JP2021151942A - Porous silica alumina particles and method for producing the same - Google Patents

Porous silica alumina particles and method for producing the same Download PDF

Info

Publication number
JP2021151942A
JP2021151942A JP2020053558A JP2020053558A JP2021151942A JP 2021151942 A JP2021151942 A JP 2021151942A JP 2020053558 A JP2020053558 A JP 2020053558A JP 2020053558 A JP2020053558 A JP 2020053558A JP 2021151942 A JP2021151942 A JP 2021151942A
Authority
JP
Japan
Prior art keywords
silica
alumina
alumina particles
aqueous solution
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020053558A
Other languages
Japanese (ja)
Inventor
広 松本
Hiroshi Matsumoto
広 松本
裕一 濱▲崎▼
Yuichi Hamazaki
裕一 濱▲崎▼
俊二 鶴田
Shunji Tsuruta
俊二 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2020053558A priority Critical patent/JP2021151942A/en
Publication of JP2021151942A publication Critical patent/JP2021151942A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

To provide porous silica-alumina particles having a high specific surface area and a high pore volume.SOLUTION: Amorphous porous silica-alumina particles having a small residual amount of alkali metal ions and mineral acid ions are provided by repeating a step of obtaining a mixture gel slurry through mixing of silica hydrogel with pseudo-boehmite alumina hydrate and washing and drying the mixture gel slurry.SELECTED DRAWING: None

Description

本発明は、高比表面積と高い細孔容積をもつ多孔質シリカアルミナ粒子およびその製造方法に関する。 The present invention relates to porous silica-alumina particles having a high specific surface area and a high pore volume, and a method for producing the same.

シリカ−アルミナ組成物を調製する方法は当技術分野において周知であり、中和反応法とpHスイング法が代表的な方法として挙げられる。 Methods for preparing silica-alumina compositions are well known in the art, and the neutralization reaction method and the pH swing method are typical methods.

中和反応(共沈法、共ゲル化法)法としては、特許文献1〜4のように、シリカヒドロゲルと金属塩の溶液を混合して、金属塩を内部に均等に含有する非晶質シリカ−アルミナを製造できるようにする調製法が挙げられる。 As a neutralization reaction (coprecipitation method, co-gelling method), as in Patent Documents 1 to 4, a solution of silica hydrogel and a metal salt is mixed, and an amorphous material containing the metal salt evenly inside is amorphous. Examples include preparation methods that allow the production of silica-alumina.

また、pHスイング法(浸漬法)としては、特許文献5および6のように、反応混合物のpHを変化させ、それによってシリカおよびアルミナを沈澱させることによって、単一の容器中で非晶質シリカ−アルミナを製造できるようにする調製法が挙げられる。 Further, as a pH swing method (immersion method), as in Patent Documents 5 and 6, amorphous silica is formed in a single container by changing the pH of the reaction mixture and thereby precipitating silica and alumina. -There is a preparation method that enables the production of alumina.

特公昭27−3989号公報Special Publication No. 27-3989 特公昭31−1862号公報Special Publication No. 31-1862 特公昭30−5963号公報Special Publication No. 30-5963 特公昭32−413号公報Tokukousho 32-4-13 Gazette 特表2010−537808号公報Special Table 2010-537808 特表2016−502971号公報Special Table 2016-502971

しかしながら、従来の技術では、特許文献1〜6に記載の調製方法から得られる多孔質シリカアルミナは、比表面積が比較的小さい、すなわち、400m/gよりはるかに小さい傾向があるという問題があった。 However, in the prior art, there is a problem that the porous silica alumina obtained from the preparation methods described in Patent Documents 1 to 6 tends to have a relatively small specific surface area, that is, much smaller than 400 m 2 / g. rice field.

さらには、細孔容積が1.0ml/gよりも小さい傾向があるという問題があった。 Furthermore, there is a problem that the pore volume tends to be smaller than 1.0 ml / g.

本発明の目的は、高い比表面積と高い細孔容積をもつ多孔質シリカアルミナ粒子およびその製造方法を提供することにある。 An object of the present invention is to provide porous silica-alumina particles having a high specific surface area and a high pore volume, and a method for producing the same.

