JPS6242850B2 - - Google Patents

Info

Publication number
JPS6242850B2
JPS6242850B2 JP53098318A JP9831878A JPS6242850B2 JP S6242850 B2 JPS6242850 B2 JP S6242850B2 JP 53098318 A JP53098318 A JP 53098318A JP 9831878 A JP9831878 A JP 9831878A JP S6242850 B2 JPS6242850 B2 JP S6242850B2
Authority
JP
Japan
Prior art keywords
acid
alumina
aluminum
weight
hydrothermal treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53098318A
Other languages
Japanese (ja)
Other versions
JPS5527824A (en
Inventor
Kazuo Sato
Hisashi Kishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Asahi Kagaku Kogyo Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Asahi Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd, Asahi Kagaku Kogyo Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP9831878A priority Critical patent/JPS5527824A/en
Publication of JPS5527824A publication Critical patent/JPS5527824A/en
Publication of JPS6242850B2 publication Critical patent/JPS6242850B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はアルミナゾルの製造法に関する。 更に詳細には経時安定性が優れ且つ所望の粘度
を有するアルミナゾルの製造法、またはこれらの
性質を有する再分散性の優れたアルミナ粉末を与
えるアルミナゾルの製造法に関する。 現在、種々のアルミナゾル及び該ゾルを乾燥粉
末化し、これを再分散させて使用することを目的
とした分散性アルミナ粉末が市販されているが、
いずれの製品も約10重量%以上のAl2O3濃度のゾ
ルになると経時安定性が著しく劣り、数日以内に
ゲル化してしまう。また低Al2O3濃度のゾルの場
合には大量の媒体を運搬しなければならないと
か、あるいは使用に際して多量の媒体を蒸発させ
なければならないという不利益が存在する。 更には既存の市販品では所望の粘度の製品が得
がたく、使用に際して適当な薬剤を添加して粘度
を調整しなければならないという問題を派生する
こともある。 通常アルミナゾルはアルミナゲルの分散液を無
機酸あるいは有機酸により解膠処理することによ
り製造されている。 従来アルミナゾルの製造法として アルミン酸ソーダ水溶液と水溶性アルミニウ
ム塩溶液とをPH9〜10になるようにして短時間
に反応させてアルミナゲルを生成熟成させ、つ
いでこのアルミナゲルに一価の無機酸あるいは
有機酸を酸根/Al(モル比)が0.15以上になる
ように添加し、均一なゾルを生成させる方法
(特公昭40−8409号公報) アルミン酸ソーダ溶液中に撹拌しつつ炭酸ガ
スを吹込み生成した凝ベーマイトアルミナスラ
リーを酸根/Al(モル比)が0.05〜0.2の一価
の無機強酸中に分散させる方法(英国特許第
1440194号明細書) アルミナゲルの分散液を酸根/Al(モル
比)0.125以上の酸の存在下に水熱処理し、ベ
ーマイト結晶格子を有しフアイバーの形態をと
るアルミナゾルを製造する方法(特公昭40−
14292号公報) 等が提案されている。 しかしながらの方法によつて得られるアルミ
ナゾル用粉末は再分散性が劣り、Al2O3濃度が10
重量%以下のアルミナゾルしか調整しがたく、し
かも経時安定性が劣るという不都合を有してい
る。さらに該特公昭40−8409号公報によれば該方
法によつて製造されたアルミナゲルは解膠操作の
際、酸の添加量が酸根/Al(モル比)で0.15より
少ないと水を添加してもゾル形態に転化せず、単
にアルミナゲル粉末の分散液を与えるに過ぎない
と記載している。 の方法ではアルミン酸ソーダと炭酸ガスとい
う特定の組合せにより得られるアルミナゲルを無
機強酸でゾル化を行なうが、得られたゾルは
Al2O3濃度が約10重量%以上となると数日間しか
安定でないという不都合を有する。 さらにの方法では、ゾル化時の水熱処理温度
とアルミナ濃度との関係について、約250℃以下
の温度で約15重量%以上のAl2O3濃度を用いる
と、生成物は非常に不良で不可逆的にゲル化して
しまうと明言しており、また該方法によつて得ら
れた分散性アルミナ粉末を水に分散させ液状ゾル
を調整する場合にもかかるアルミナ粉末がフアイ
バー状であるためと思われるが、そのAl2O3濃度
が約10重量%以下という低濃度でさえ分散性が劣
り、ゾルを効率的に得ることができないという問
題がある。 水熱処理の際使用する解離恒数が0.1以上の強
−塩基性酸の酸根のアルミナ濃度に対するモル比
も0.25以上、すなわち酸根/Alモル比0.125以上
とはしているが、実際には相対的に高い酸濃度比
を使用するものである。 以上のごとく、従来公知の方法によつては高
Al2O3濃度において経時安定性の優れたアルミナ
ゾル、また再分散性のすぐれたアルミナ粉末を与
えるアルミナゾルの製造法は知られていない。 さらにこれら従来方法により製造されたアルミ
ナゾルの粘度は各製造法に固有のものであり所望
の粘度のアルミナゾルを任意に製造する方法も知
られていない。 かかる状況下において本発明者らは経時安定性
のきわめて優れたアルミナゾル、また再分散性の
優れたアルミナ粉末を与えるアルミナゾルを製造
する方法を見い出すべく鋭意研究を行なつた結
果、本願発明の方法を完成するに至つた。 すなわち本発明は少なくとも一方がアルミニウ
ム化合物である酸性物質とアルカリ性物質との液
相中和反応によつて得られるアルミナゲルを酸
根/Alのモル比が0.001〜0.12、好ましくは0.002
〜0.10となる量の一価の無機酸又はこれらの酸の
水溶性アルミニウム塩の存在下に水熱処理するこ
とにより経時安定性の優れ且つ所望の粘度を有す
るアルミナゾル、また再分散性のすぐれたアルミ
ナ粉末を与えるアルミナゾルの製造法を提供する
ものである。 以下本発明を詳細に説明する。 本発明においてアルミナゲルの水熱処理に際し
て共存せしめる一価の無機酸の酸根とはアルカリ
性物質で中和滴定することのできる酸根が存在す
ることであつて、例えば塩化アルミニウムを苛性
ソーダで中和して生ずるNaClとしての塩素イオ
ンは本発明でいう酸根には該当しない。しかし苛
性ソーダの中和反応に際して当量以下の苛性ソー
ダを使用したことにより残存する塩化アルミニウ
ム又は部分的に中和されたAl(OH)xCly(x+y
=3)のごとき塩基性塩化アルミニウムの塩素イ
オンは本発明でいう酸根として有効に働らく。 本発明の実施に当り、まず少なくとも一方がア
ルミニウム化合物である酸性物質とアルカリ性物
質、具体的には酸性のアルミニウム化合物とアル
カリ性物質、酸性物質とアルカリ性アルミニウム
化合物、又は酸性アルミニウム化合物とアルカリ
性アルミニウム化合物との中和反応によりアルミ
ナゲルを生成させる。 酸性のアルミニウム化合物としては、塩化アル
ミニウム、硝酸アルミニウム、硫酸アルミニウ
ム、酢酸アルミニウム、臭化アルミニウム、ヨウ
化アルミニウム、ナトリウムミヨウバン、カリウ
ムミヨウバン、アンモニウムミヨウバンのごとき
アルミニウム塩、並びに塩基性塩化アルミニウ
ム、塩基性硝酸アルミニウム、塩基性硫酸アルミ
ニウム、塩基性酢酸アルミニウムなどの塩基性ア
ルミニウム塩等任意の可溶性の酸性アルミニウム
塩を使用することができるが、一般には入手が容
易な塩化アルミニウム、硝酸アルミニウム、硫酸
アルミニウム、塩基性塩化アルミニウム、塩基性
硝酸アルミニウム、塩基性硫酸アルミニウムなど
を使用するのが適当であり、特に塩化アルミニウ
ム、硝酸アルミニウム、塩基性塩化アルミニウム
または塩基性硝酸アルミニウムが好適である。 アルカリ性のアルミニウム化合物としてはアル
ミン酸ナトリウム、アルミン酸カリウム、アルミ
ン酸アンモニウムなどの水溶性アルミン酸塩が挙
げられる。 アルミニウム化合物以外の酸性物質としては塩
酸、硝酸、硫酸、塩素酸、過塩素酸、酢酸、ギ酸
などの水溶性の無機酸、有機酸など任意の酸性物
質が使用でき、他方アルミニウム化合物以外のア
ルカリ性物質としてはアルカリ金属、アルカリ土
金属又はアンモニアの水酸化物、炭酸塩、重炭酸
塩、亜硫酸塩、ホウ酸塩などを用いることがで
き、特に炭酸ナトリウム、炭酸カリウム、炭酸ア
ンモニウムなどのアルカリ金属またはアンモニア
の炭酸塩が適当である。 尚該中和反応においてアルミナ以外の不溶性塩
が生成してアルミナと同時に析出するごとき組み
合せは当然除かれる。又中和反応においては酸性
物質として、酸性のアルミニウム化合物を用い、
アルカリ性物質で中和する方がアルミン酸塩を酸
性物質で中和するより反応形態としては望まし
い。 該中和反応によるアルミナゲル生成反応は、
100℃より高い温度で反応を実施すると得られる
ゲルは結晶化が進み解膠し難くなるので一般には
100℃以下、好ましくは約5〜50℃の温度におい
て実施される。このようにして生成させたアルミ
ナゲルは必要により熟成した後、洗浄し副生付着
する不純物を除去する。 洗浄後のアルミナゲルは常法に従つて過、乾
燥により任意のAl2O3含有率の分散液乃至ケーキ
状とすることができるが、その形態は使用目的に
より適宜調整される。しかし低濃度のアルミナゲ
ルを用いた場合には得られるアルミナゾルのアル
ミナ濃度が低くなるばかりではなく水熱処理時に
膨潤、高粘性化して均質なアルミナゾルが得難く
なり、逆にアルミナゲルを乾燥し過ぎても解膠に
長時間を要しゾル形態に転化し難くなる。従つて
過、精製されたアルミナゲルはAl2O3含有率が
約15〜90重量%、好ましくは約55〜80重量%まで
自然にまたは強制的に乾燥処理して水熱処理に供
するのが有効である。 かかるAl2O3含有率に乾燥されたアルミナゲル
は再び水にて所望のAl2O3濃度のアルミナゲルス
ラリーに転化され、本発明の方法に従つて水熱処
理されるが、適当な乾燥状態にあるアルミナゲル
を使用することにより、水熱処理に際してアルミ
ナゲルが膨潤し、高粘性化されることがなく容易
に解膠させ、Al2O3含有率約30重量%までの任意
の濃度のアルミナゾルを製造することができる。 本発明の実施に当つては以上の方法により取得
されたアルミナゲルを酸根/Alのモル比が0.001
〜0.12となる量の一価の無機酸またはこれらの酸
の水溶性アルミニウム塩の存在下に水熱処理する
ことにより高Al2O3濃度化され、経時安定性の優
れたアルミナゾルが得られる。 本発明方法の水熱処理の実施に当り使用される
一価の無機酸としては塩酸、硝酸、塩素酸、過塩
素酸、臭化水素酸、沃化水素酸などであるが、弗
酸は適当ではない。又これらの酸の水溶性アルミ
ニウム塩としては塩基性塩化アルミニウム、塩基
性硝酸アルミニウム、塩化アルミニウム、硝酸ア
ルミニウムなどが使用できるが、入手の容易な塩
酸、硝酸、塩基性塩化アルミニウム、塩化アルミ
ニウム、硝酸アルミニウムなどが適当である。勿
論これらの酸根は混合して使用されても何等不都
合を生ずるものではない。さらに酸根/Alのモ
ル比を該範囲内で適宜変更することにより、得ら
れるアルミナゾルの粘度を調整することが可能で
ある。 水熱処理に際し存在させる酸根の量はアルミナ
ゲル中のAl2O3に対して酸根/Alのモル比が0.001
〜0.12の範囲であるが、取得するアルミナゾルの
形態、例えば高Al2O3濃度でしかも極めて経時安
定性がすぐれたアルミナゾルを製造する場合には
酸根/Alのモル比が約0.002〜0.02であることが
好ましく、また水熱処理時の解膠性能が著しくす
ぐれ、かつ得られるアルミナゾルが高Al2O3濃度
の状態で多少経時増粘性を示すゾルを取得するに
は酸根/Alのモル比が約0.02〜0.10の範囲で制御
するのが適当である。酸根/Alのモル比を約0.02
以上とする場合にはアルミナゲルのほぼ100%が
容易に解膠され、得られるゾルはきわめて清澄で
あり、残渣の過操作などは必要がない。以上の
範囲内において酸根/Alのモル比を適宜変更す
ることにより水熱処理後に取得されるアルミナゾ
ルは同一Al2O3濃度でも粘度は異なり、一般には
酸根/Alのモル比が高くなるほどアルミナゾル
の粘度は上昇する。 以上のごとく一価の無機酸、酸根/Alのモル
比を用いて水熱処理することにより、従来品にく
らべ高Al2O3濃度化され経時安定性が優れた任意
の所望の粘度を有するアルミナゾルを取得するこ
とができるが、弗酸や二価以上の酸根を用いたの
では本発明の期待する効果が得られずまた酸根/
Alのモル比が0.001未満では解膠が著しく困難と
なり、水熱処理後の残渣とゾルとの分離も難かし
く生産性が低下し、かつアルミナゾルへの転化率
も低い。また酸根/Alのモル比が0.12を越えると
繊維状アルミナの生成が起こるものと考えられ、
水熱処理に際し、一且解膠されてもすぐにゲル化
してしまつたり、例えゾルが得られても経時安定
性が著しく劣る。アルミナゲルスラリーの水熱処
理に際して共存させる一価の無機酸またはこれら
の酸の水溶性アルミニウム塩は水熱処理前のアル
ミナゲルスラリー調整時に必要量添加してもよい
し、また原料アルミナを得る過程、すなわち水熱
処理の際使用される一価の無機酸のアルミニウム
化合物を酸性物質として用い、当量以下のアルカ
リ性物質で中和して一価の酸根が適当量結合した
アルミナゲルを生成せしめ、このアルミナゲルは
後の水熱処理の際の所定量の残存酸根が存在する
限り、そのまま新しく酸根を添加することなく、
あるいは不足量を補充して水熱処理することもで
きる。後者の方法は中和反応で取得される酸根が
残存するアルミナゲルは洗浄、乾燥過程で酸根が
洗い出されたり、又除去されずかつ解膠性の点で
も有利であるため前者の方法にくらべ操作が簡便
となり好ましい実施態様である。 本発明の水熱処理は約120〜300℃、好ましくは
