JPS6243180A - Non-volatile semiconductor memory device - Google Patents

Non-volatile semiconductor memory device

Info

Publication number
JPS6243180A
JPS6243180A JP60183310A JP18331085A JPS6243180A JP S6243180 A JPS6243180 A JP S6243180A JP 60183310 A JP60183310 A JP 60183310A JP 18331085 A JP18331085 A JP 18331085A JP S6243180 A JPS6243180 A JP S6243180A
Authority
JP
Japan
Prior art keywords
gate electrode
floating gate
source
self
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60183310A
Other languages
Japanese (ja)
Other versions
JPH0722195B2 (en
Inventor
Shuichi Oya
大屋 秀市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60183310A priority Critical patent/JPH0722195B2/en
Publication of JPS6243180A publication Critical patent/JPS6243180A/en
Publication of JPH0722195B2 publication Critical patent/JPH0722195B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Abstract

PURPOSE:To localize a floating gate electrode only on a channel between source and drain regions, by forming element isolating grooves by a self-aligning manner together with the floating gate electrode, and forming the floating gate electrode by a self-aligning manner together with a control gate electrode. CONSTITUTION:On a P-type silicon substrate 1, a floating gate electrode 3 comprising polycrystalline silicon is formed through source and drain diffusing regions 10 and a first gate silicon oxide film 2. On said floating gate 3, a control gate electrode 9 comprising polycrystalline silicon is formed through a second gate silicon oxide film. In the P-type silicon substrate 1, grooves 5, in which PSG films 7 are embedded, are provided. The floating gate electrode 3 is formed in a self-aligning manner together with the control gate electrode 9 at the end parts of the source and drain diffusing regions 10. The electrode 3 is formed in self-aligning manner by the grooves 5 at the side end part of a channel region between the source and drain diffusing regions 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は不揮発性半導体記憶装置に関し、特に浮遊ゲー
ト電極を有する不揮発性半導体記憶装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a nonvolatile semiconductor memory device, and particularly to a nonvolatile semiconductor memory device having a floating gate electrode.

〔従来の技術〕[Conventional technology]

浮遊ゲート型不揮発性半導体記憶装置は、半導体基体上
にソース・ドレイン拡散領域と、ソース・ドレイン拡散
領域間のチャネル領斌上にゲート絶縁膜を介して、外部
から電気的に絶縁された浮遊ゲート電極と、この浮遊ゲ
ート’l極上に絶縁膜を介して制御ゲート電極を具備す
るものが一般的に使用されている。
A floating gate nonvolatile semiconductor memory device has a floating gate electrically insulated from the outside through a source/drain diffusion region on a semiconductor substrate and a gate insulating film on a channel region between the source/drain diffusion regions. Generally used is a device comprising an electrode and a control gate electrode on the floating gate electrode with an insulating film interposed therebetween.

このような二層ゲート構造の浮遊ゲート型不揮発性半導
体記憶装置を小型化する為の手段として例えば、特開昭
54−137982に「半導体装置及びその製造方法」
として述べられた装置がある。
As a means to miniaturize such a floating gate type non-volatile semiconductor memory device with a two-layer gate structure, for example, ``Semiconductor device and manufacturing method thereof'' is disclosed in Japanese Patent Application Laid-open No. 54-137982.
There is a device described as

これは、浮遊ゲート電極が素子間分離用のフィールド絶
縁膜上にオーバシップしないようにすることでチャネル
に垂直方向の装置の寸法を小さくできるものである。
This allows the dimensions of the device in the direction perpendicular to the channel to be reduced by preventing the floating gate electrode from overlapping the field insulating film for isolation between elements.

またこの様な構造を実現する手段として「半導体基板表
面に第1絶縁膜を介して第1浮遊ゲー トとなる第1の
半導体層?形成し、この半導体層上に選択酸化のマスク
となる第2絶縁膜を形成し、ソース・ドレイン・チャネ
ル領域形成用表面以外のフィールド領域上の第2絶縁膜
及こぐ第1半導体層を除去し、残存する第2絶縁膜をマ
スクとして基板を酸化処理することによってフィールド
領域に厚いフィールド絶縁膜を形成する」という製造方
法が提案されている。
In addition, as a means of realizing such a structure, ``a first semiconductor layer, which becomes a first floating gate, is formed on the surface of a semiconductor substrate via a first insulating film, and a first semiconductor layer, which becomes a mask for selective oxidation, is formed on this semiconductor layer. 2 insulating film is formed, the first semiconductor layer extending over the second insulating film on the field region other than the surface for forming the source/drain/channel region is removed, and the substrate is oxidized using the remaining second insulating film as a mask. A manufacturing method has been proposed in which a thick field insulating film is formed in the field region.

