JPS60146961A - Static double mechanical seal - Google Patents

Static double mechanical seal

Info

Publication number
JPS60146961A
JPS60146961A JP387984A JP387984A JPS60146961A JP S60146961 A JPS60146961 A JP S60146961A JP 387984 A JP387984 A JP 387984A JP 387984 A JP387984 A JP 387984A JP S60146961 A JPS60146961 A JP S60146961A
Authority
JP
Japan
Prior art keywords
ring
seal
seat
sealed
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP387984A
Other languages
Japanese (ja)
Other versions
JPH0320627B2 (en
Inventor
Kazuo Sonoda
園田 和夫
Rikita Nakayama
中山 力太
Shigemi Hosozuna
細砂 茂美
Kanji Oba
大場 寛二
Hirobumi Aritsubo
有坪 博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Kobe Steel Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd, Kobe Steel Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP387984A priority Critical patent/JPS60146961A/en
Publication of JPS60146961A publication Critical patent/JPS60146961A/en
Publication of JPH0320627B2 publication Critical patent/JPH0320627B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/3464Mounting of the seal
    • F16J15/348Pre-assembled seals, e.g. cartridge seals
    • F16J15/3484Tandem seals

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Sealing (AREA)

Abstract

PURPOSE:To maintain good sealing performance even under variable pressure operation, by fitting an inner ring thinner than the outer ring while having diameter same with the seal diameter of seat ring receiver slidably and forming a retainer. CONSTITUTION:A retainer 11 is constructed by fitting an outer ring 11a over an inner ring 11b slidably in axial direction. Both faces of outer ring 11a are maintained approximately perfect planar where the inner ring 11b is thinner than the outer ring 11a while the outer diameter is made same with the seal diameter D of seat ring receiver 34b. Consequently, all forces to be applied onto the outer ring 11a will be the combination of pressure of enclosed liquid and pressing force of spring 37 where they are balanced perfectly to apply no moment onto the opposite side faces of outer ring 11a.

Description

【発明の詳細な説明】 本発明は圧力変化に対して良好なシール効果を発揮し得
るコンパクトで経済的な静止型複式メカニカルシールに
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compact and economical stationary dual mechanical seal that can exhibit good sealing effects against pressure changes.

各種の化学工業機器に内蔵される回転軸密封用の静止型
複式メカニカルシール(以下単に複式シールという)に
おいては、密封対象流体の圧力上昇に伴い、該流体側シ
ール部の歪み量が増大し、その結果密封端面の接触状態
が悪くなシシール性が低下するという現象み澗題とされ
ている。即ちこの種の代表的り複式シールの構成を第3
図(a)(要部縦断面模式図)に基づいて説明すれば次
の通シである1図において31は回転軸、32は該回転
軸31のシールボックスである。′又33a、33bは
シールボックス32内に所定間隔をおいて配設ボれる各
シートリングである。そしてとの配設に当たっては、シ
ールボックス32内の両端に固定されたシートリング受
け34a、34bには、周方向に沿って夫々複数のピン
36とげね37を交互に介在させて嵌装されている。尚
ピン36は各ピン穴に表装されておシ、ルーズなピン結
合状態を形成せしめている。即ちシートリング33a。
In stationary double-acting mechanical seals (hereinafter simply referred to as double-acting seals) for sealing rotary shafts built into various chemical industrial equipment, as the pressure of the fluid to be sealed increases, the amount of strain in the fluid-side seal increases. As a result, the problem is that the contact condition of the sealed end surface is poor and the sealing performance is deteriorated. That is, the configuration of this type of typical double seal is the third one.
The following explanation will be given based on FIG. 1 (a schematic vertical cross-sectional view of the main part). In FIG. 1, 31 is a rotating shaft, and 32 is a seal box for the rotating shaft 31. Also, 33a and 33b are seat rings disposed within the seal box 32 at predetermined intervals. In the arrangement, a plurality of pins 36 and barbs 37 are alternately inserted into the seat ring receivers 34a and 34b fixed at both ends of the seal box 32 along the circumferential direction. There is. The pins 36 are mounted in each pin hole to form a loose pin connection. That is, the seat ring 33a.

33b全体は夫々シー) IJング受け34a、34.
bに対して前後上下に多少の移動が可能である様に取付
けられている。そしてシートリング33a。
33b, respectively) IJ receivers 34a, 34.
It is attached so that it can be moved slightly forward and backward and up and down relative to b. and seat ring 33a.

33bは後記する従動リング40a、40bと接触して
複式密封端面を構成する。
33b is in contact with driven rings 40a and 40b, which will be described later, to form a double-sealed end surface.