約140〜200℃の温度にて約15分間〜7時間、好ま
しくは約30分〜4時間実施される。処理温度が約
120℃より低温度では解膠に長時間を有し、また
約300℃より高温度になると急冷設備、高圧容器
などを必要とするので望ましくない。 以上の条件により水熱処理を行なうとアルミナ
ゲルスラリーは徐々に解膠し乳白色から乳光色半
透明状に変わり、しかも約30重量%までの任意の
アルミナ濃度、任意の粘度のアルミナゾルを製造
することができる。 以上により取得られるアルミナゾルの粘度は
Al2O3濃度が25重量%のゾルの場合20℃で約50cp
(センチポイズ)から数100cpの高粘度のものま
で、またAl2O3濃度が10重量%のゾルの場合数cp
という極めて低粘度のものから約100cpという比
較的高粘度のものまで任意の所望の粘度を有する
アルミナゾルを製造することができ、しかもこれ
らのゾルは3カ月以上放置してもゲル化すること
なく非常に安定なものである。 このアルミナゾルはX線回折、及び電子顕微鏡
観察の結果、ベーマイト態結晶格子を有する約
0.1〜0.02μの大きさの板状物が分散乃至集合状
態にあり、繊維状態のものではない。 このようにして生成されたアルミナゾルはその
まま分散液としての用途に用いることもできる
し、また噴霧乾燥あるいは蒸発乾固などの手段に
より乾燥して粉末化した後、水に再分散させてゾ
ルに転化させるかまたは粉末のまま用いることも
できる。 以上詳述したごとく本発明の方法によれば公知
方法に比較して極めて低粘性のものから高粘性
の、高Al2O3濃度でかつ経時安定性のすぐれた乳
光色半透明のアルミナゾル、また再分散性のすぐ
れたアルミナ粉末を与えるアルミナゾルを製造す
ることができる。 本発明により製造されたアルミナゾルは電気、
電子工業および陶磁器、鋳物工業における耐熱性
バインダー、化粧品、医薬品における軟質類の配
合ベース、エアゾール製品、繊維工業における風
合改良、毛玉防止、ペイント、顔料、印刷インク
の乳化剤、安定剤、接着性向上剤、樹脂、紙類の
表面コーテイング剤、サイズ剤、石油工業におけ
る触媒担体等として特に有用である。 以下に実施例により本発明方法を更に詳細に説
明するが、本発明方法はこれにより限定されるも
のではない。 実施例 1 Al2O310.2重量%、Cl/Al(当量比)0.547の塩
基性塩化アルミニウム水溶液の各々100重量部に
第1表に示す酸根/Alモル比となる量の未反応
の塩素根が残留するように4.0重量%の炭酸ナト
リウム水溶液の所要量を各々20℃にて反応させ、
生じたアルミナゲルを約1時間同温度で熟成した
後洗浄、過し、得られたケーキを120℃のエア
バス中で乾燥して乾燥ゲルを取得した。得られた
乾燥ゲルのAl2O3含有率は第1表に示す。
The present invention relates to a method for producing alumina sol. More specifically, the present invention relates to a method for producing an alumina sol that has excellent stability over time and a desired viscosity, or a method for producing an alumina sol that provides alumina powder having these properties and excellent redispersibility. Currently, various alumina sols and dispersible alumina powders that are used by drying and powdering the sol and redispersing the sol are commercially available.
In any of the products, if the sol has an Al 2 O 3 concentration of about 10% by weight or more, its stability over time is significantly poor, and it gels within a few days. Furthermore, in the case of a sol with a low Al 2 O 3 concentration, there are disadvantages in that a large amount of medium must be transported or a large amount of medium must be evaporated during use. Furthermore, it is difficult to obtain a product with a desired viscosity with existing commercially available products, which may lead to the problem that the viscosity must be adjusted by adding an appropriate agent during use. Alumina sol is usually produced by peptizing an alumina gel dispersion with an inorganic or organic acid. The conventional method for producing alumina sol is to react a sodium aluminate aqueous solution and a water-soluble aluminum salt solution to a pH of 9 to 10 in a short period of time to produce alumina gel, which is then aged. A method of adding an organic acid so that the acid radical/Al (molar ratio) is 0.15 or more to generate a uniform sol (Japanese Patent Publication No. 1984-8409) Carbon dioxide gas is blown into a sodium aluminate solution while stirring. A method of dispersing the produced coagulated boehmite alumina slurry in a monovalent inorganic strong acid with an acid radical/Al (molar ratio) of 0.05 to 0.2 (British Patent No.
1440194 specification) A method for producing an alumina sol having a boehmite crystal lattice and in the form of fibers by hydrothermally treating an alumina gel dispersion in the presence of an acid having an acid radical/Al (molar ratio) of 0.125 or more (Japanese Patent Publication Publication No. 1973) −
14292) etc. have been proposed. However, the powder for alumina sol obtained by this method has poor redispersibility and has an Al 2 O 3 concentration of 10
It has the disadvantage that it is difficult to prepare an alumina sol of less than % by weight, and its stability over time is poor. Furthermore, according to Japanese Patent Publication No. 1984-8409, water is added to the alumina gel produced by this method if the amount of acid added is less than 0.15 (acid radical/Al (molar ratio)) during peptization. However, it is stated that the dispersion of alumina gel powder is merely provided without converting it into a sol form. In this method, alumina gel obtained from a specific combination of sodium aluminate and carbon dioxide gas is turned into a sol using a strong inorganic acid, but the resulting sol is
When the Al 2 O 3 concentration exceeds about 10% by weight, it has the disadvantage that it is stable for only a few days. In a further method, regarding the relationship between hydrothermal treatment temperature and alumina concentration during solization, it was found that if an Al 2 O 3 concentration of about 15% by weight or more is used at a temperature below about 250 °C, the product will be very poor and irreversible. This seems to be because the dispersible alumina powder obtained by this method is in the form of fibers when the dispersible alumina powder is dispersed in water to prepare a liquid sol. However, there is a problem in that even when the Al 2 O 3 concentration is as low as about 10% by weight or less, the dispersibility is poor and a sol cannot be obtained efficiently. The molar ratio of the acid radicals of the strong basic acid used in hydrothermal treatment with a dissociation constant of 0.1 or more to the alumina concentration is set to be 0.25 or more, that is, the acid radical/Al molar ratio is 0.125 or more, but in reality, the relative This method uses a high acid concentration ratio. As mentioned above, some conventional methods have high
There is no known method for producing alumina sol that provides an alumina sol with excellent stability over time in terms of Al 2 O 3 concentration, or an alumina powder with excellent redispersibility. Furthermore, the viscosity of alumina sol produced by these conventional methods is unique to each production method, and there is no known method for producing alumina sol having a desired viscosity. Under such circumstances, the present inventors conducted intensive research to find a method for producing alumina sol that has extremely excellent stability over time and alumina sol that provides alumina powder with excellent redispersibility, and as a result, the method of the present invention was developed. It was completed. That is, the present invention provides an alumina gel obtained by a liquid phase neutralization reaction between an acidic substance and an alkaline substance, at least one of which is an aluminum compound, with an acid radical/Al molar ratio of 0.001 to 0.12, preferably 0.002.