〔発明が解決しよりとする問題点〕[Problems that the invention helps solve]

上述し九従来の浮遊ゲート型不揮発性半導体記憶装置で
は素子間分離を選択酸化法によっているので、設計的に
はフィールド領域上に浮遊ゲートがオーバラップしない
よりにしたとしても、実質的には選択酸化時に厚い酸化
膜が浮遊ゲート電極下のチャネル領域中にもぐり込んで
形成され(一般的にバーズビークと呼ばれる)、このバ
ーズビークの大きさだけ装置の実効チャネル幅が減少す
る。この為に従来の不揮発性半導体8【2世装置におい
ては、所望の実効チャネル幅?確保す已のに、設計上バ
ーズビークの大きさを見込んでチャネル幅を大きく?ね
ばならず、装置の小型化に適さないという欠点があった
In the above-mentioned nine conventional floating gate nonvolatile semiconductor memory devices, element isolation is achieved by selective oxidation, so even if the floating gate is designed not to overlap on the field region, it is actually a selective oxidation method. During oxidation, a thick oxide film is formed that sinks into the channel region under the floating gate electrode (commonly called a bird's beak), and the effective channel width of the device is reduced by the size of this bird's beak. For this purpose, conventional non-volatile semiconductors 8[In second-generation devices, the desired effective channel width? Even though it is secured, do you increase the channel width in consideration of the size of the bird's beak in the design? This has the disadvantage that it is not suitable for downsizing the device.

不発明の目的は、上述の従来装置の欠点を取り除き、浮
遊ゲート電極が絶縁膜上にオーバラップしないような、
小型化に適した構造の不揮発性半導体記憶装置全提供す
ることにある。
The object of the invention is to eliminate the above-mentioned drawbacks of the conventional device, and to provide a structure in which the floating gate electrode does not overlap the insulating film.
An object of the present invention is to provide a nonvolatile semiconductor memory device with a structure suitable for miniaturization.

〔問題点?解決するための手段〕〔problem? Means to solve]

本発明の不揮発性半導体記憶装置は、半導体基体上に形
成されたノース拳ドレイン領域と、ソース・ドレイン領
域間上のチャネル領域上に第1のゲート絶縁膜を介して
形成さnた浮遊ゲート電極と、浮遊ゲート電極上に第2
のゲート絶縁膜を介して形成された制御ゲート電極と、
半導体基体表面に形成され内部が絶縁物で埋め込まれた
素子間分離用の溝とを有する不揮発性半導体記憶装置で
あって浮遊ゲルトを極が、ソース・ドレイン領域端部に
おいて制御ゲート電極に自己整合的に、かつチャネル領
域の側端部においては素子間分離用の溝と自己整合的に
形成されているものである。
A nonvolatile semiconductor memory device of the present invention has a floating gate electrode formed on a north fist drain region formed on a semiconductor substrate and a channel region above the source/drain region with a first gate insulating film interposed therebetween. and a second layer on the floating gate electrode.
a control gate electrode formed through a gate insulating film;
A nonvolatile semiconductor memory device having a groove for isolation between elements formed on the surface of a semiconductor substrate and filled with an insulator, in which the floating gel pole is self-aligned with the control gate electrode at the end of the source/drain region. It is formed in a self-aligned manner with the groove for isolation between elements at the side end portions of the channel region.