従動リング40a 、40bはいずれも回転軸31に一
体的に取付けることによって該回転軸31と共に回転可
能とするが、その取付構造は下記の通シである。即ちリ
テーナ41は両側面が完全な平面に形成されており、該
両半部には夫々従動リング40a+40bの相対向側端
面を夫々図に現われない回シ止めピンを介して当接せし
めると共に、これらの従動リング40 a + 40 
bは上側従動リング押え44及び下側従動リイグ押え4
3によりリテーナ41の左右側に7体的に配設されてい
る。
The driven rings 40a and 40b are both integrally attached to the rotating shaft 31 so that they can rotate together with the rotating shaft 31, and their mounting structure is as follows. That is, both sides of the retainer 41 are formed to be completely flat, and the opposite end surfaces of the driven rings 40a and 40b are brought into contact with the two halves through rotation pins not shown in the drawings, respectively. Driven ring 40a + 40
b is an upper driven ring presser 44 and a lower driven ring presser 4
3, seven bodies are arranged on the left and right sides of the retainer 41.

またリテーナ41の両側面は予めラップ加工され、超精
密な平面(表面あらさで言えばμ=0.0003mm程
度、平坦度で言えば0.7μm下程度)に仕上げられて
いる。尚従動リング40a、40bの相対向側端面及び
密封端面がラップ加工されていること rは勿論である
。こうして従動リング40a+40bを左右に有するリ
テーナ41は更に回転軸31の段付部31aに表装して
位置決めすると共に、スリーブ45及びねじ46によっ
て回転軸31に固定されている。
Further, both side surfaces of the retainer 41 are lapped in advance and finished to an ultra-precise flat surface (surface roughness of approximately μ=0.0003 mm, flatness of approximately 0.7 μm or less). It goes without saying that the opposing end faces and sealed end faces of the driven rings 40a and 40b are lapped. In this way, the retainer 41 having the driven rings 40a+40b on the left and right sides is further mounted and positioned on the stepped portion 31a of the rotating shaft 31, and is fixed to the rotating shaft 31 by the sleeve 45 and the screw 46.

又47a+47’aは高圧冷却液(以下密封液という)
の入口、47bは密封液の出口であシ、シールボックス
32内の空間48には密封液を封入し密封対象流体より
少し高めの圧力を負荷させて密封端面における熱歪みの
発生を可及的に防止すると共に、シートリング33a、
33bを夫々従動リング40 a + 40 bに十分
抑圧付勢せしめて、密封端面を安定させるべく配慮がな
されている。
Also, 47a+47'a is high pressure cooling fluid (hereinafter referred to as sealing fluid)
The inlet 47b is the outlet for the sealing liquid, and the sealing liquid is sealed in the space 48 in the seal box 32, and a pressure slightly higher than that of the fluid to be sealed is applied to minimize the occurrence of thermal distortion at the sealed end surface. The seat ring 33a,
33b are sufficiently pressed against the driven rings 40a and 40b, respectively, to stabilize the sealed end surface.

尚空間49には所定圧力の密封対象流体が負荷し、又空
間50には大気圧が負荷するので、密封端面以外におけ
るこれらの相互間の遮断を目的として適所に0リングを
配置設せしめている。特に51゜52.54は、密封対
象流体と密封液との間のシールを考慮して配設さされた
Oリングであ)、又55.56,58は密封液と大気圧
との間のシールを考慮して配設された0リングである。
Since the space 49 is loaded with the fluid to be sealed at a predetermined pressure, and the space 50 is loaded with atmospheric pressure, an O-ring is placed at an appropriate location for the purpose of isolating them from each other other than at the sealed end face. . In particular, 51, 52, and 54 are O-rings arranged in consideration of the seal between the fluid to be sealed and the sealing liquid), and 55, 56, and 58 are the O-rings that are arranged to provide a seal between the sealing liquid and the atmospheric pressure. This is an O-ring placed with sealing in mind.

以上の様な構成によって複式密封端面でのシール性が確
保できる様配慮されている。
With the above-described configuration, consideration has been given to ensuring sealing performance at the double-sealed end face.