An alumina sol with excellent stability over time and a desired viscosity by hydrothermal treatment in the presence of a monovalent inorganic acid or a water-soluble aluminum salt of these acids in an amount of ~0.10, and an alumina with excellent redispersibility. The present invention provides a method for producing an alumina sol that provides a powder. The present invention will be explained in detail below. In the present invention, the acid radical of the monovalent inorganic acid that coexists during the hydrothermal treatment of alumina gel means that there is an acid radical that can be neutralized and titrated with an alkaline substance, and is generated by neutralizing aluminum chloride with caustic soda, for example. Chlorine ions as NaCl do not correspond to acid radicals in the present invention. However, due to the use of less than the equivalent amount of caustic soda during the neutralization reaction of caustic soda, residual aluminum chloride or partially neutralized Al(OH) x Cl y (x+y
The chlorine ions of basic aluminum chloride such as =3) function effectively as acid radicals in the present invention. In carrying out the present invention, first, an acidic substance and an alkaline substance, at least one of which is an aluminum compound, and an alkaline substance, specifically an acidic aluminum compound and an alkaline substance, an acidic substance and an alkaline aluminum compound, or an acidic aluminum compound and an alkaline aluminum compound, are combined. Alumina gel is produced by a neutralization reaction. Acidic aluminum compounds include aluminum salts such as aluminum chloride, aluminum nitrate, aluminum sulfate, aluminum acetate, aluminum bromide, aluminum iodide, sodium alum, potassium alum, and ammonium alum, as well as basic aluminum chloride and bases. Any soluble acidic aluminum salts such as basic aluminum salts such as basic aluminum nitrate, basic aluminum sulfate, and basic aluminum acetate can be used, but in general, easily available aluminum chloride, aluminum nitrate, aluminum sulfate, It is suitable to use basic aluminum chloride, basic aluminum nitrate, basic aluminum sulfate, etc., and aluminum chloride, aluminum nitrate, basic aluminum chloride or basic aluminum nitrate are particularly suitable. Examples of alkaline aluminum compounds include water-soluble aluminates such as sodium aluminate, potassium aluminate, and ammonium aluminate. As acidic substances other than aluminum compounds, any acidic substance such as water-soluble inorganic acids and organic acids such as hydrochloric acid, nitric acid, sulfuric acid, chloric acid, perchloric acid, acetic acid, and formic acid can be used, and on the other hand, alkaline substances other than aluminum compounds can be used. Hydroxides, carbonates, bicarbonates, sulfites, borates, etc. of alkali metals, alkaline earth metals or ammonia can be used as alkali metals, especially alkali metals such as sodium carbonate, potassium carbonate, ammonium carbonate, or ammonia. carbonate is suitable. Naturally, combinations in which insoluble salts other than alumina are produced and precipitated simultaneously with alumina in the neutralization reaction are excluded. In addition, in the neutralization reaction, an acidic aluminum compound is used as the acidic substance,
Neutralizing the aluminate with an alkaline substance is more desirable as a reaction form than neutralizing the aluminate with an acidic substance. The alumina gel production reaction due to the neutralization reaction is
If the reaction is carried out at a temperature higher than 100°C, the resulting gel will crystallize and become difficult to peptize, so generally
It is carried out at a temperature below 100°C, preferably between about 5 and 50°C. The alumina gel thus produced is aged if necessary and then washed to remove impurities attached as by-products. The alumina gel after washing can be filtered and dried according to a conventional method to form a dispersion or a cake with any Al 2 O 3 content, and its form is appropriately adjusted depending on the purpose of use. However, if alumina gel with a low concentration is used, not only will the alumina concentration of the resulting alumina sol become low, but it will also swell and become highly viscous during hydrothermal treatment, making it difficult to obtain a homogeneous alumina sol. Also, it takes a long time to deflocculate, making it difficult to convert into a sol form. Therefore, it is effective to dry the filtered and purified alumina gel until the Al 2 O 3 content is about 15 to 90% by weight, preferably about 55 to 80% by weight, and then subject it to hydrothermal treatment. It is. The alumina gel dried to such an Al 2 O 3 content is again converted into an alumina gel slurry having a desired Al 2 O 3 concentration with water and hydrothermally treated according to the method of the present invention, but under appropriate drying conditions. By using the alumina gel found in can be manufactured. In carrying out the present invention, the alumina gel obtained by the above method has an acid radical/Al molar ratio of 0.001.
By hydrothermal treatment in the presence of a monovalent inorganic acid or a water-soluble aluminum salt of these acids in an amount of ~0.12, an alumina sol with a high Al 2 O 3 concentration and excellent stability over time can be obtained. The monovalent inorganic acids used in the hydrothermal treatment of the method of the present invention include hydrochloric acid, nitric acid, chloric acid, perchloric acid, hydrobromic acid, and hydroiodic acid, but hydrofluoric acid is not suitable. do not have. As water-soluble aluminum salts of these acids, basic aluminum chloride, basic aluminum nitrate, aluminum chloride, aluminum nitrate, etc. can be used, but hydrochloric acid, nitric acid, basic aluminum chloride, aluminum chloride, aluminum nitrate, etc., which are easily available, can be used. etc. are appropriate. Of course, these acid radicals may be used in combination without causing any inconvenience. Furthermore, by appropriately changing the acid radical/Al molar ratio within the range, it is possible to adjust the viscosity of the obtained alumina sol. The amount of acid radicals to be present during hydrothermal treatment is such that the molar ratio of acid radicals/Al to Al 2 O 3 in the alumina gel is 0.001.