上述・りように、本発明においては、半導体基体に溝を
堀り、内部を絶縁物で埋め込む方法で素子間分離を行い
、かつ、その溝と自己整合的に浮遊ゲート電極全形成す
ることによって、全くフィールド領域上に浮遊ゲート電
極が延在せず、更に選択酸化法のようにバーズビークの
発生もないから実効チャネル幅が減少することはない。
As described above, in the present invention, a groove is dug in the semiconductor substrate and the inside is filled with an insulator to isolate the elements, and the floating gate electrode is entirely formed in self-alignment with the groove. Since the floating gate electrode does not extend over the field region at all, and bird's beaks do not occur unlike the selective oxidation method, the effective channel width does not decrease.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1必は本発明の一実施例の平面図、第2図及び第3区
は第1区の央&+例のA−A ’線及びB−B’線断面
因である。
The first part is a plan view of an embodiment of the present invention, and the second and third sections are cross-sectional views taken along lines A-A' and B-B' of the center &+ example of the first section.

第1因〜第3図において、P型シリコン基体1上にはソ
ース・ドレイン拡散領域1oと第1ゲートシリコン酸化
膜2ケ介して多結晶7リコンからなる浮遊ゲート電極3
が形成されており、この浮遊ゲート電極3上にti第2
ゲー トシリコン酸化膜を介して多結晶シリコンからな
る制御ゲート電極9が形成されている。またP型/リコ
ン基体1上には、内部にI)SG膜7が埋め込まれた素
子間分離用の溝5が設けられている。
In factors 1 to 3, a floating gate electrode 3 made of polycrystalline 7 silicon is placed on a P-type silicon substrate 1 via a source/drain diffusion region 1o and two first gate silicon oxide films.
is formed on this floating gate electrode 3.
A control gate electrode 9 made of polycrystalline silicon is formed via a gate silicon oxide film. Further, on the P type/recon substrate 1, there is provided a groove 5 for isolation between elements, in which an I)SG film 7 is embedded.

そして浮遊ゲート電吟3は、ノース−ドレイン拡散領域
10の端部においては制御グー)′ei極9と自己整合
的讐′こ形成されており、又ノース・ドレイン拡散領域
10間のチャネル領域側端部では鴬5により自己整合的
に形成されている。冑、11はソース・ドレイン拡散領
域10をA/配線12に接続する為のコンタクト孔であ
る。
The floating gate electrode 3 is formed in a self-aligned manner with the control electrode 9 at the end of the north-drain diffusion region 10, and is also formed on the side of the channel region between the north-drain diffusion region 10. The end portions are formed in a self-aligning manner by the hooks 5. Reference numeral 11 is a contact hole for connecting the source/drain diffusion region 10 to the A/wiring 12.

このように構成された本実施例においては、素F−1間
分離はPSO膜7が埋め込まれた溝5により桁なわれる
為、素子間分離領域が浮遊ゲート電極3とオーバーラン
プすることはない。
In this embodiment configured in this manner, the isolation between the elements F-1 is achieved by the trench 5 in which the PSO film 7 is embedded, so that the element isolation region does not overlap with the floating gate electrode 3. .

次に上記実施例の製造方法について9面を用いて説明す
る。
Next, the manufacturing method of the above embodiment will be explained using nine pages.

第4図(3)〜(eiは土糺人流例の製造方法を説明す
るための工程′:pに示した半導体チップの断面図であ
る。
FIGS. 4(3) to 4(ei) are cross-sectional views of the semiconductor chip shown in step ':p for explaining the manufacturing method of the Dotenjin flow example.

まず第4図(alに示すように、P型シリコン基体1上
に第1ゲートシリコン酸化膜2を熱酸化によって約30
OAのJ7さに形成し、次いで将来浮遊ゲート′wL極
3となる第1の多結晶シリコン膜3人を通常の気相成長
法によって約200OAの厚さに成長し、N型導電型不
純物であるリンを添加する。
First, as shown in FIG.
A first polycrystalline silicon film, which will become the floating gate'wL pole 3 in the future, is grown to a thickness of about 200 OA by a normal vapor phase growth method, and is doped with N-type conductivity type impurities. Add some phosphorus.

次いでシリコン窒化膜4を約300 OAの厚さに成長
する。
Next, a silicon nitride film 4 is grown to a thickness of about 300 OA.