ところでこの様な高圧用複式シールにおいては装置の運
転圧力の上昇に応じて密封対象流体の圧力を高くしてい
くとシール性が急激に悪化するという現象が問題となる
点については既に述べた通りである。これは第3図(b
)〔第3図(a)の要部作用説明拡大図〕に示す様に空
間49内の密封対象流体圧が上昇してくるとリテーナ4
1に作用するスラスト力(図中矢印で示す如き軸方向力
)も無視できない程度に大きくなシ、リテーナ41の歪
み量もいきおい増大することに起因するものであシ、そ
の結果リテーナ41に一体的に抱持されている従動リン
グ40bにもほぼ同程度の歪みが同じような分布をもっ
て生じ、従ってガス側密封端面は図示の如きいわゆる面
開き状態となるので密封流体洩れが急激に増加するため
である。
By the way, as already mentioned, the problem with such high-pressure compound seals is that as the pressure of the fluid to be sealed increases as the operating pressure of the device increases, the sealing performance deteriorates rapidly. It is. This is shown in Figure 3 (b
) As shown in FIG. 3(a), which is an enlarged diagram for explaining the main part operation, when the pressure of the fluid to be sealed in the space 49 increases, the retainer 4
This is due to the fact that the thrust force (axial force as shown by the arrow in the figure) acting on the retainer 41 is too large to be ignored, and the amount of strain on the retainer 41 also increases sharply. The driven ring 40b, which is held by the driven ring 40b, also suffers from almost the same amount of distortion with the same distribution, and the gas-side sealed end face becomes the so-called open-face state as shown in the figure, resulting in a rapid increase in sealed fluid leakage. It is.

そこで本発明者等はこの様な不都合を解決するための手
段として、少なくとも密封対象流体側における従動リン
グのリテーナ側端面を、密封対象流体加圧下におけるリ
テーナの密封流体側々面形状に予め符合する様に形成配
置せしめておくことによシ、メカニカルシール部の構成
を特に大きくすることなくしかもシール性の長期安定を
保障し得る様な複式シールの開発に成功し、先忙実用新
案登録出願を行なった(実願昭58−130゛76.6
号)。しかしこの先願の複式シールを適用してなる機器
をいわゆるパッチ的に運転する場合、新たな問題が生じ
ることが明らかとなった。即ち運転開始から所定の加圧
運転に至るまで9間(圧力上昇中)及び所定の加圧運転
から運転停止に至るまでの間(圧力下降中)は、従動リ
ングのリテーナ側端面とリテーナの密封端面の側面が正
しく対面できるに至っていないので、密封端面は両開き
状態となってやは多密封流体漏れが発生し、特に上記パ
ッチ運転が高圧で行なわれるときほど圧力変動中が大き
いためにその漏れ量が増加するという問題が起こること
が明らかと々つた。この対策としては、前述した本発明
者等の先願考案に係る複式シールのリテーナ及び従動リ
ング等の剛性を高めることによシ密封流体漏れを許容範
囲内に抑えることも一応考えられるが、その手段では形
状が大きくなシ、又材質が高価となってコンパクト化及
び製作コストの低減化と−う要請に対応できない。
Therefore, as a means for solving such inconveniences, the present inventors made the retainer side end surfaces of the driven ring on the side of the fluid to be sealed in advance conform to the shape of the sides of the fluid to be sealed of the retainer under pressure of the fluid to be sealed. By forming and arranging them in a similar manner, we succeeded in developing a double seal that could guarantee long-term stability of sealing performance without making the structure of the mechanical seal part particularly large. I did it.
issue). However, it has become clear that a new problem arises when a device to which the dual seal of the earlier application is applied is operated in a so-called patch manner. In other words, the retainer side end face of the driven ring and the retainer are sealed for 9 hours from the start of operation to the specified pressurization operation (while the pressure is rising) and from the specified pressurization operation to the stop of the operation (while the pressure is falling). Since the sides of the end faces cannot face each other correctly, the sealed end faces are opened on both sides, which causes multiple sealed fluid leaks, and especially when the above-mentioned patch operation is performed at high pressure, the pressure fluctuations are large, so the leakage occurs. It became clear that problems with increasing volumes would arise. As a countermeasure to this problem, it may be possible to suppress the sealing fluid leakage within an allowable range by increasing the rigidity of the retainer and driven ring of the multiple seal, which was proposed by the present inventors in the earlier application. However, the size of the device is large and the material is expensive, so that it cannot meet the demands for compactness and reduction in manufacturing costs.

本発明は上記の事情に鑑みてなされたものであってその
目的はパッチ運転下の圧力変動運転中においても良好な
シール性を維持することのできるコンパクトで経済的な
複式シールを提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a compact and economical double seal that can maintain good sealing performance even during pressure fluctuation operation under patch operation. be.