~0.12, but in the form of the alumina sol to be obtained, for example, when producing an alumina sol with a high Al 2 O 3 concentration and extremely excellent stability over time, the acid radical/Al molar ratio is approximately 0.002 to 0.02. It is preferable that the molar ratio of acid radicals / Al be approximately It is appropriate to control it within the range of 0.02 to 0.10. The molar ratio of acid radical/Al is approximately 0.02.
In the above case, almost 100% of the alumina gel is easily peptized, the resulting sol is extremely clear, and there is no need to over-manipulate the residue. The alumina sol obtained after hydrothermal treatment by appropriately changing the molar ratio of acid radicals/Al within the above range has different viscosity even at the same Al 2 O 3 concentration, and in general, the higher the molar ratio of acid radicals/Al, the higher the viscosity of the alumina sol. will rise. As described above, by hydrothermal treatment using a monovalent inorganic acid and the molar ratio of acid group/Al, an alumina sol having a desired viscosity with a higher concentration of Al 2 O 3 than conventional products and excellent stability over time can be produced. However, the expected effect of the present invention cannot be obtained by using hydrofluoric acid or divalent or higher acid radicals.
If the molar ratio of Al is less than 0.001, peptization becomes extremely difficult, and it is also difficult to separate the sol from the residue after hydrothermal treatment, resulting in a decrease in productivity and a low conversion rate to alumina sol. Furthermore, when the molar ratio of acid radical/Al exceeds 0.12, it is thought that fibrous alumina is formed.
During hydrothermal treatment, even if it is peptized, it immediately turns into a gel, and even if a sol is obtained, its stability over time is extremely poor. Monovalent inorganic acids or water-soluble aluminum salts of these acids to coexist during the hydrothermal treatment of the alumina gel slurry may be added in the necessary amount when preparing the alumina gel slurry before the hydrothermal treatment, or during the process of obtaining the raw material alumina, i.e. An aluminum compound, which is a monovalent inorganic acid used in hydrothermal treatment, is used as an acidic substance, and is neutralized with an equivalent amount of an alkaline substance to produce an alumina gel with an appropriate amount of monovalent acid groups bound. As long as a predetermined amount of residual acid radicals are present during the subsequent hydrothermal treatment, no new acid radicals are added.
Alternatively, the insufficient amount can be replenished and hydrothermal treatment can be performed. The latter method is more advantageous than the former method because the alumina gel, which is obtained by the neutralization reaction and in which acid groups remain, is not washed out or removed during the washing and drying process and is also advantageous in terms of peptizing properties. This is a preferred embodiment because the operation is simple. The hydrothermal treatment of the present invention is carried out at a temperature of about 120-300°C, preferably about 140-200°C, for about 15 minutes to 7 hours, preferably about 30 minutes to 4 hours. The processing temperature is approx.
Temperatures lower than 120°C are undesirable because peptization takes a long time, and temperatures higher than about 300°C require rapid cooling equipment, high-pressure containers, etc. When hydrothermally treated under the above conditions, the alumina gel slurry gradually peptizes and changes from milky white to opalescent translucent, and it is possible to produce an alumina sol with any alumina concentration up to about 30% by weight and any viscosity. Can be done. The viscosity of the alumina sol obtained by the above is
Approximately 50 cp at 20℃ for a sol with Al 2 O 3 concentration of 25% by weight
(centipoise) to a high viscosity of several 100 cp, and in the case of a sol with an Al 2 O 3 concentration of 10% by weight, a few cp
It is possible to produce alumina sols with any desired viscosity, from extremely low viscosity of about 100cp to relatively high viscosity of about 100cp.Moreover, these sols do not gel even after being left for more than 3 months and are very stable. It is stable. As a result of X-ray diffraction and electron microscopy, this alumina sol has a boehmite crystal lattice.
Plate-like materials with a size of 0.1 to 0.02 μ are in a dispersed or aggregated state and are not in a fibrous state. The alumina sol produced in this way can be used as it is as a dispersion liquid, or it can be dried and powdered by means such as spray drying or evaporation, and then redispersed in water and converted into a sol. It can also be used as a powder or as a powder. As detailed above, according to the method of the present invention, compared to known methods, a milky-colored translucent alumina sol with a high viscosity, a high Al 2 O 3 concentration, and excellent stability over time can be produced. Furthermore, it is possible to produce an alumina sol that provides alumina powder with excellent redispersibility. The alumina sol produced according to the present invention can be
Heat-resistant binders in the electronics industry, ceramics, and foundry industries, soft compounding bases in cosmetics and pharmaceuticals, aerosol products, texture improvement in the textile industry, anti-pilling, emulsifiers, stabilizers, and adhesive properties in paints, pigments, and printing inks. It is particularly useful as an improver, a resin, a surface coating agent for paper, a sizing agent, a catalyst carrier in the petroleum industry, etc. The method of the present invention will be explained in more detail with reference to Examples below, but the method of the present invention is not limited thereto. Example 1 100 parts by weight of a basic aluminum chloride aqueous solution containing 10.2% by weight of Al 2 O 3 and Cl/Al (equivalent ratio) of 0.547 was added with unreacted chlorine radicals in an amount to give the acid radical/Al molar ratio shown in Table 1. React the required amount of 4.0% by weight aqueous sodium carbonate solution at 20℃ so that
The resulting alumina gel was aged at the same temperature for about 1 hour, then washed and filtered, and the resulting cake was dried in an air bath at 120°C to obtain a dry gel. The Al 2 O 3 content of the resulting dry gel is shown in Table 1.

