JPS6316931Y2 - - Google Patents

Info

Publication number
JPS6316931Y2
JPS6316931Y2 JP13076683U JP13076683U JPS6316931Y2 JP S6316931 Y2 JPS6316931 Y2 JP S6316931Y2 JP 13076683 U JP13076683 U JP 13076683U JP 13076683 U JP13076683 U JP 13076683U JP S6316931 Y2 JPS6316931 Y2 JP S6316931Y2
Authority
JP
Japan
Prior art keywords
retainer
ring
driven
sealed
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13076683U
Other languages
Japanese (ja)
Other versions
JPS6037661U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13076683U priority Critical patent/JPS6037661U/en
Publication of JPS6037661U publication Critical patent/JPS6037661U/en
Application granted granted Critical
Publication of JPS6316931Y2 publication Critical patent/JPS6316931Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は主に高圧用として使用されるコンパク
トで経済的な静止型複式メカニカルシールに関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compact and economical stationary dual mechanical seal mainly used for high pressure applications.

各種の化学工業用機器に内蔵される回転軸密封
用の静止型複式メカニカルシール(以下単に複式
シールという)においては、密封対象流体の圧力
上昇に伴い、該流体側シール部の歪み量が増大
し、その結果密封端面の接触状態が悪くなりシー
ル性が低下するという現象が問題とされている。
即ちこの種の複式シールの構成を重合反応容器
(圧力条件は例えば約200Kg/cm2)における撹拌羽
根の回転軸に適用した場合について例示すると第
3図イ(要部縦断面説明図)の如くである。図に
おいて31は回転軸、32は該回転軸31のシー
ルボツクスである。又33a,33bはシールボ
ツクス32内に所定間隔をおいて配設される各シ
ートリングである。そしてこの配設に当つては、
シールボツクス32内の両端に固定された静止リ
ング受け34a,34bに、静止リング35a,
35bを周方向に沿つて夫々複数のピン36とば
ね37を交互に介在させて嵌装せしめ、更に該静
止リング35a,35bにもピン38を介してシ
ートリング33a,33bを取り付けると共に、
シートリング33a及び静止リング35aに対し
て、又シートリング33b及び静止リング35b
に対して夫々カバー39a,39bを嵌装し、且
つ静止リング受け34a,34bに取付けてい
る。尚ピン36,38は各ピン穴に遊嵌されてお
り、ルーズなピン結合状態を形成せしめている。
即ち静止リング35a,35bは夫々静止リング
受け34a,34bに対して前後上下に多少の移
動が可能である様に取付けられ、且つシートリン
グ33a,33bも夫々静止リング35a,35
bに対して同様に多少の揺動が可能である様に取
付けられている。そしてシートリング33a,3
3bは後記する従動リング40a,40bと接触
して複式密封端面を構成する。
In stationary double-acting mechanical seals (hereinafter simply referred to as double-acting seals) for sealing rotary shafts built into various types of chemical industrial equipment, the amount of strain in the fluid-side seal increases as the pressure of the fluid to be sealed increases. As a result, the contact condition of the sealed end surfaces deteriorates and the sealing performance deteriorates, which is a problem.
That is, an example of the case where this type of double seal configuration is applied to the rotating shaft of a stirring blade in a polymerization reaction vessel (pressure condition is about 200 kg/cm 2 , for example) is as shown in Figure 3 A (explanatory longitudinal cross-sectional view of the main part). It is. In the figure, 31 is a rotating shaft, and 32 is a seal box for the rotating shaft 31. Further, 33a and 33b are seat rings arranged within the seal box 32 at predetermined intervals. And regarding this arrangement,
Stationary rings 35a and 34b are fixed to both ends of the seal box 32, respectively.
35b are fitted along the circumferential direction with a plurality of pins 36 and springs 37 interposed alternately, and seat rings 33a, 33b are also attached to the stationary rings 35a, 35b via pins 38,
For the seat ring 33a and stationary ring 35a, also for the seat ring 33b and stationary ring 35b.
Covers 39a and 39b are fitted over these, respectively, and are attached to stationary ring receivers 34a and 34b. The pins 36 and 38 are loosely fitted into each pin hole, forming a loose pin connection.
That is, the stationary rings 35a, 35b are attached to the stationary ring receivers 34a, 34b, respectively, so that they can move up and down to some extent, and the seat rings 33a, 33b are also attached to the stationary rings 35a, 35, respectively.
Similarly, it is mounted so that it can swing somewhat relative to b. and seat ring 33a, 3
3b is in contact with driven rings 40a and 40b, which will be described later, to form a double-sealed end surface.