しかしてこの様な目的を達成し得た第1発明の複式シー
ルとは、はぼ完全な平面に形成された両側面を有する外
輪に、該外輪の厚みよシ小さな厚みを有すると共に外径
がシートリング受けのシール径と同一の寸法である内輪
を軸方向へ摺動可能に嵌挿することによシリテーナを構
成してなる点に要旨を有するものである。
However, the compound seal of the first invention that achieves the above purpose has an outer ring having both side surfaces formed into almost perfect planes, a thickness smaller than that of the outer ring, and an outer diameter smaller than that of the outer ring. The gist is that the retainer is constructed by fitting an inner ring having the same size as the seal diameter of the seat ring receiver so as to be slidable in the axial direction.

以下実施例図面を参照しつつ第1発明の構成及び作用効
果について説明するが、従来例と同一で 2ある基本的
な構成についてはその重複説明を避け、本発明の特徴的
構成を中心に説明する。
The configuration and operation and effects of the first invention will be explained below with reference to the drawings of the embodiment, but the description will focus on the characteristic configuration of the present invention, avoiding redundant explanation of the two basic configurations that are the same as the conventional example. do.

第1図(a)は第3図(b)の要部説明図に相当する図
面で化学反応容器の加圧運転前における複式シールのセ
ット状態を示している。リテーナ11は、従来のリテー
ナ(第3図の41)を周方向に2分割したような構成と
言える。即ちリテーナ11は内輪11bに外輪11aを
軸方向へ摺動可能に故押してなるが、この外輪11aの
両側面はほぼ完全外平面(従来のリテーナと同様の精密
仕上面)が維持されると共に、内輪11bは外輪11a
の厚みよ#)S小さ力厚みとされ、且つその外径がシー
トリング受け34bのシール径Dφmmと同一寸法とな
るように構成されている。その結果リテーナ11におけ
る外輪11aに作用する力はいずれも(密封液の圧力P
′+ばね37の押圧力S)となるので、両作用力は完全
にバランスし、外輪11aの両側面にはモーメントが全
く加わらない。一方、リテーナ11における内輪11b
の密封流体側端面には該密封流体の圧力Pが作用し、そ
の大きさFはF=4X (D2’−d” ) XP (
KfIf/lllIn2 )〔但し、dは内輪11bの
内径(+r+m、)、Dは内]となる。
FIG. 1(a) is a diagram corresponding to the main part explanatory diagram of FIG. 3(b), and shows the set state of the double seal before pressurizing operation of the chemical reaction vessel. The retainer 11 can be said to have a configuration in which a conventional retainer (41 in FIG. 3) is divided into two in the circumferential direction. That is, the retainer 11 is formed by pushing the outer ring 11a onto the inner ring 11b so that it can slide in the axial direction, and both sides of the outer ring 11a maintain an almost perfect outer plane (precision finished surface similar to that of conventional retainers). Inner ring 11b is outer ring 11a
It is configured such that the thickness is small, and its outer diameter is the same as the seal diameter Dφmm of the seat ring receiver 34b. As a result, the force acting on the outer ring 11a of the retainer 11 (sealing fluid pressure P
′+pressing force S) of the spring 37, the two acting forces are perfectly balanced and no moment is applied to either side of the outer ring 11a. On the other hand, the inner ring 11b in the retainer 11
The pressure P of the sealing fluid acts on the end face of the sealing fluid, and its magnitude F is F=4X (D2'-d") XP (
KfIf/lllIn2) [where d is the inner diameter (+r+m,) of the inner ring 11b, and D is the inner diameter].

この作用力のために内輪11bは第1図(b)に示す如
く歪むが、内輪11bがスリーブ45によって固定され
ていること及び内輪11bの厚みを外輪11aの厚みよ
シ適当に小さくしているために、歪んだ状態にある内輪
11bの両側面が従動リング40a 、40bの相対向
側端面にtlとんと接触しないようにすることができる
Due to this acting force, the inner ring 11b is distorted as shown in FIG. 1(b), but the inner ring 11b is fixed by the sleeve 45, and the thickness of the inner ring 11b is made appropriately smaller than the thickness of the outer ring 11a. Therefore, both side surfaces of the inner ring 11b, which is in a distorted state, can be prevented from coming into contact with the opposing end surfaces of the driven rings 40a and 40b.

従ってリテーナ11の主要部を占める外輪11aは密封
対象流体圧力Pによる影響を受けないのでパッチ運転下
の圧力変動運転中においても密封端面の垂直平面度は十
分均一に保持され、良好なシール性を維持するととがで
きる。
Therefore, the outer ring 11a, which occupies the main part of the retainer 11, is not affected by the pressure P of the fluid to be sealed, so even during pressure fluctuation operation under patch operation, the vertical flatness of the sealed end face is maintained sufficiently uniform, ensuring good sealing performance. If you maintain it, you will be able to do it.