【表】 引き続き得られた乾燥ゲルを水にて第2表に示
した濃度のアルミナゲルスラリーに調整し、調整
された各アルミナゲルスラリーをオートクレーブ
中に移し150〜160℃の温度で2時間水熱処理し
た。 その結果得られたアルミナゾルの性状を第2表
に示す。
[Table] Subsequently, the obtained dried gel was adjusted with water to an alumina gel slurry having the concentration shown in Table 2, and each adjusted alumina gel slurry was transferred to an autoclave and soaked in water at a temperature of 150 to 160°C for 2 hours. Heat treated. The properties of the alumina sol obtained as a result are shown in Table 2.

【表】【table】

【表】 実施例 2 Al2O34.46重量%、NO3/Al(当量比)0.637の
塩基性硝酸アルミニウム水溶液100重量部にNH3
として2.43重量%の炭酸アンモニウム水溶液123
重量部を約10℃にて撹拌しながら徐々に添加反応
せしめて生じたアルミナゲルを約1時間熟成後硝
酸根の流出が見い出されなくなるまで洗浄し、引
き続き過し得られたケーキを100℃のエアーバ
ス中で乾燥してAl2O364.1重量%の乾燥ゲルを得
た。この乾燥ゲルを分割して第3表に示した酸
根/Al(モル比)、Al2O3濃度となるごとく希硝
酸中に添加せしめアルミナゲルスラリーを調製し
た。 次いでこれらのアルミナゲルスラリーをガラス
製オートクレーブ中に移し150〜160℃の温度で3
時間水熱処理をした。 その結果、得られたアルミナゾルの性状を第3
表に示す。
[Table] Example 2 Add NH 3 to 100 parts by weight of a basic aluminum nitrate aqueous solution containing 4.46% by weight of Al 2 O 3 and NO 3 /Al (equivalence ratio) of 0.637.
2.43% by weight ammonium carbonate aqueous solution as 123
The alumina gel produced by gradually adding and reacting parts by weight at about 10°C with stirring was aged for about 1 hour, washed until no nitrate radicals were found to flow out, and the resulting cake was then filtered at 100°C. It was dried in an air bath to obtain a dry gel containing 64.1% by weight of Al 2 O 3 . This dried gel was divided into portions and added to dilute nitric acid at the acid radical/Al (molar ratio) and Al 2 O 3 concentrations shown in Table 3 to prepare an alumina gel slurry. These alumina gel slurries were then transferred into a glass autoclave and incubated at a temperature of 150-160°C for 3
Hydrothermal treatment was carried out for an hour. As a result, the properties of the obtained alumina sol were
Shown in the table.

【表】 実施例 3 Al2O310.36重量%、NO3/Al(当量比)1.01の
硝酸アルミニウム水溶液各々100重量部に第4表
に示す酸根/Al(モル比)となる量の未反応の
硝酸根が残留するように10.18重量%の炭酸カリ
ウム水溶液の所要量を各々30℃にて反応させ、生
じたアルミナゲルを約1時間同温度で熟成後洗
浄、過し、得られたケーキを120℃のエアーバ
ス中で乾燥して乾燥ゲルを得た。炭酸カリウムの
所要量ならびに乾燥ゲルのAl2O3含有率を第4表
に示す。
[Table] Example 3 100 parts by weight of an aluminum nitrate aqueous solution containing 10.36% by weight of Al 2 O 3 and 1.01 NO 3 /Al (equivalent ratio) was added with an amount of unreacted to give the acid group/Al (molar ratio) shown in Table 4. Required amounts of 10.18% by weight potassium carbonate aqueous solution were reacted at 30°C so that the nitrate radicals remained, and the resulting alumina gel was aged at the same temperature for about 1 hour, then washed and filtered, and the resulting cake was filtered. A dry gel was obtained by drying in an air bath at 120°C. The required amount of potassium carbonate as well as the Al 2 O 3 content of the dry gel is shown in Table 4.

【表】 引き続き得られた乾燥ゲルの各々をAl2O3濃度
として10%のアルミナゲルスラリーとなるごとく
水にて調製した後、オートクレーブ中に移し150
〜160℃の温度で1.5時間水熱処理をした。 その結果、得られたアルミナゾルの性状を第5
表に示す。
[Table] Each of the subsequently obtained dried gels was prepared with water to give an alumina gel slurry with an Al 2 O 3 concentration of 10%, and then transferred to an autoclave for 150 min.
Hydrothermal treatment was carried out at a temperature of ~160 °C for 1.5 h. As a result, the properties of the obtained alumina sol were
Shown in the table.

