parts
EP0568192A1 (en) Secondary seal for gas turbines
US3957276A (en) Mechanical seal with pressurized lubrication pockets
US4266786A (en) Mechanical seal assembly
EP0109175B1 (en) Method of making a cast iron sealing ring
US4554985A (en) Rotary drill bit
JPH07224948A (en) Mechanical seal
JPS60222667A (en) Dynamic pressure type non-contact mechanical seal
JPWO2019163557A1 (en) Sealing device
JPH07180772A (en) Shaft seal device
US4302019A (en) Labyrinthine mechanical seal
JP3079562B2 (en) Two-way non-contact mechanical seal
JPH045846B2 (en)
JPS633495Y2 (en)
JPH08277941A (en) Mechanical seal
JPH0574750B2 (en)
WO2020218286A1 (en) Sliding component
JPH0130690Y2 (en)
JPH05187558A (en) Seal of body of revolution and process of seal action