このような技術的背景のもと、発明者らは、上記課題を解決すべく鋭意検討した結果、高い比表面積と高い細孔容積をもつ多孔質シリカアルミナ粒子が得られることを知見し、本発明を開発するに至った。
前記課題を解決し上記の目的を実現するため開発した本発明は、下記のとおりのものである。すなわち、本発明は、第一に、多孔質シリカアルミナ粒子の製造方法であって、
a.擬ベーマイトアルミナ水和物水溶液を得る工程と、
b.シリカヒドロゲル水溶液を得る工程と、
c.前記擬ベーマイトアルミナ水和物水溶液と、前記シリカヒドロゲル水溶液を混合したスラリーを、pH7.0〜9.0の範囲に調整し、温度40〜60℃で10分〜2時間の範囲で反応促進を行い、シリカアルミナ混合物水溶液を得る工程と、
d.前記シリカアルミナ混合物水溶液を濾別し、シリカアルミナ混合物ケーキ1を得た後、洗浄する第1洗浄工程と、
e.前記シリカアルミナ混合物ケーキ1を水に分散し、温度30〜50℃でpH8.0〜12.0に調整した後、さらに80℃以上に加熱してシリカアルミナゲルスラリーを得る工程と、
f.前記シリカアルミナゲルスラリーを乾燥して、シリカアルミナ粒子1を得る第1乾燥工程と、
g.乾燥して得られた前記シリカアルミナ粒子1を再度懸濁させ撹拌した後、濾別を行い、洗浄しシリカアルミナ粒子ケーキ2を得る第2洗浄工程と、
h.前記シリカアルミナ粒子ケーキ2を、乾燥してシリカアルミナ粒子2を得る第2乾燥工程と、を含む多孔質シリカアルミナ粒子の製造方法を提案する。
Against this technical background, the inventors have diligently studied to solve the above problems, and found that porous silica-alumina particles having a high specific surface area and a high pore volume can be obtained. It led to the development of the invention.
The present invention developed to solve the above problems and realize the above object is as follows. That is, the present invention is firstly a method for producing porous silica-alumina particles.
a. The process of obtaining a pseudo-boehmite alumina hydrate aqueous solution and
b. The process of obtaining an aqueous silica hydrogel solution and
c. The slurry obtained by mixing the pseudo-boehmite alumina hydrate aqueous solution and the silica hydrogel aqueous solution is adjusted to a pH range of 7.0 to 9.0, and the reaction is promoted at a temperature of 40 to 60 ° C. for 10 minutes to 2 hours. And the step of obtaining an aqueous solution of silica-alumina mixture
d. The first washing step of washing after the silica-alumina mixture cake 1 is obtained by filtering out the silica-alumina mixture aqueous solution.
e. A step of dispersing the silica-alumina mixture cake 1 in water, adjusting the pH to 8.0 to 12.0 at a temperature of 30 to 50 ° C., and then further heating to 80 ° C. or higher to obtain a silica-alumina gel slurry.
f. The first drying step of drying the silica-alumina gel slurry to obtain silica-alumina particles 1 and
g. The second washing step of suspending the silica-alumina particles 1 obtained by drying again, stirring the mixture, filtering the particles, and washing the silica-alumina particles 1 to obtain the silica-alumina particle cake 2.
h. We propose a method for producing porous silica-alumina particles, which comprises a second drying step of drying the silica-alumina particle cake 2 to obtain silica-alumina particles 2.

また、本発明は、第二に、非晶質の多孔質シリカアルミナ粒子であって、
BET法で測定した比表面積SAが400〜600m/gの範囲にあり、
BJH法で測定した細孔容積PVが1.25〜2.00ml/gの範囲にあり、
BJH法で測定した平均細孔径PDが8〜20nmの範囲にあり、
シリカとアルミナとが質量比で、2/98〜70/30の範囲にあることを特徴とする多孔質シリカアルミナ粒子を提供する。
Secondly, the present invention is an amorphous porous silica-alumina particle.
The specific surface area SA measured by the BET method is in the range of 400 to 600 m 2 / g.
The pore volume PV measured by the BJH method is in the range of 1.25 to 2.00 ml / g.
The average pore diameter PD measured by the BJH method is in the range of 8 to 20 nm.
Provided are porous silica-alumina particles characterized by a mass ratio of silica and alumina in the range of 2/98 to 70/30.

なお、本発明にかかる上記多孔質シリカアルミナ粒子については、さらに、アルカリ金属イオン(M)をMO換算で0.1質量%以下含有し、無機酸イオンの残存量が1.0質量%以下であること、がより好ましい解決手段になり得るものと考えられる。 Note that the porous silica-alumina particles according to the present invention, further, an alkali metal ion (M +) containing 0.1 wt% in M 2 O in terms of the residual amount of the inorganic acid ion is 1.0 mass It is considered that% or less can be a more preferable solution.