従動リング40a,40bはいずれも回転軸3
1に一体的に取付けることによつて該回転軸31
と共に回転可能とするが、その取付構造は下記の
通りである。即ちリテーナ41は両側面が完全な
平面に形成されており、該両平面には夫々従動リ
ング40a,40bの相対向側端面を夫々図に現
われない回り止めピンを介して当接せしめると共
に、これらの従動リング40a,40bは上側従
動リング押え44及び下側従動リング押え43に
よりリテーナ41の左右側に一体的に配設されて
いる。またリテーナ41の両側面は予めラツプ加
工され、超精密な平面(表面あらさで言えばμ=
0.0003mm程度、平坦度言えば0.7μm下程度)に仕
上げられている。尚従動リング40a,40bの
相対向側端面及び密封端面がラツプ加工されてい
ることは勿論である。こうして従動リング40
a,40bを左右に有するリテーナ41は更に回
転軸31の段付部31aに嵌装して位置決めする
と共に、スリーブ45及びねじ46によつて回転
軸31に固定されている。
The driven rings 40a and 40b are both connected to the rotating shaft 3.
1 by integrally attaching the rotary shaft 31 to
The mounting structure is as follows. That is, both side surfaces of the retainer 41 are formed to be completely flat, and the opposing side end surfaces of the driven rings 40a and 40b are brought into contact with these flat surfaces via detent pins (not shown in the figure), respectively. The driven rings 40a and 40b are integrally disposed on the left and right sides of the retainer 41 by an upper driven ring holder 44 and a lower driven ring holder 43. In addition, both sides of the retainer 41 are lapped in advance to create an ultra-precise flat surface (in terms of surface roughness, μ=
It is finished to a flatness of about 0.0003mm (about 0.7μm or less). It goes without saying that the opposing end faces and sealed end faces of the driven rings 40a and 40b are lapped. In this way, the driven ring 40
The retainer 41 having left and right portions a and 40b is further fitted onto the stepped portion 31a of the rotary shaft 31 for positioning, and is fixed to the rotary shaft 31 by a sleeve 45 and a screw 46.

又47a,47a′は高圧冷却液(以下密封液と
いう)の入口、47bは密封液の出口であり、シ
ールボツクス32内の空間48には密封液を封入
しシールすべきガス圧(約200Kg/cm2)より少し
高めの圧力(約220Kg/cm2)を負荷させて密封端
面における熱歪みの発生を可及的に防止すると共
に、静止リング35a、シートリング33a及び
静止リング35b、シートリング33bを夫夫従
動リング40a,40bに十分押圧付勢せしめ
て、密封端面を安定させるべく配慮がなされてい
る。
Further, 47a and 47a' are inlets for high-pressure cooling liquid (hereinafter referred to as sealing liquid), and 47b is an outlet for sealing liquid, and the space 48 in the seal box 32 is filled with sealing liquid to maintain the gas pressure to be sealed (approximately 200 kg/kg). cm 2 ) is applied to prevent the occurrence of thermal distortion on the sealed end surface as much as possible, and the stationary ring 35a, seat ring 33a, stationary ring 35b, seat ring 33b Consideration has been made to sufficiently press and urge the husband and follower rings 40a and 40b to stabilize the sealed end surface.