【表】 実施例 4 Al2O34.38重量%、Cl/Al(当量比)1.02の塩
化アルミニウム水溶液100重量部に16.03重量%の
炭酸カリウム水溶液119重量部を約40℃にて撹拌
しながら徐々に添加反応せしめ、生じたアルミナ
ゲルを約1時間熟成後、塩素根の流出が見られな
くなるまで洗浄し、引き続き過し得られたケー
キを110℃のエアーバス中で乾燥してAl2O368.41
重量%の乾燥ゲルを得た。この乾燥ゲルを分割し
て第6表に示した酸根/Al(モル比)および
Al2O3濃度が10重量%となるごとく希塩酸中に添
加せしめてアルミナゲルスラリーを調製した。 次いで、これらのアルミナゲルスラリーをガラ
ス製オートクレーブ中に移し150〜160℃の温度で
1.5時間水熱処理をした。 その結果得られたアルミナゾルの性状を第6表
に示す。
[Table] Example 4 119 parts by weight of a 16.03% by weight potassium carbonate aqueous solution was gradually added to 100 parts by weight of an aqueous aluminum chloride solution containing 4.38% by weight of Al 2 O 3 and Cl/Al (equivalent ratio) of 1.02 while stirring at approximately 40°C. After aging the resulting alumina gel for about 1 hour, it was washed until no chlorine radicals were observed to flow out, and the resulting cake was dried in an air bath at 110°C to remove Al 2 O 3 . 68.41
% dry gel was obtained. This dry gel was divided into acid groups/Al (molar ratio) shown in Table 6 and
An alumina gel slurry was prepared by adding it to dilute hydrochloric acid so that the Al 2 O 3 concentration was 10% by weight. These alumina gel slurries were then transferred into a glass autoclave at a temperature of 150-160°C.
Hydrothermal treatment was performed for 1.5 hours. Table 6 shows the properties of the alumina sol obtained as a result.

【表】 以上、実施例1〜4の結果より特定の酸根/
Al(モル比)において経時安定性がすぐれ且つ
任意の粘度のアルミナゾルの調整が可能であるこ
とが明らかである。 実施例 5 実施例2で用いた塩基性硝酸アルミニウム水溶
液の各々100重量部に酸根/Al(モル比)0.03と
なる量の未反応の硝酸根が残留するように第7表
に示すアルカリ性物質の所要量を各々30℃にて撹
拌しながら徐々に添加、反応せしめ、生じたアル
ミナゲルを約1時間熟成後、洗浄、過して得ら
れたケーキを110℃のエアーバス中で乾燥して乾
燥ゲルを得た。乾燥ゲルのAl2O3含有率を第7表
に示す。
[Table] Based on the results of Examples 1 to 4, specific acid groups/
It is clear that the alumina sol has excellent stability over time in terms of Al (molar ratio) and that it is possible to adjust an alumina sol of any viscosity. Example 5 The alkaline substances shown in Table 7 were added to each 100 parts by weight of the basic aluminum nitrate aqueous solution used in Example 2 so that unreacted nitrate radicals remained in an amount giving an acid radical/Al (molar ratio) of 0.03. The required amount was gradually added and reacted at 30°C with stirring, and the resulting alumina gel was aged for about 1 hour, washed, filtered, and the resulting cake was dried in an air bath at 110°C. Got the gel. The Al 2 O 3 content of the dried gel is shown in Table 7.

【表】 引き続き得られた乾燥ゲルを水にてAl2O3濃度
として10重量%のアルミナゲルスラリーとなるご
とく調製し、調製された各アルミナゲルスラリー
をオートクレーブ中に移し、150〜160℃の温度で
2時間水熱処理をした。 その結果、得られたアルミナゾルの性状を第8
表に示す。
[Table] Subsequently, the obtained dried gel was prepared with water to an alumina gel slurry with an Al 2 O 3 concentration of 10% by weight, and each prepared alumina gel slurry was transferred to an autoclave and heated at 150 to 160°C. Hydrothermal treatment was carried out for 2 hours at temperature. As a result, the properties of the obtained alumina sol were
Shown in the table.

【表】 実施例 6 実施例4で用いた塩化アルミニウム水溶液100
重量部に酸根/Al(モル比)0.03となる量の未反
応の塩素根が残留するようにNH3として3.71重量
%の炭酸アンモニウム119.5重量部を約30℃にて
撹拌しながら徐々に添加反応せしめ、生じたアル
ミナゲルを約1時間熟成後、洗浄、過し得られ
たケーキを95℃のエアーバス中で乾燥して
Al2O360.5重量%の乾燥ゲルを得た。引き続き得
られた乾燥ゲルを水にてAl2O3濃度として15重量
%のアルミナゲルスラリーとなるごとく調製した
後、オートクレーブ中に移し徐々に昇温し150〜
160℃の温度で2時間水熱処理をした。 その結果、得られたアルミナゾルの性状を第9
表に示す。
[Table] Example 6 Aluminum chloride aqueous solution used in Example 4 100
Gradually add 119.5 parts by weight of ammonium carbonate (3.71% by weight as NH 3 ) while stirring at about 30°C so that an amount of unreacted chlorine radicals remains in the weight part to give an acid radical/Al (molar ratio) of 0.03. After aging the resulting alumina gel for about 1 hour, the resulting cake was washed and filtered and dried in an air bath at 95°C.
A dry gel containing 60.5% by weight of Al 2 O 3 was obtained. Subsequently, the obtained dry gel was prepared with water to an alumina gel slurry with an Al 2 O 3 concentration of 15% by weight, and then transferred to an autoclave and gradually heated to 150 ~
Hydrothermal treatment was performed at a temperature of 160°C for 2 hours. As a result, the properties of the obtained alumina sol were
Shown in the table.

【表】 実施例 7 4.05重量%の塩酸94.0重量部に酸根/Al(モル
比)0.07となる量の未反応の塩素根が残留するよ
うにAl2O33.86重量%、K2O4.67重量%のアルミ
ン酸カリウム100重量部を40℃にて撹拌しながら
徐々に添加、反応せしめ生じたアルミナゲルを約
2時間熟成後、洗浄、過し得られたケーキを90
℃のエアーバス中で乾燥してAl2O357.3重量%の
乾燥ゲルを得た。引き続き得られた乾燥ゲルを水
にてAl2O3濃度として10重量%のアルミナゲルス
ラリーとなるごとく調製した後オートクレーブ中
に移し、150〜160℃の温度で1時間水熱処理をし
た。 その結果、得られたアルミナゾルの性状を第10
表に示す。
[Table] Example 7 3.86% by weight of Al 2 O 3 and 3.86% by weight of K 2 O 3 and 4.67% by weight of K 2 O 3 were added so that an amount of unreacted chlorine radicals remained in 94.0 parts by weight of 4.05% by weight hydrochloric acid so that the acid radical/Al (mole ratio) was 0.07. 100 parts by weight of potassium aluminate was gradually added at 40°C with stirring, and the resulting alumina gel was aged for about 2 hours, then washed and filtered.
It was dried in an air bath at 0.degree. C. to obtain a dry gel with 57.3% by weight of Al.sub.2O.sub.3 . Subsequently, the obtained dried gel was prepared with water to give an alumina gel slurry having an Al 2 O 3 concentration of 10% by weight, and then transferred to an autoclave and subjected to hydrothermal treatment at a temperature of 150 to 160° C. for 1 hour. As a result, the properties of the obtained alumina sol were
Shown in the table.