本発明は、多孔質シリカアルミナ粒子として、高い比表面積と高い細孔容積をもつ多孔質シリカアルミナ粒子を提供することにある。 An object of the present invention is to provide porous silica-alumina particles having a high specific surface area and a high pore volume as porous silica-alumina particles.

以下、本発明の好適な実施の形態について詳細に説明する。
[多孔質シリカアルミナ粒子]
本発明の多孔質シリカアルミナ粒子(以下、単に「シリカアルミナ粒子」ともいう)は、シリカ(SiO)とアルミナ(Al)とからなる多孔質な粒子であり、高い比表面積と高い細孔容積を有する酸化物として構成されている。
Hereinafter, preferred embodiments of the present invention will be described in detail.
[Porous Silica Alumina Particles]
The porous silica-alumina particles of the present invention (hereinafter, also simply referred to as “silica alumina particles”) are porous particles composed of silica (SiO 2 ) and alumina (Al 2 O 3 ), and have a high specific surface area and a high value. It is composed of an oxide having a pore volume.

本発明の多孔質シリカアルミナ粒子は、非晶質である。したがって、結晶性のシリカアルミナであるゼオライト等は本発明のシリカアルミナに含まれない。本発明のシリカアルミナが非晶質であるか否かは、X線回折パターンから判断することができる。具体的には、本発明のシリカアルミナをX線回折測定して得られるX線回折パターンにおいて、5°≦2θ≦50°の範囲で半値全幅が1.0°未満である回折ピークを示さなければ、本発明のシリカアルミナは非晶質であると判断できる。 The porous silica-alumina particles of the present invention are amorphous. Therefore, zeolite and the like, which are crystalline silica alumina, are not included in the silica alumina of the present invention. Whether or not the silica alumina of the present invention is amorphous can be determined from the X-ray diffraction pattern. Specifically, in the X-ray diffraction pattern obtained by X-ray diffraction measurement of the silica alumina of the present invention, a diffraction peak having a half-value total width of less than 1.0 ° in the range of 5 ° ≤ 2θ ≤ 50 ° must be shown. For example, it can be determined that the silica alumina of the present invention is amorphous.

本発明で得られたシリカアルミナ粒子は、シリカとアルミナの比率S/Aが、それぞれSiOとAlで換算した質量比S/A:2/98〜70/30の範囲であり、好ましくはS/A:5/95〜65/35の範囲である。S/A:70/30よりもアルミナ比率が低いと固体酸量が低下する傾向があり、該粒子を分解触媒等に用いた場合、必要な分解率が得られなくなる。一方、S/A:2/98よりもシリカ比率が低下すると、比表面積SAが低下する傾向にある。 In the silica-alumina particles obtained in the present invention, the ratio S / A of silica and alumina is in the range of mass ratio S / A: 2/98 to 70/30 converted by SiO 2 and Al 2 O 3, respectively. Preferably, S / A is in the range of 5/95 to 65/35. If the alumina ratio is lower than S / A: 70/30, the amount of solid acid tends to decrease, and when the particles are used as a decomposition catalyst or the like, the required decomposition rate cannot be obtained. On the other hand, when the silica ratio is lower than S / A: 2/98, the specific surface area SA tends to be lower.

得られるシリカアルミナ粒子のBET法による比表面積SAは、400〜600m/gの範囲であり、好ましくは420〜550m/gの範囲である。下限設定理由は、分解触媒に用いた場合、炭化水素との接触性や反応性から比表面積SAは適度に高い方が有利だからである。一方、比表面積SAが、600m/g超えになると細孔径PDが小さくなりすぎ、反応物の炭化水素分子サイズよりも小さくなって細孔内に拡散できなくなり有効な反応が生じないおそれがある。 The specific surface area SA by the BET method of the obtained silica-alumina particles is in the range of 400-600m 2 / g, preferably in the range of 420~550m 2 / g. The reason for setting the lower limit is that when it is used as a decomposition catalyst, it is advantageous that the specific surface area SA is appropriately high from the viewpoint of contactability and reactivity with hydrocarbons. On the other hand, when the specific surface area SA exceeds 600 m 2 / g, the pore diameter PD becomes too small, becomes smaller than the hydrocarbon molecule size of the reactant, and cannot diffuse into the pores, so that an effective reaction may not occur. ..