次に第4図(b)に示すよりに、フォトレジスト(ト)
示せ力ヲマスクとして、異方性のりアクティブイオンエ
ツチング技術によって、将来素子間分離領域となる領域
上のシリコン窒化膜4、多結晶シリコン膜3A、シリコ
ン酸化膜2を順次エツチング除去し、露出したシリコン
基体1の表面を異方性のりアクティブイオンエツチング
法によって約1゜5μmの深さに掘削し、素子間分離用
の溝5ft形成し、フォトレジス)を除去する。この溝
5によシ浮遊ゲート電極3が自己整合的に形成される。
Next, as shown in FIG. 4(b), photoresist
As a mask, the silicon nitride film 4, polycrystalline silicon film 3A, and silicon oxide film 2 on the area that will become the isolation region in the future are sequentially etched away using anisotropic adhesive active ion etching technology, and the exposed silicon substrate is removed. The surface of the substrate 1 was excavated to a depth of about 1.5 μm using an anisotropic glue active ion etching method to form a 5 ft groove for isolation between elements, and the photoresist was removed. Floating gate electrode 3 is formed in this groove 5 in a self-aligned manner.

この第4図tb+は第1図A−A’線部に対応した断面
図であり、以下第4図ICI〜te+も第1図A−A’
部の断面図である。
This FIG. 4 tb+ is a cross-sectional view corresponding to the line AA' in FIG. 1, and hereinafter, FIG.
FIG.

次に第4図(C)に示すよりに、熱酸化法によって溝5
の側面、底面、及び浮遊ゲート電極3の側面に約30O
Aのシリコン酸化膜6を形成し、その後7リコン基体1
表面全面に約3μmの厚さに通常の気相成長法によって
P8G膜7を形成する。
Next, as shown in FIG. 4(C), a groove 5 is formed by thermal oxidation.
Approximately 30O on the sides and bottom of the floating gate electrode 3
A silicon oxide film 6 is formed, and then 7 silicon oxide film 1 is formed.
A P8G film 7 is formed on the entire surface to a thickness of about 3 μm by a normal vapor phase growth method.

ここで全面に成長させるPSG膜は次工程の熱処理によ
る表面平担化を容易にする為であり、PSG膜の代シに
ホウ素とリンを含むホウ素リンシリカガラス膜等を用い
ることができる。ここでは、10mo1%のリン濃度の
PSG膜を用いた。
The PSG film grown on the entire surface here is to facilitate surface flattening by heat treatment in the next step, and instead of the PSG film, a boron phosphorus silica glass film containing boron and phosphorus or the like can be used. Here, a PSG film with a phosphorus concentration of 10 mo1% was used.

次に、第4図td)に示すように、1000″Cの酸化
性雰囲気中で熱処理を行うと、PSG膜7は流動性を有
するようにな9、表面張力によって表面が概略平担とな
る。上述のように本実施例では、素子間分離用の溝5を
埋め込むのに、PSG膜を気相成長法によって堆積させ
たが、溝5の埋め込みは他の極々の方法によることがで
きる。例えばスパッタリング法によってシリコン酸化膜
を堆積させることや、スピンオン法によって有機系の絶
縁膜を付着させることによっても可能である。
Next, as shown in Figure 4 (td), when heat treatment is performed in an oxidizing atmosphere at 1000''C, the PSG film 7 becomes fluid 9 and the surface becomes approximately flat due to surface tension. As described above, in this embodiment, the PSG film was deposited by vapor phase growth to fill the grooves 5 for isolation between elements, but the grooves 5 may be filled by other methods. For example, it is also possible to deposit a silicon oxide film using a sputtering method, or to deposit an organic insulating film using a spin-on method.

次に第4d(elに示すように、PSG膜を選択的にエ
ツチングできるウェット又はドライエツチング方法、例
えばHF系のウェットエツチング法或はCF4系のプラ
ズマエツチング法等によってシリコン窒化膜4が露出す
るまでPSG膜7をエツチングする。次いでシリコン窒
化膜4を熱リン酸によって除去すると、溝5内にのみP
SG膜7が残される。このエツチング時程において、シ
リコン窒化膜4はオーバーエツチングによってPSG膜
の表面が浮遊ゲートII極3の表面よりも低くなシ、表
面の平坦性が損なわれるのを防止するのに用いられる。
Next, as shown in step 4d (el), a wet or dry etching method capable of selectively etching the PSG film, such as an HF-based wet etching method or a CF4-based plasma etching method, is used until the silicon nitride film 4 is exposed. The PSG film 7 is etched.Then, when the silicon nitride film 4 is removed using hot phosphoric acid, P is formed only in the groove 5.
The SG film 7 is left behind. During this etching step, the silicon nitride film 4 is used to prevent the surface of the PSG film from being lower than the surface of the floating gate II pole 3 and to prevent the surface flatness from being impaired due to over-etching.