ところがこの様な第1発明に係る複式シールにおいても
100 Kyf/crf 程度以上の圧力条件下でバッ
チ運転を打力うと、シール性が必ずしも良好とは言えな
くなり、特に200 Kgf/c+f 前後でバッチ運
転される重合反応容器の回転軸の密封に用いた場合には
シール性低下の不安が大きくなることが確認された。
However, even with such a double seal according to the first invention, when batch operation is performed under pressure conditions of about 100 Kgf/c+f or more, the sealing performance cannot necessarily be said to be good, and especially when batch operation is performed at around 200 Kgf/c+f It was confirmed that when used to seal the rotating shaft of a polymerization reaction vessel, there is a greater concern that the sealing performance will deteriorate.

本発明者等はこうした不安を解消すべく上記第1発明に
係る複式シールの挙動をつぶさに観察したところ、下記
の知見及び解決指針が得られた。
In order to eliminate such concerns, the present inventors closely observed the behavior of the multiple seal according to the first invention, and the following knowledge and solution guidelines were obtained.

即ち第1図(b)に基づいて説明すると、シートリング
33a、33bとしては一般にWC等の超硬質材料が採
用されているので、カーボン等の軟質材料からなる従動
リング40a、40bに比べると、その剛性は極めて高
いと言える。このため100Kgf/、7程度以下の圧
力が該従動リング40a。
That is, to explain based on FIG. 1(b), since the seat rings 33a and 33b are generally made of a super hard material such as WC, compared to the driven rings 40a and 40b made of a soft material such as carbon, It can be said that its rigidity is extremely high. Therefore, the pressure of about 100Kgf/7 or less is applied to the driven ring 40a.

40bに作用してもリテーナや従動リング40a。Even if it acts on 40b, the retainer or driven ring 40a.

40bにおけるような歪み発生の問題はほぼ無視できて
いた。従ってその程度の圧力条件であればリテーナ41
や従動リング40a、40bに歪みが生じないようにさ
えすればシール性を良好に維持できるはずであシ、この
様な方針の下に検討を進めた結果上記第1発明を完成し
得たことは前述した通シである。しかし密封液の圧力p
/が100bf乙ゴ程度以上、特に200 K7f%イ
前後になると、各シートリング33a 、33bのリテ
ーナ寄シ端部A、Bに作用する矢印方向のモーメントが
無視できなくなり、該端部A、Bに多少の歪みが生じる
ことが分かった。この対策としてシートリング33a 
+ 33bそのものを大きくすることも可能ではあるが
、それではシール構成が結局大きくなってしまい、又製
作コストの上昇につなかってしまう。そこでシートリン
グ33a 、33bそのものを特に大きくせずともリテ
ーナ寄シ端部A、Hに上記モーメントが生じないように
するためには該端部A、Bが圧力の影響を受けない即ち
圧力的にバランスするような構造にすればよいとの指針
が得られた。
The problem of distortion generation as in 40b was almost negligible. Therefore, under such pressure conditions, the retainer 41
Good sealing performance should be maintained as long as distortion does not occur in the driven rings 40a and 40b, and as a result of conducting studies based on this policy, the first invention was completed. is the same as mentioned above. However, the sealing fluid pressure p
When / is about 100 bf or more, especially around 200 K7f%, the moment in the direction of the arrow acting on the retainer end portions A and B of each seat ring 33a and 33b cannot be ignored, and the end portions A and B It was found that some distortion occurred. As a countermeasure for this, the seat ring 33a
Although it is possible to increase the size of +33b itself, this would result in a larger seal structure and lead to an increase in manufacturing costs. Therefore, in order to prevent the above moment from occurring at the retainer protruding ends A and H without making the seat rings 33a and 33b particularly large, the ends A and B are not affected by pressure, that is, they are not affected by pressure. The guideline was that the structure should be balanced.

第2発明は上記指針を基に更に横断を重ねた結果々され
たものであって、100 hf/cd程度以上特に20
0 hf/c♂前後でバッチ運転される化学装置類の圧
力変動運転中においても良好なシー7.1よ8.、オ、
3゜□63,2.28、あ。、 ′な複式シールを提供
しようとするものである。
The second invention was made as a result of further cross-sections based on the above guideline, and it was found that the
Good sea 7.1 to 8. even during pressure fluctuation operation of chemical equipment that is batch operated at around 0 hf/c♂. , o,
3゜□63, 2.28, ah. , ' is intended to provide a double seal.