尚空間49には上述の如く圧力約200Kg/cm2
ガスが負荷し、又空間50には大気圧が負荷する
ので、密封端面以外におけるこれら相互間の遮断
を目的として適所にOリングを配設せしめてい
る。特に51〜54は、約200Kg/cm2のガスと約
200Kg/cm2の密封液との間のシールを考慮して配
設されたOリングであり、又55〜58は220
Kg/cm2の密封液と大気圧との間のシールを考慮し
て配設されたOリングである。以上の様な構成に
よつて複式密封端面でのシール性が確保できる様
配慮されている。
As mentioned above, the space 49 is loaded with gas at a pressure of about 200 kg/cm 2 and the space 50 is loaded with atmospheric pressure, so O-rings are placed at appropriate locations to isolate them from each other except at the sealed end faces. It is set up. In particular, 51 to 54 are about 200Kg/cm 2 of gas and about
200Kg/cm 2 This is an O-ring arranged in consideration of the sealing fluid, and 55 to 58 are 220Kg/cm2.
This O-ring is designed to provide a seal between the Kg/cm 2 sealing liquid and atmospheric pressure. With the above-described configuration, consideration has been given to ensuring sealing performance at the double-sealed end face.

ところでこの様な高圧用複式シールにおいては
装置の運転圧力の上昇に応じて密封対象流体の圧
力を高くしていくとシール性が急激に悪化すると
いう現象が問題となる点については既に述べた通
りである。これは第3図ロ〔第3図イの口部の作
用説明拡大図〕に示す様に空間49内のガス圧が
100Kg/cm2程度以上に上昇すると、リテーナ41
に作用するスラスト力(図中矢印で示す如き軸方
向力)も無視できない程度に大きくなり、リテー
ナ41の歪み量もいきおい増大することに起因す
るものであり、その結果リテーナ41に一体的に
抱持されている従動リング40bにもほぼ同程度
の歪みが同じような分布をもつて生じ、従つてガ
ス側密封端面は図示の如きいわゆる面開き状態と
なるので密封流体洩れが急激に増加するためであ
る。
By the way, as already mentioned, the problem with such high-pressure compound seals is that as the pressure of the fluid to be sealed increases as the operating pressure of the device increases, the sealing performance deteriorates rapidly. It is. This is because the gas pressure in the space 49 is
When the temperature rises to more than 100Kg/cm2, the retainer 41
This is due to the fact that the thrust force (axial force as shown by the arrow in the figure) acting on the retainer 41 becomes too large to be ignored, and the amount of strain on the retainer 41 also increases. Almost the same degree of distortion occurs in the driven ring 40b held in the same manner, and the gas side sealed end face becomes an open state as shown in the figure, so that the leakage of the sealed fluid increases rapidly. It is.

そこでこの様な不都合を解決するための手段と
してこれまで提案されたものを要約すると次の通
りである。
The following is a summary of the methods that have been proposed so far to solve these inconveniences.

リテーナ41の軸方向厚みを大きくする。 The axial thickness of the retainer 41 is increased.

リテーナ41と回転軸31を一体的とする。 The retainer 41 and the rotating shaft 31 are made integral.

従動リング40bのガス側端面を予めテーパ
加工しておく。
The gas side end surface of the driven ring 40b is tapered in advance.

しかしの案ではメカニカルシールの構成が大
きくなり、製作コストが高くなる。又の案では
リテーナ41の側面のラツプ仕上げ加工が困難に
なり、前述の如き仕上げ精度が得られない。従つ
て高圧運転下でのガス洩れ量を低減させることが
できたとしても、逆に中圧以下の運転時のシール
性が低下するので解決策とはなり得ない。又材料
コストが高くなるという点でも好ましくない。更
にの案ではガス側密封端面に応力集中部が形成
されるので該集中部の摩耗が早められ、シール性
の早期悪化を招き、やはり好ましくない。
However, in this proposal, the mechanical seal structure becomes large and the manufacturing cost becomes high. In the other plan, it becomes difficult to lap finish the side surface of the retainer 41, and the finishing accuracy as described above cannot be obtained. Therefore, even if it is possible to reduce the amount of gas leakage under high-pressure operation, this cannot be a solution because the sealing performance during operation at intermediate pressure or lower conversely deteriorates. It is also undesirable in that the material cost increases. In the further proposal, a stress concentration part is formed on the gas side sealing end face, which accelerates wear of the stress concentration part, leading to early deterioration of sealing performance, which is also undesirable.