即ち、シリコン窒化膜4の厚み分だけエツチング時のオ
ーバーエツチングが許されプロセスマージンが広がる。
That is, over-etching is allowed during etching by the thickness of the silicon nitride film 4, and the process margin is widened.

以上の工程によって、素子間分離用の溝5中のPSG膜
7の表面と浮遊ゲート電極3の表面がほぼ同じ高さに平
坦化され、かつ分離用の溝5と浮遊ゲート電極3が自己
整合的に形成された形状が得られる。
Through the above steps, the surface of the PSG film 7 in the isolation trench 5 and the surface of the floating gate electrode 3 are flattened to almost the same height, and the isolation trench 5 and the floating gate electrode 3 are self-aligned. A precisely formed shape is obtained.

次に第2図に示すように、熱酸化法によって浮遊ゲート
電極3上に第2のゲートシリコン酸化膜8を約30OA
の厚さに形成し、その上に制御ゲート電極9となる第2
の多結晶シリコン膜を約soo。
Next, as shown in FIG. 2, a second gate silicon oxide film 8 of about 30 OA is formed on the floating gate electrode 3 by thermal oxidation.
A second gate electrode 9 is formed on top of the second gate electrode 9 to a thickness of
The polycrystalline silicon film is approximately soo.

Aの厚さに成長させる。Grow to thickness A.

以後の工程は、第1図の実施例のB−B’線方向の断面
図である第3図全周いて説明する。
The subsequent steps will be explained with reference to FIG. 3, which is a sectional view taken along the line BB' of the embodiment shown in FIG. 1.

フォトレジスト’tマスクとして(図示せず)、第2の
多結晶シリコン膜、第2のゲートシリコン酸化膜8、第
1の多結晶シリコン膜3Ak順次異方性プラズマエッチ
によってエツチングし、所望のゲート電極形状金形成し
、次いでこの多層膜をマスクとしてシリコン基体1にN
型不純物である砒素を5x1o/carのドーズ量でイ
オン打ち込みしてソース・ドレイン拡散領域10を形成
する。
As a photoresist mask (not shown), the second polycrystalline silicon film, the second gate silicon oxide film 8, and the first polycrystalline silicon film 3Ak are sequentially etched by anisotropic plasma etching to form a desired gate. The electrode shape is formed of gold, and then N is deposited on the silicon substrate 1 using this multilayer film as a mask.
Arsenic, which is a type impurity, is ion-implanted at a dose of 5×1 O/car to form source/drain diffusion regions 10.

この様にして形成された浮遊ゲート[&3と制御ゲート
を極9はチャネルのソース書ドレイン領域の端部で自己
整合的に形状が決定されたものとなる。
The shapes of the floating gate [&3 and the control gate pole 9 formed in this manner are determined in a self-aligned manner at the end of the source/drain region of the channel.