しかしてこの様な第2発明の複式シールとは、#1ぼ完
全な平面に形成された両側面を有する外輪に、該外輪の
厚みよシ小さな厚みを有すると共に外径がシートリング
受けのシール径と同一の寸法である内輪を軸方向へ摺動
可能に嵌押してリテーナを構成し、更に各シートリング
を軸直角方向に分割すると共にゆるやかにピン結合して
当接せしめ、且つ該当接面部にはシール外径が密封端面
外径と同一寸法と々るようにシール部材を配置してなる
点に要旨を有するものである。
However, such a double seal of the second invention is a seal having an outer ring having both side surfaces formed into a nearly perfect plane, a thickness smaller than that of the outer ring, and an outer diameter of which is a seat ring receiver. The retainer is constructed by fitting an inner ring having the same size as the diameter so that it can slide in the axial direction, and further dividing each seat ring in the direction perpendicular to the axis and loosely connecting them with pins to abut each other. The gist is that the seal member is arranged so that the outer diameter of the seal is the same as the outer diameter of the sealed end surface.

以下実施例図面を参照しつつ第2発明の構成及び作用効
果について説明するが、第2発明にしいてもその特徴的
構成を中心に説明する。
The configuration and effects of the second invention will be explained below with reference to the drawings of the embodiments, but the description will also focus on the characteristic configuration of the second invention.

第2図は第1図(a)の要部断面説明図に相当する図面
で重合反応容器の加圧運転前における複式シールのセッ
ト状態を示している。シートリング21a+21bはい
ずれも軸直角方向に分割して摺シ合い部21aI+21
b、と支持部21a2゜21b2が形成されると共に、
各一対のmb合い部と支持部の構成は、両者がQ IJ
ング23a、23bを挾持して(Oリングでシールされ
つつ)下部で当接し、且つ上部でビン22a 、22b
を介してルーズに結合されておシ、更に上記0リング’
23a 。
FIG. 2 is a diagram corresponding to the sectional explanatory view of the main part of FIG. 1(a), and shows the set state of the multiple seal before pressurizing the polymerization reaction vessel. The seat rings 21a+21b are both divided in the direction perpendicular to the axis and have sliding parts 21aI+21.
b, and supporting portions 21a2°21b2 are formed,
The structure of each pair of mb fitting part and support part is that both are QIJ
The rings 23a and 23b are held together and abutted at the bottom (while being sealed with an O-ring), and the bottles 22a and 22b are held at the top.
It is loosely coupled through the 0 ring, and further above the 0 ring'
23a.

23bの挾持位置を、シール径d、φmmが密封端面外
径と同一寸法となるように構成している。その結果各シ
ートリング21a、、21b、は両側面から圧力(密封
液の圧力P’)を均等に受けることに々るので、第1図
(b)に示した様々矢印方向のそ−メントは全く生じな
い。尚各シートリング21 al t21blが半径方
向に多少歪むことがあっても、このととけ密封端面の垂
直平面度に何ら影響を与えないので問題とは彦ら々い。
The clamping position of 23b is configured such that the seal diameter d, φmm, is the same as the outer diameter of the sealed end surface. As a result, each seat ring 21a, 21b receives pressure (sealing fluid pressure P') equally from both sides, so that the components in the various arrow directions shown in FIG. 1(b) are It doesn't happen at all. Even if each seat ring 21alt21bl is slightly distorted in the radial direction, this does not cause any problem since it does not affect the vertical flatness of the sealed end face.

こうしてリテーナ11の周方向分割による圧力バランス
方式の基本的効果(従動リング40a 、40bに歪み
が生じないようにして密封端面の垂直平面度を保持し得
る効果)に加えて、各シートリング21a、21bの軸
直角方向分割による圧力バランス方式の基本的効果(摺
合部21 al l 2 l b+にモーメントが生じ
ないようにして密封端面の垂直平面度を保持し得る効果
)を享受することができる。従って前述した様に100
 Kyf/crr? 程度以上特に200 Kyt/c
m2前後でバッチ運転される重合反応容器の圧力変動運
転中においても良好なシール性を維持することができる
In this way, in addition to the basic effect of the pressure balance method by dividing the retainer 11 in the circumferential direction (the effect of preventing distortion from occurring in the driven rings 40a, 40b and maintaining the vertical flatness of the sealed end face), each seat ring 21a, The basic effect of the pressure balance method (the effect of maintaining the vertical flatness of the sealed end face by preventing the generation of a moment in the sliding portion 21 al l 2 l b+) can be enjoyed by dividing the portion 21b in the direction perpendicular to the axis. Therefore, as mentioned above, 100
Kyf/crr? More than 200 Kyt/c
Good sealing performance can be maintained even during pressure fluctuation operation of a polymerization reaction vessel which is batch operated at around m2.