【表】 実施例 8 Al2O34.16重量%、Cl/Al(当量比)0.547の塩
基性塩化アルミニウム水溶液100重量部に13.03重
量%の重炭酸カリウム水溶液108重量部を30℃に
て撹拌しながら徐々に添加、反応せしめ、生じた
アルミナゲルを約1時間熟成後、塩素根の流出が
見られなくなる迄洗浄し、引き続き過し得られ
たケーキを120℃のエアーバス中で乾燥して
Al2O372.4重量%の乾燥ゲルを得た。次いでこの
乾燥ゲルを分割して酸根/Al(モル比)0.03、
Al2O3濃度15%となるごとく第11表に示した酸、
又は之等の酸のアルミニウム塩中に添加せしめア
ルミナゲルを調製した後、オートクレーブ中に移
し150〜160℃の温度で2時間水熱処理をした。 その結果、得られたアルミナゾルの性状を第11
表に示す。
[Table] Example 8 108 parts by weight of a 13.03% by weight potassium bicarbonate aqueous solution were stirred at 30°C into 100 parts by weight of a basic aluminum chloride aqueous solution containing 4.16% by weight of Al 2 O 3 and Cl/Al (equivalent ratio) of 0.547. The resulting alumina gel was aged for about 1 hour, washed until no chlorine radicals were observed to flow out, and the resulting cake was dried in an air bath at 120°C.
A dry gel containing 72.4% by weight of Al 2 O 3 was obtained. Next, this dry gel was divided into acid groups/Al (molar ratio) 0.03,
The acids shown in Table 11 to give an Al 2 O 3 concentration of 15%,
Or, after preparing an alumina gel by adding it to an aluminum salt of the acid, it was transferred to an autoclave and subjected to hydrothermal treatment at a temperature of 150 to 160°C for 2 hours. As a result, the properties of the obtained alumina sol were
Shown in the table.

【表】 実施例 9 Al2O34.31重量%、SO4/Al(当量比)1.01の
硫酸アルミニウム水溶液100重量部にNH3として
3.97%の炭酸アンモニウム115.5重量部を50℃に
て撹拌しながら徐々に添加反応せしめ、生じたア
ルミナゲルを約2時間熟成後、硫酸根の流出が見
られなくなるまで洗浄し、引き続き得られたケー
キを100℃のエアーバス中で乾燥してAl2O363.9重
量%の乾燥ゲル6.7重量部を得た。次いでこの乾
燥ゲル6.7重量部をAl2O30.31重量%、Cl/Al(当
量比)1.02の塩化アルミニウム水溶液37.1重量部
中に添加してAl2O310重量%、酸根/Al(モル
比)0.08のアルミナゲルスラリーを調製した後オ
ートクレーブ中に移し150〜160℃の温度で1時間
水熱処理をした。 その結果、得られたアルミナゾルの性状を第12
表に示す。
[Table] Example 9 NH 3 was added to 100 parts by weight of an aluminum sulfate aqueous solution containing 4.31% by weight of Al 2 O 3 and SO 4 /Al (equivalent ratio) of 1.01.
115.5 parts by weight of 3.97% ammonium carbonate was gradually added and reacted at 50°C with stirring, and the resulting alumina gel was aged for about 2 hours and washed until no sulfuric acid radicals were observed to flow out. was dried in an air bath at 100° C. to obtain 6.7 parts by weight of a dry gel containing 63.9% by weight of Al 2 O 3 . Next, 6.7 parts by weight of this dry gel was added to 37.1 parts by weight of an aluminum chloride aqueous solution containing 0.31 % by weight of Al 2 O 3 and 1.02% by weight of Cl/Al (equivalent ratio). ) After preparing an alumina gel slurry of 0.08, it was transferred to an autoclave and subjected to hydrothermal treatment at a temperature of 150 to 160°C for 1 hour. As a result, the properties of the obtained alumina sol were
Shown in the table.

【表】 実施例 10 Al2O34.58重量%、酢酸根/Al(当量比)1.01
の酢酸アルミニウム水溶液100重量部にNH3とし
て3.77重量%の水酸化アンモニウム129重量部を
10℃にて撹拌しながら徐々に添加反応せしめ、生
じたアルミナゲルを約1時間熟成後、酢酸根の流
出が見られなくなる迄洗浄し、引き続き過し得
られたケーキを90℃のエアーバス中で乾燥して
Al2O356.9重量%の乾燥ゲル8.0重量部を得た。次
いでこの乾燥ゲル8.0重量部をAl2O32.93重量%、
NO3/Al(当量比)1.01の硝酸アルミニウム水溶
液53重量部中に添加してAl2O310重量%、酸根/
Al(モル比)0.1のアルミナゲルスラリーを調製
した後、オートクレーブ中に移し150〜160℃の温
度で30分間水熱処理をした。 その結果、得られたアルミナゾルの性状を第13
表に示す。
[Table] Example 10 Al 2 O 3 4.58% by weight, acetic acid radical/Al (equivalent ratio) 1.01
Add 129 parts by weight of ammonium hydroxide (3.77% by weight as NH3) to 100 parts by weight of an aqueous solution of aluminum acetate.
Gradual addition reaction was allowed to occur with stirring at 10°C, and the resulting alumina gel was aged for about 1 hour, washed until no acetic acid radicals were observed to flow out, and the resulting cake was filtered in an air bath at 90°C. dry with
8.0 parts by weight of a dry gel containing 56.9% by weight of Al 2 O 3 was obtained. Next, 8.0 parts by weight of this dry gel was mixed with 2.93% by weight of Al 2 O 3 and
It was added to 53 parts by weight of an aqueous solution of aluminum nitrate with NO 3 /Al (equivalence ratio) 1.01 to produce 10% by weight of Al 2 O 3 and acid radicals/
After preparing an alumina gel slurry with Al (molar ratio) of 0.1, it was transferred to an autoclave and subjected to hydrothermal treatment at a temperature of 150 to 160°C for 30 minutes. As a result, the properties of the obtained alumina sol were
Shown in the table.

【表】 実施例 11 実施例3のNo.2で得たアルミナゾルを入口ガス
温度130℃、出口ガス温度55℃で噴霧乾燥し、ア
ルミナ粉末を製造した。その結果得られたアルミ
ナ粉末の性状は次のようであつた。 Al2O3含有率:63.7重量% 形 状:球 状 平均粒子径:20μ これらのアルミナ粉末をAl2O3濃度として15重
量%となるように15℃の水に添加し5分間撹拌、
再分散させた。 その結果、得られたアルミナゾルの性状及び比
較のため市販の分散性アルミナ粉末を上記と同様
にして再分散させアルミナゾルとなした結果も合
わせ第14表に示す。
[Table] Example 11 The alumina sol obtained in No. 2 of Example 3 was spray-dried at an inlet gas temperature of 130°C and an outlet gas temperature of 55°C to produce alumina powder. The properties of the alumina powder obtained as a result were as follows. Al 2 O 3 content: 63.7% by weight Shape: Spherical Average particle size: 20 μ These alumina powders were added to water at 15°C to give an Al 2 O 3 concentration of 15% by weight, and stirred for 5 minutes.
redispersed. As a result, the properties of the obtained alumina sol and the results obtained by re-dispersing commercially available dispersible alumina powder to form an alumina sol in the same manner as above are also shown in Table 14 for comparison.

【表】 第14表より本発明品は市販品と比較しても分散
率が優れており、またゾルの経時安定性も優れて
いることが明らかである。
[Table] From Table 14, it is clear that the products of the present invention have superior dispersion rates compared to commercially available products, and also have superior sol stability over time.