本考案はこうした事情に着目し、メカニカルシ
ール部の構成を特に大きくすることなくしかもシ
ール性の長期安定を保障し得る様な複式シールを
開発すべく鋭意検討の末、完成されたものであ
り、この様な本考案の複式シールは、少なくとも
密封対象流体側における従動リングのリテーナ側
端面が、密封対象流体加圧下におけるリテーナの
密封流体側々面形状に予め符号する様に形成配置
されてなる点に要旨を有するものである。
The present invention was developed with attention to these circumstances, and was completed after intensive study in order to develop a double seal that can ensure long-term stability of sealing performance without particularly increasing the structure of the mechanical seal part. Such a double seal of the present invention has the feature that at least the end face of the driven ring on the side of the fluid to be sealed on the retainer side is formed and arranged so as to correspond in advance to the side shape of the fluid to be sealed of the retainer when the fluid to be sealed is pressurized. The main points are as follows.

以下実施例図面を参照しつつ本考案の構成及び
作用効果を説明するが、従来例と同一である基本
的な構成についてはその重複説明を避け、本考案
の特徴構成を中心に説明する。
The configuration and effects of the present invention will be explained below with reference to the drawings of the embodiments, but the basic configuration that is the same as the conventional example will not be repeatedly explained, and the characteristic configuration of the present invention will be mainly explained.

第1図は第3図イの口部拡大図に相当する図面
で、重合反応容器の加圧運転前における複式シー
ルのセツト状態を示している。ガス側従動リング
40bのリテーナ側端面が、後述の加圧運転下に
おけるリテーナ41のガス側々面形状に予め符号
する様な形状構造に形成して配設されていること
が理解できる。又図中のΔlの値は、負荷条件に
よつて最適値が異なるが実験例によるとガス圧
200Kgf/cm2、シールサイド240mm、リテーナの軸
方向厚さ40mmの条件のとき、4〜6.5μmが適切で
あり、同様にガス圧力を100Kgf/cm2に設定した
ときは、2〜3μmが適切であることが確認されて
いる。更にΔlの値をあまり大きくし過ぎるとガ
ス側加圧時において、密封端面の平坦が維持され
難くなることも確認された。このような事情並び
に加工上の精度をも考慮してΔl値は2〜10μmに
設定するのが好ましいと言える。尚密封端面には
従来通り垂直面が形成されている。
FIG. 1 is a drawing corresponding to the enlarged view of the opening in FIG. 3A, and shows the set state of the multiple seal before pressurizing the polymerization reaction vessel. It can be seen that the retainer side end surfaces of the gas side driven ring 40b are arranged in a shape that corresponds in advance to the shape of the gas side surfaces of the retainer 41 under pressurized operation, which will be described later. Also, the optimum value of Δl in the figure varies depending on the load conditions, but according to experimental examples, the value of Δl varies depending on the gas pressure.
Under the conditions of 200Kgf/cm 2 , seal side 240mm, and retainer axial thickness 40mm, 4 to 6.5μm is appropriate; similarly, when the gas pressure is set to 100Kgf/cm 2 , 2 to 3μm is appropriate. It has been confirmed that Furthermore, it has been confirmed that if the value of Δl is too large, it becomes difficult to maintain the flatness of the sealed end surface when pressurizing the gas side. Considering these circumstances and processing accuracy, it is preferable to set the Δl value to 2 to 10 μm. Note that a vertical surface is formed on the sealed end surface as in the conventional case.