尚上記第1発明及び第2発明の各実施例は、いずれも代
表例であって本発明を限定する性質のものではなく、前
述の趣旨に沿って各部品の材質。
It should be noted that each of the embodiments of the first invention and the second invention described above are representative examples and do not limit the present invention.

形状、大きさ等の設計を変更することは全て本発明の技
術的範囲に属する。
All changes in design such as shape and size belong to the technical scope of the present invention.

又本発明のメカニカルシールは上記の様な化学装置の回
転軸への適用に限られることなく、あシゆる産業機械を
はじめ自動車、航空用タービン等の回転軸に適用可能で
あシ、密封流体も水溶液、潤滑油、気体等がいずれも適
用対象となシ得る。
Furthermore, the mechanical seal of the present invention is not limited to application to the rotating shafts of chemical equipment as described above, but can also be applied to the rotating shafts of all industrial machinery, automobiles, aircraft turbines, etc. It can also be applied to aqueous solutions, lubricating oils, gases, etc.

本発明は以上の様に構成されるが、要は低圧から高圧ま
での広範囲に亘って圧力が変動しても密封端面の垂直平
面度を確保できるようにしたので、シール性を長期に亘
シ安定して維持することのできるコンパクト且つ経済的
な高圧バッチ運転用の静止型複式メカニカルシールを提
供できることとなった。
The present invention is constructed as described above, but the point is that the vertical flatness of the sealed end face can be ensured even if the pressure fluctuates over a wide range from low pressure to high pressure, so the sealing performance can be maintained over a long period of time. It has become possible to provide a stationary double mechanical seal for high-pressure batch operation that is compact and economical and can be stably maintained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は第1発明に係るメカニカルシールを例示
する要部断面模式構成図、第1図(b)は同模式作用図
、第2図は第2発明に係るメカニカルシールを例示する
要部断面模式構成図、第3図(a)は従来のメカニカル
シールを示す要部断面模式構成図、第3図(b)は同模
式作用図である。 11.41・・・リテーナ lla・・・外輪11b・
・・内輪 (21a、21b)、(33c+33d)・・シートリ
ング31・・・回転軸32・・・シールボックス34a
+34b・・・シートリング受け40a、40b・・・
従動リング 出願人 株式会社神戸製鋼所 同 日本ビラーエ業株式会社 第1図(a) 第1図(b) 1 第2図
FIG. 1(a) is a schematic cross-sectional configuration diagram of main parts illustrating the mechanical seal according to the first invention, FIG. 1(b) is a schematic operational view of the same, and FIG. 2 is an example of the mechanical seal according to the second invention. FIG. 3(a) is a schematic cross-sectional configuration diagram of essential parts showing a conventional mechanical seal, and FIG. 3(b) is a schematic operational diagram thereof. 11.41... Retainer lla... Outer ring 11b.
... Inner ring (21a, 21b), (33c + 33d) ... Seat ring 31 ... Rotating shaft 32 ... Seal box 34a
+34b... Seat ring receiver 40a, 40b...
Driven Ring Applicant: Kobe Steel, Ltd. Nippon Virae Gyo Co., Ltd. Figure 1 (a) Figure 1 (b) 1 Figure 2

Claims (1)