以後、層間絶縁膜の形成、コンタクト孔形成、A/配線
の形成等の工程を経て、第1図〜第3因に示した不揮発
性半導体記憶装置が完成する。
Thereafter, through steps such as forming an interlayer insulating film, forming contact holes, and forming A/wirings, the nonvolatile semiconductor memory device shown in FIGS. 1 to 3 is completed.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明は、素子間分離用の溝
を浮遊ゲート電極と自己整合的に形成しかつ、浮遊ゲー
ト電極を制御ゲート電極と自己整合的に形成することに
よって、浮遊ゲート電極をソース・ドレイン領域間のチ
ャネル上のみに局在させることができる。従って素子間
分離を選択酸化法によって達成する場合のバーズビーク
に起因する不都合も取シ除かれる。本発明によれば二層
ゲート構造の浮遊ゲート型不揮発性半導体記憶装置とし
ては平面的に最小面積の装置が得られる。
As explained in detail above, the present invention forms a groove for isolation between elements in a self-aligned manner with a floating gate electrode, and forms a floating gate electrode in a self-aligned manner with a control gate electrode. can be localized only on the channel between the source and drain regions. Therefore, inconveniences caused by bird's beaks when device isolation is achieved by selective oxidation are also eliminated. According to the present invention, a floating gate type nonvolatile semiconductor memory device with a two-layer gate structure having the smallest area in plan view can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の平面図、第2図及び第3図
は第1図の実施例のA−A’線及びB−B’線断面図、
第4図(al〜telは本発明の一実施例の製造方法を
説明する為の工程断面図である。 1 ・・P型シリコン基体、2・・・ 第1ゲートシリ
コン酸化膜、3  浮遊ゲート電極、4  シリコン窒
化膜、5 ・溝、6・・・シリコン酸化膜、7・・・・
・psog、s   第2ゲートシリコン酸化膜、9 
・制御ゲート電極、10  ソース・ドレイン拡散領域
、11・ ・コンタクト孔、12・・・A/配線。 代理人 弁理士  内 原   晋 牛l 図 5  奉2 図 4 :Jリコ、1→1■兎
FIG. 1 is a plan view of an embodiment of the present invention, FIGS. 2 and 3 are sectional views taken along lines AA' and BB' of the embodiment of FIG.
FIG. 4 (al to tel are process cross-sectional views for explaining the manufacturing method of an embodiment of the present invention. 1... P-type silicon substrate, 2... first gate silicon oxide film, 3 floating gate Electrode, 4 Silicon nitride film, 5 Groove, 6 Silicon oxide film, 7...
・psog,s 2nd gate silicon oxide film, 9
・Control gate electrode, 10 Source/drain diffusion region, 11. ・Contact hole, 12...A/wiring. Agent Patent attorney Shingyu Uchihara Figure 5 Hou 2 Figure 4: J Rico, 1→1 ■ Rabbit

Claims (1)

【特許請求の範囲】[Claims] 半導体基体上に形成されたソース・ドレイン領域と、該
ソース・ドレイン領域間の半導体基体表面上に第1のゲ
ート絶縁膜を介して形成された浮遊ゲート電極と、該浮
遊ゲート電極上に第2のゲート絶縁膜を介して形成され
た制御ゲート電極と、前記半導体基体表面に形成されか
つ内部が絶縁物で埋め込まれた素子間分離用の溝とを有
する不揮発性半導体記憶装置において、前記浮遊ゲート
電極がソース・ドレイン領域端部において、前記制御ゲ
ート電極と自己整合的に、かつソース・ドレイン領域間
のチャネル領域側端部では素子間分離用の溝と自己整合
的に形成されていることを特徴とする不揮発性半導体記
憶装置。
A source/drain region formed on a semiconductor substrate, a floating gate electrode formed on the surface of the semiconductor substrate between the source/drain regions via a first gate insulating film, and a second gate electrode formed on the floating gate electrode. In a nonvolatile semiconductor memory device having a control gate electrode formed through a gate insulating film, and a groove for isolation between elements formed on the surface of the semiconductor substrate and filled with an insulating material, the floating gate The electrode is formed in self-alignment with the control gate electrode at the end of the source/drain region, and in self-alignment with the element isolation groove at the end of the channel region between the source/drain regions. Characteristic non-volatile semiconductor memory device.
JP60183310A 1985-08-20 1985-08-20 Method of manufacturing nonvolatile semiconductor memory device Expired - Lifetime JPH0722195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60183310A JPH0722195B2 (en) 1985-08-20 1985-08-20 Method of manufacturing nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60183310A JPH0722195B2 (en) 1985-08-20 1985-08-20 Method of manufacturing nonvolatile semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS6243180A true JPS6243180A (en) 1987-02-25
JPH0722195B2 JPH0722195B2 (en) 1995-03-08