重合反応容器の加圧運転が開始されると、空間
49には高圧ガスが負荷すると共に空間48には
更に高圧の密封液が負荷される。従つて軸方向に
大きなスラスト力が作用し、リテーナ41は図示
の如く大きく歪む。このときガス側従動リング4
0bのリテーナ側端面はリテーナ41のガス側端
面に当接するが、この当接は上述の構成に基づき
いわば全面均一当接状態となる。従つてガス側密
封端面の垂直平面度は十分均一に保持され、ガス
洩れの恐れは無くなる。
When the pressurized operation of the polymerization reaction vessel is started, the space 49 is loaded with high-pressure gas, and the space 48 is further loaded with a high-pressure sealing liquid. Therefore, a large thrust force acts in the axial direction, and the retainer 41 is greatly distorted as shown. At this time, the gas side driven ring 4
The retainer-side end surface of 0b contacts the gas-side end surface of the retainer 41, and this contact is, so to speak, in a state of uniform contact over the entire surface based on the above-described configuration. Therefore, the vertical flatness of the gas-side sealed end face is maintained sufficiently uniform, eliminating the risk of gas leakage.

尚大気側の従動リング40aについてはリテー
ナ41の歪みに応じて同程度に歪むため、密封端
面は図示の如く下側が面開き状態となる。従つて
面圧効果により密封液の洩れが特に増加するとい
うことはない。但し従動リング40aの摩耗が早
められる恐れがあり、この点が懸念される場合に
は例えば従動リング40aのリテーナ側端面を、
予め加圧運転下におけるリテーナ41の大気側々
面形状に近いものに形成しておくことにより、大
気側の密封端面についてもガス側密封端面とほぼ
同様の垂直平面度を確保し、延命化を図ることも
可能である。
Since the driven ring 40a on the atmospheric side is distorted to the same extent as the retainer 41, the sealed end surface is open at the bottom as shown in the figure. Therefore, leakage of the sealing liquid does not particularly increase due to the surface pressure effect. However, there is a risk that the driven ring 40a will wear out quickly, and if this is a concern, for example, the end surface of the driven ring 40a on the retainer side,
By forming the retainer 41 in advance to have a shape similar to the shape of both sides of the retainer 41 in the atmosphere during pressurized operation, the sealed end face on the atmospheric side can have almost the same vertical flatness as the sealed end face on the gas side, thereby extending the life of the retainer 41. It is also possible to

尚上記実施例は一代表例であつて本考案を限定
する性質のものではなく、前述の趣旨に沿つて各
部品の材質、形状等の設計を変更することは全て
本考案の技術的範囲に属する。
The above embodiment is a representative example and does not limit the present invention. All changes in the design of the materials, shapes, etc. of each part in accordance with the above-mentioned spirit are within the technical scope of the present invention.

又本考案のメカニカルシールは上記の様な化学
装置の回転軸への適用に限られることなく、あら
ゆる産業機械をはじめ自動車、航空用タービン等
の回転軸に適用可能であり、密封流体も水溶液、
潤滑油、気体等がいずれも適用対象となり得る。
In addition, the mechanical seal of the present invention is not limited to application to the rotating shafts of chemical equipment as described above, but can be applied to the rotating shafts of all kinds of industrial machinery, automobiles, aviation turbines, etc., and the sealing fluid can be aqueous solution,
Lubricating oil, gas, etc. can all be applied.