【特許請求の範囲】 (11回転軸のシールボックス内に所定間隔をおいて配
置された各シートリング受けに弾性体を介在させてゆる
やかにピン結合されてなる各シートリングの相対向側端
面と、該回転軸に固定されたリング状リテーナの左右側
に従動リング押えによシ夫々一体的に配設された各従動
リングの相背面側端面とが夫々接触することによシ各密
封端面を構成してなる静止型複式メカニカルシールにお
いて、前記リング状のリテーナは、IIぼ完全な平面に
形成された両側面を有する外輪に、該外輪の厚みよシ小
さな厚みを有すると共に外径が前記シートリング受けの
シール径と同一の寸法である内輪が軸方向へ摺動可能に
嵌押されてなることを特徴とする静止型複式メカニカル
シール。 (2)回転軸のシールボックス内に所定間隔をおいて配
置された各シートリング受けに弾性体を介在させてゆる
やかにピン結合されてなる各シートリングの相対向側端
面と、該回転軸に固定されたリング状リテーナの左右側
に従動リング押えにより夫々一体的に配設された各従動
リングの相背面側端面とが夫々接触することによ)各密
封端面を構成してなる静止型複式メカニカルシールにお
いて、前記リング状のリテーナは、はぼ完全な平面に形
成された両側面を有する外輪に、該外輪の厚みよシ小さ
な厚みを有すると共に外径が前記シートリング受けのシ
ール径と同一の寸法である内輪が軸方向へ摺動可能に嵌
挿されてなシ、更に前記各シートリングは、軸直角方向
に分割されると共にゆるやかにピン結合して当接され、
且つ該当接面部にはシール外径が密封端面外径と同一寸
法となるようにシール部材が配置されてなることを特徴
とする静止型複式メカニカルシール。
[Scope of Claims] (11) Opposite side end surfaces of each seat ring which are loosely pin-coupled with an elastic body interposed to each seat ring receiver arranged at a predetermined interval in the seal box of the rotating shaft; , each sealed end surface is sealed by contacting the rear side end surfaces of each driven ring integrally disposed on the left and right driven ring holders of the ring-shaped retainer fixed to the rotating shaft. In the stationary double-acting mechanical seal, the ring-shaped retainer has an outer ring having both side surfaces formed into almost perfect planes, a thickness smaller than the thickness of the outer ring, and an outer diameter equal to the sheet. A stationary double-acting mechanical seal characterized by an inner ring having the same dimensions as the seal diameter of the ring receiver, which is slidably fitted in the axial direction. The opposite end faces of each seat ring are loosely pin-coupled with elastic bodies to seat ring receivers arranged in the same direction, and driven ring retainers on the left and right sides of the ring-shaped retainer fixed to the rotating shaft. In a stationary double-acting mechanical seal in which each sealed end surface is formed by contacting the rear side end surfaces of each driven ring that are integrally arranged, the ring-shaped retainer is almost completely sealed. An inner ring, which has a thickness smaller than that of the outer ring and whose outer diameter is the same as the seal diameter of the seat ring receiver, is slidably fitted in the axial direction to the outer ring, which has both sides formed in a flat plane. The seat rings are not inserted, and each of the seat rings is divided in the direction perpendicular to the axis and loosely connected with pins and abutted,
A stationary double-action mechanical seal characterized in that a sealing member is arranged on the corresponding contact surface so that the outer diameter of the seal is the same as the outer diameter of the sealed end surface.
JP387984A 1984-01-12 1984-01-12 Static double mechanical seal Granted JPS60146961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP387984A JPS60146961A (en) 1984-01-12 1984-01-12 Static double mechanical seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP387984A JPS60146961A (en) 1984-01-12 1984-01-12 Static double mechanical seal

Publications (2)

Publication Number Publication Date
JPS60146961A true JPS60146961A (en) 1985-08-02
JPH0320627B2 JPH0320627B2 (en) 1991-03-19

Family

ID=11569468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP387984A Granted JPS60146961A (en) 1984-01-12 1984-01-12 Static double mechanical seal

Country Status (1)

Country Link
JP (1) JPS60146961A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109237036A (en) * 2018-09-28 2019-01-18 安徽安密机械密封有限公司 A kind of manufacturing method of little spring double end-face mechanical sealing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109237036A (en) * 2018-09-28 2019-01-18 安徽安密机械密封有限公司 A kind of manufacturing method of little spring double end-face mechanical sealing device

Also Published As

Publication number Publication date
JPH0320627B2 (en) 1991-03-19

Similar Documents

Publication Publication Date Title
US4998740A (en) Face seal assembly
KR101250561B1 (en) Mechanical seal device
KR920000656B1 (en) Mechanical seal with cylindrical balance sleeve
JP2648816B2 (en) Cylindrical face seal
US7611151B2 (en) Mechanical seal with thermally stable mating ring
JPH0122509B2 (en)
US2998987A (en) Teflon lip seal
EP2799752B1 (en) Multi-port rotary joint
JPH083349B2 (en) Sealing device
JP6795586B2 (en) mechanical seal
EP2255111B1 (en) Dynamic sealing
US3680188A (en) Method of assembling a seal unit
JPS6347952B2 (en)
US20030102631A1 (en) Mechanical seal device
US3698728A (en) Fluid sealing device
US2744774A (en) Shaft-seal
GB2559134A (en) Pump assemblies with stator joint seals
JPS60146961A (en) Static double mechanical seal
JPH01295079A (en) Contactless mechanical seal
JP2004332920A (en) Sealing structure and end-face seal
CN111664171A (en) Fluid bearing tilting pad thrust assembly and thrust bearing with same
US4463958A (en) Mechanical face seals
US10557554B2 (en) Mechanical seal with high pressure high temperature secondary seal
JP7358568B1 (en) Seal member and connection structure
JP7350447B2 (en) mechanical seal