Family

ID=16133448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60183310A Expired - Lifetime JPH0722195B2 (en) 1985-08-20 1985-08-20 Method of manufacturing nonvolatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH0722195B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163376A (en) * 1986-01-14 1987-07-20 Fujitsu Ltd Manufacture of semiconductor memory device
JPS62176170A (en) * 1986-01-29 1987-08-01 Fujitsu Ltd Manufacture of semiconductor device
JPH0265175A (en) * 1988-08-31 1990-03-05 Toshiba Corp Semiconductor nonvolatile storage device and manufacture thereof
US5235200A (en) * 1990-01-29 1993-08-10 Hitachi, Ltd. Semiconductor integrated circuit device
US5635417A (en) * 1993-10-25 1997-06-03 Yamaha Corporation Method of making a read only memory device
US5869858A (en) * 1995-03-14 1999-02-09 Kabushiki Kaisha Toshiba Semiconductor device for reducing variations in characteristics of the device
US6201277B1 (en) * 1993-08-31 2001-03-13 Texas Instruments Incorporated Slot trench isolation for flash EPROM

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137982A (en) * 1978-04-19 1979-10-26 Hitachi Ltd Semiconductor device and its manufacture
JPS58197880A (en) * 1982-05-14 1983-11-17 Toshiba Corp Semiconductor device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137982A (en) * 1978-04-19 1979-10-26 Hitachi Ltd Semiconductor device and its manufacture
JPS58197880A (en) * 1982-05-14 1983-11-17 Toshiba Corp Semiconductor device and manufacture thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62163376A (en) * 1986-01-14 1987-07-20 Fujitsu Ltd Manufacture of semiconductor memory device
JPH0560671B2 (en) * 1986-01-14 1993-09-02 Fujitsu Ltd
JPS62176170A (en) * 1986-01-29 1987-08-01 Fujitsu Ltd Manufacture of semiconductor device
JPH0265175A (en) * 1988-08-31 1990-03-05 Toshiba Corp Semiconductor nonvolatile storage device and manufacture thereof
US5235200A (en) * 1990-01-29 1993-08-10 Hitachi, Ltd. Semiconductor integrated circuit device
US5427966A (en) * 1990-01-29 1995-06-27 Hitachi, Ltd. Process for fabricating a semiconductor device having floating gate and control gate electrodes
US6201277B1 (en) * 1993-08-31 2001-03-13 Texas Instruments Incorporated Slot trench isolation for flash EPROM
US5635417A (en) * 1993-10-25 1997-06-03 Yamaha Corporation Method of making a read only memory device
US5869858A (en) * 1995-03-14 1999-02-09 Kabushiki Kaisha Toshiba Semiconductor device for reducing variations in characteristics of the device

Also Published As

Publication number Publication date
JPH0722195B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
JPS6273772A (en) Semiconductor device and manufacturing thereof
EP0236676B1 (en) Erasable programmable read only memory using floating gate field effect transistors
JPH0715953B2 (en) Rewritable memory device and manufacturing method thereof
JPS6070766A (en) Mos type semiconductor device
KR910000022B1 (en) Ultraviolet erasable read only memory device and manufacturing method therefore
JPS6243180A (en) Non-volatile semiconductor memory device
JPS60261165A (en) Mos dynamic memory element
JPH10107230A (en) Semiconductor device and its manufacture
US6919611B2 (en) Semiconductor memory reducing current consumption and narrow channel effect and method of manufacturing the same
KR980012468A (en) Method for manufacturing a semiconductor device without the form of a bird beak
JP2560517B2 (en) Floating gate type semiconductor memory device and manufacturing method thereof
JP2780715B2 (en) Method for manufacturing semiconductor device
JPH03220778A (en) Manufacture of mos-type nonvolatile semiconductor memory device
JPH0393276A (en) Semiconductor storage device and manufacture thereof
JPS6362382A (en) Floating gate nonvolatile semiconductor storage device and manufacture thereof
JP2792089B2 (en) Method for manufacturing semiconductor memory device
JPH10321822A (en) Structure of semiconductor device and its manufacture
JP2739965B2 (en) Semiconductor memory device and method of manufacturing the same
JP2815855B2 (en) Nonvolatile semiconductor memory device
JP2943268B2 (en) Semiconductor memory and manufacturing method thereof
JPS6231177A (en) Nonvolatile semiconductor memory device
JP2701332B2 (en) Manufacturing method of floating gate type nonvolatile semiconductor memory device
JPH03198377A (en) Manufacture of floating gate type eprom device
JPS6243181A (en) Manufacture of non-volatile semiconductor memory device
JPS60117658A (en) Manufacture of mos dynamic memory

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term