本考案は以上の様に構成されるが、要は少なく
とも密封対象流体側の従動リングについてその断
面形状を適応性の良い形状に形成せしめているの
で、シール性を長期に亘り安定に保持することの
できるコンパクト且つ経済的な高圧用の静止型複
式メカニカルシールを提供できることとなつた。
The present invention is constructed as described above, but the point is that at least the driven ring on the side of the fluid to be sealed has a cross-sectional shape that is highly adaptable, so that the sealing performance can be stably maintained over a long period of time. It has now become possible to provide a compact and economical stationary double-acting mechanical seal for high pressure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案に係るメカニカルシールを例示
する複式密封端面部の模式構成図、第2図は同模
式作用図、第3図イは従来のメカニカルシールを
示す要部断面模式構成図、第3図ロは第3図イの
口部拡大図である。 31……回転軸、32……シールボツクス、3
3c,33d……シートリング、40a,40b
……従動リング、41……リテーナ。
Fig. 1 is a schematic configuration diagram of a dual sealing end face illustrating a mechanical seal according to the present invention, Fig. 2 is a schematic operational diagram of the same, and Fig. 3A is a schematic sectional configuration diagram of main parts showing a conventional mechanical seal. Figure 3B is an enlarged view of the mouth of Figure 3A. 31... Rotating shaft, 32... Seal box, 3
3c, 33d... Seat ring, 40a, 40b
... Driven ring, 41 ... Retainer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 回転軸のシールボツクス内に所定間隔をおいて
配置された各シートリングの相対向側端面と、該
回転軸に固定され且つほぼ完全な平面に形成され
た両側面を有するリテーナの左右側に従動リング
押えにより夫々一体的に配設された各従動リング
の相背面側端面とが夫々接触することにより各密
封端面を構成してなる静止型複式メカニカルシー
ルにおいて、前記従動リングは、少なくとも密封
対象流体側における同リングのリテーナ側端面
が、密封流体加圧下におけるリテーナの密封流体
側々面形状に予め符号する様に形成配置されてな
ることを特徴とする静止型複式メカニカルシー
ル。
Driven on the left and right sides of a retainer, which has opposing side end surfaces of seat rings arranged at predetermined intervals in a seal box of a rotating shaft, and both side surfaces fixed to the rotating shaft and formed into almost perfect planes. In a stationary double-acting mechanical seal in which each sealed end surface is formed by contacting the end surfaces of each driven ring integrally arranged with the rear side end surfaces of each driven ring by a ring retainer, the driven rings are configured to at least seal the fluid to be sealed. A stationary double mechanical seal characterized in that the retainer-side end surfaces of the ring on the sides are formed and arranged so as to correspond in advance to the shape of the side surfaces of the sealing fluid of the retainer when the sealing fluid is pressurized.
JP13076683U 1983-08-23 1983-08-23 Stationary double action mechanical seal Granted JPS6037661U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13076683U JPS6037661U (en) 1983-08-23 1983-08-23 Stationary double action mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13076683U JPS6037661U (en) 1983-08-23 1983-08-23 Stationary double action mechanical seal

Publications (2)

Publication Number Publication Date
JPS6037661U JPS6037661U (en) 1985-03-15
JPS6316931Y2 true JPS6316931Y2 (en) 1988-05-13

Family

ID=30295864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13076683U Granted JPS6037661U (en) 1983-08-23 1983-08-23 Stationary double action mechanical seal

Country Status (1)

Country Link
JP (1) JPS6037661U (en)

Also Published As

Publication number Publication date
JPS6037661U (en) 1985-03-15

Similar Documents

Publication Publication Date Title
US6655693B2 (en) Non-contacting gas compressor seal
US5014999A (en) Pressure enhanced self aligning seal
KR101250561B1 (en) Mechanical seal device
US2760794A (en) Vibration rings for mechanical seals
US4425699A (en) Method of connecting two ringformed elements
US4787642A (en) X-shaped high pressure sealing structure
EP2295835B1 (en) Mechanical seal device
FI71824C (en) MEKANISK TAETNING.
US4691927A (en) Temperature-compensating mechanical face seal
US3720418A (en) Seal assembly and method for making same
US2957712A (en) Pressure actuated sealing means for hydraulic actuators
JPS6316931Y2 (en)
US3397894A (en) Rotary shaft seal
EP3627014B1 (en) Mechanical seal
JPS6243180Y2 (en)
US4463958A (en) Mechanical face seals
JPS5817936Y2 (en) bearing device
US2443151A (en) Rotary seal
JPH0320627B2 (en)
JP2814133B2 (en) Rotary shaft sealing device
CN212959847U (en) Mechanical seal's axial seal structure
GB2155120A (en) Mechanical face seal
JPH0627885Y2 (en) mechanical seal
JPH0628399Y2 (en) Stern tube shaft sealing device
JPS58128567A (en) Mechanical seal