Claims (1)

【特許請求の範囲】 1 少なくとも一方がアルミニウム化合物である
酸性物質とアルカリ性物質との液相中和反応によ
つて得られるアルミナゲルを酸根/Alのモル比
が0.001〜0.12となる量の一価の無機酸又はこれ
らの酸の水溶性アルミニウム塩の存在下に水熱処
理することを特徴とするアルミナゾルの製造法。 2 酸性のアルミニウム化合物をアルカリ性物質
で中和する特許請求の範囲第1項記載の記載の方
法。 3 酸性のアルミニウム化合物が塩化アルミニウ
ム、硝酸アルミニウム、塩基性塩化アルミニウ
ム、塩基性硝酸アルミニウムのいずれかである特
許請求の範囲第2項記載の方法。 4 アルカリ性物質がアルカリ金属、アルカリ土
金属又はアンモニアの水酸化物、炭酸塩、重炭酸
塩、亜硫酸塩、ホウ酸塩のいずれかである特許請
求の範囲第2項記載の方法。 5 液相中和反応によつて得られたアルミナゲル
をAl2O3含有率が15〜90重量%になるごとく一旦
乾燥して水熱処理する特許請求の範囲第1〜4項
のいずれかに記載の方法。 6 アルミナゲルをAl2O3含有率が55〜80重量%
となるごとく乾燥する特許請求の範囲第5項記載
の方法。 7 水熱処理の際の酸根/Alのモル比が0.002〜
0.10である特許請求の範囲第1〜6項のいずれか
に記載の方法。 8 水熱処理を120〜300℃の温度にて実施する特
許請求の範囲第1〜7項のいずれかに記載の方
法。 9 一価の無機酸が塩酸または硝酸である特許請
求の範囲第1〜8項のいずれかに記載の方法。 10 一価の無機酸の水溶性アルミニウム塩が塩
基性塩化アルミニウム、塩基性硝酸アルミニウ
ム、塩化アルミニウム、硝酸アルミニウムである
特許請求の範囲第1〜8項のいずれかに記載の方
法。 11 一価の無機酸のアルミニウム化合物を当量
以下のアルカリ性物質で中和して、一価の酸根が
後の水熱処理に際して必要とされる量またはそれ
以下量残存するアルミナゲルを取得し、一価の無
機酸またはそれらの酸の水溶性アルミニウム塩を
添加することなく、または必要量を補充添加して
水熱処理する特許請求の範囲第1項記載の方法。
[Claims] 1. A monovalent alumina gel obtained by a liquid phase neutralization reaction between an acidic substance and an alkaline substance, at least one of which is an aluminum compound, in an amount such that the acid radical/Al molar ratio is 0.001 to 0.12. A method for producing an alumina sol, comprising hydrothermal treatment in the presence of an inorganic acid or a water-soluble aluminum salt of these acids. 2. The method according to claim 1, which comprises neutralizing an acidic aluminum compound with an alkaline substance. 3. The method according to claim 2, wherein the acidic aluminum compound is any one of aluminum chloride, aluminum nitrate, basic aluminum chloride, and basic aluminum nitrate. 4. The method according to claim 2, wherein the alkaline substance is a hydroxide, carbonate, bicarbonate, sulfite, or borate of an alkali metal, alkaline earth metal, or ammonia. 5. According to any one of claims 1 to 4, wherein the alumina gel obtained by liquid phase neutralization reaction is once dried and hydrothermally treated so that the Al 2 O 3 content becomes 15 to 90% by weight. Method described. 6 Alumina gel with Al 2 O 3 content of 55-80% by weight
6. The method according to claim 5, wherein the drying process is carried out to obtain a drying process. 7 The molar ratio of acid radicals/Al during hydrothermal treatment is 0.002~
7. The method according to any one of claims 1 to 6, wherein the 0.10. 8. The method according to any one of claims 1 to 7, wherein the hydrothermal treatment is carried out at a temperature of 120 to 300°C. 9. The method according to any one of claims 1 to 8, wherein the monovalent inorganic acid is hydrochloric acid or nitric acid. 10. The method according to any one of claims 1 to 8, wherein the water-soluble aluminum salt of a monovalent inorganic acid is basic aluminum chloride, basic aluminum nitrate, aluminum chloride, or aluminum nitrate. 11 Neutralize the aluminum compound of the monovalent inorganic acid with an alkaline substance in an equivalent amount or less to obtain an alumina gel in which the monovalent acid radical remains in an amount required or less than that required for subsequent hydrothermal treatment. 2. The method according to claim 1, wherein the hydrothermal treatment is carried out without adding the inorganic acid or the water-soluble aluminum salt of such acid, or with supplementary addition of the necessary amount.
JP9831878A 1978-08-11 1978-08-11 Production of alumina sol Granted JPS5527824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9831878A JPS5527824A (en) 1978-08-11 1978-08-11 Production of alumina sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9831878A JPS5527824A (en) 1978-08-11 1978-08-11 Production of alumina sol

Publications (2)

Publication Number Publication Date
JPS5527824A JPS5527824A (en) 1980-02-28
JPS6242850B2 true JPS6242850B2 (en) 1987-09-10

Family

ID=14216555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9831878A Granted JPS5527824A (en) 1978-08-11 1978-08-11 Production of alumina sol

Country Status (1)

Country Link
JP (1) JPS5527824A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100400164C (en) * 2004-10-29 2008-07-09 中国石油化工股份有限公司 Method for preparing alumina supporter

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5989515A (en) * 1996-07-24 1999-11-23 Nissan Chemical Industries, Ltd. Process for producing an acidic aqueous alumina sol
US6565950B1 (en) 1998-06-18 2003-05-20 Canon Kabushiki Kaisha Recording medium, image forming method utilizing the same, method for producing the same, alumina dispersion and method for producing the same
AU2001269436A1 (en) * 2000-07-05 2002-01-14 Showa Denko K K Polishing composition and magnetic recording disk substrate polished with the polishing composition
JP2006248862A (en) * 2005-03-11 2006-09-21 Daiichi Kigensokagaku Kogyo Co Ltd Sol comprising al-o-based particle as dispersoid, its production method, and alumina particle
JP4938318B2 (en) * 2006-02-22 2012-05-23 大明化学工業株式会社 Boehmite production method and boehmite
JP2009196326A (en) 2008-02-25 2009-09-03 Fujifilm Corp Inkjet recording medium and method for manufacturing the same
TW202231582A (en) 2020-12-09 2022-08-16 日商納美仕有限公司 Alumina-based composite sol composition, method for manufacturing the same, and method for manufacturing alumina-based composite thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100400164C (en) * 2004-10-29 2008-07-09 中国石油化工股份有限公司 Method for preparing alumina supporter

Also Published As

Publication number Publication date
JPS5527824A (en) 1980-02-28

Similar Documents

Publication Publication Date Title
US4211667A (en) Process for producing alumina sols
US4492682A (en) Preparation of ultrapure boehmites and/or pseudo-boehmites
US4117105A (en) Process for preparing dispersible boehmite alumina
US2663650A (en) Process for preparing coated silica particles and product obtained thereby
EP0134708B1 (en) Process for preparing colloidal solution of antimony pentoxide
JPS62277145A (en) Aqueous collidal dispartion of serium for iv compound and its preparation
US3790495A (en) Process for the manufacture of colloidal fibrous boehmite
CN101704538A (en) Hydrothermal method for preparing series of special-shaped graded pseudo-boehmite
JP2002537204A (en) Settling process
JPS6242850B2 (en)
US4049781A (en) Method of preparing loosely aggregated 200-500 millimicron silica
JPS6034496B2 (en) Manufacturing method of alumina sol
JPS6045125B2 (en) Manufacturing method of alumina sol
JPH08268716A (en) Method for controlling particle diameter of pseudo-boehmite powder
JPH08208228A (en) Production of amorphous titanium dioxide sol
US4226636A (en) Production of calcium silicate having high specific bulk volume and calcium silicate-gypsum composite
US3846540A (en) Method for converting high-density low-porosity alumina into low-density high porosity alumina
JP2021151942A (en) Porous silica alumina particles and method for producing the same
JP3950691B2 (en) Colloidal dispersion of cerium compound containing cerium III, process for its production and use thereof
JPS62182116A (en) Production of antimony pentoxide sol
JPH0925119A (en) Production of heat resistant transition alumina
US3966893A (en) Precipitating α alumina monohydrate
JP4057475B2 (en) Method for producing barium titanate powder
JP2000256011A (en) Boehmite and its production
JP2006248862A (en) Sol comprising al-o-based particle as dispersoid, its production method, and alumina particle