さらに、BJH法による細孔容積PVは、1.25〜2.00ml/gの範囲であり、好ましくは1.30〜1.90ml/gの範囲である。細孔容積PVが1.25ml/gよりも小さい場合、炭化水素分子との有効な反応の場が少なくなる。一方、細孔容積PVが2.00ml/g超えの場合、分解触媒に用いるにあたり、成型物の圧壊強度あるいは摩耗強度が弱くなり反応器に充填したときに粉化が生じ運転が出来なくなるおそれがある。 Further, the pore volume PV by the BJH method is in the range of 1.25 to 2.00 ml / g, preferably in the range of 1.30 to 1.90 ml / g. When the pore volume PV is less than 1.25 ml / g, there is less effective reaction field with hydrocarbon molecules. On the other hand, when the pore volume PV exceeds 2.00 ml / g, when used as a decomposition catalyst, the crushing strength or abrasion strength of the molded product becomes weak, and when it is filled in the reactor, powdering may occur and operation may not be possible. be.

BJH法で測定した平均細孔径PDが、8〜20nm(80〜100Å)の範囲であり、好ましくは10〜18nm(100〜180Å)の範囲である。下限設定理由は、平均細孔径PDが小さすぎる場合、反応物の炭化水素分子サイズよりも小さい細孔が多くなり細孔内に拡散できなくなって有効な反応が生じないおそれがある。一方、上限設定理由は、比表面積の低下が生じ分解反応の活性点の低下が起こる。 The average pore diameter PD measured by the BJH method is in the range of 8 to 20 nm (80 to 100 Å), preferably in the range of 10 to 18 nm (100 to 180 Å). The reason for setting the lower limit is that if the average pore diameter PD is too small, there are many pores smaller than the hydrocarbon molecule size of the reactant, and the pores cannot be diffused, so that an effective reaction may not occur. On the other hand, the reason for setting the upper limit is that the specific surface area is lowered and the active site of the decomposition reaction is lowered.

本願のシリカアルミナ粒子には、陽陰の不純物イオン成分の残存量が少ないことも特徴である。残存陽イオンとしては、残存ナトリウムイオンやカリウムイオン等のアルカリ金属イオンがあげられる。それらアルカリ金属イオン(M)量が、MO換算で0.1質量%以下、好ましくは0.05質量%以下である。さらに、硫酸イオン、硝酸イオン等の無機酸イオンの残存量は、1.0質量%以下であり、好ましくは0.5質量%以下である。不純物イオン成分の低減により固体酸点と活性金属の被毒が抑制される。 The silica-alumina particles of the present application are also characterized by a small residual amount of positive and negative impurity ion components. Examples of the residual cation include alkali metal ions such as residual sodium ion and potassium ion. They alkali metal ions (M +) amount is 0.1 mass% in M 2 O in terms of, and preferably not more than 0.05 mass%. Further, the residual amount of inorganic acid ions such as sulfate ion and nitrate ion is 1.0% by mass or less, preferably 0.5% by mass or less. By reducing the impurity ion component, the poisoning of solid acid points and active metals is suppressed.

[多孔質シリカアルミナ粒子の製造方法]
<a.擬ベーマイトアルミナ水和物水溶液を得る工程>
《a−1.調合工程》
擬ベーマイトアルミナ粒子の調製方法は、広く知られておりその中でも、アルミニウム塩および/またはアルミン酸塩溶液を中和して擬ベーマイトアルミナ粒子の沈殿を作る方法が好適である。アルミニウム塩としては、硫酸アルミニウム、塩化アルミニウム、硝酸アルミニウム等の任意のアルミニウム塩を用いることができる。また、アルミン酸塩としては、アルミン酸ナトリウム、アルミン酸カリウム等の任意のものを用いることができる。中和反応は、アルミニウム塩水溶液に水酸化ナトリウム、水酸化カリウム、アンモニア水等のアルカリ性水溶液を添加する方法、アルミン酸塩水溶液に硫酸、塩酸、硝酸等の酸の水溶液を添加する方法、アルミニウム塩水溶液とアルミン酸塩水溶液を混合する方法のいずれを用いても構わないが、製造コストの点から言えばアルミニウム塩水溶液とアルミン酸塩水溶液を混合し擬ベーマイトアルミナ水和物水溶液を得る方法が好ましい。
[Method for producing porous silica-alumina particles]
<A. Step to obtain pseudo-boehmite alumina hydrate aqueous solution>
<< a-1. Mixing process >>
Methods for preparing pseudo-boehmite alumina particles are widely known, and among them, a method of neutralizing an aluminum salt and / or an aluminate solution to form a precipitate of pseudo-boehmite alumina particles is preferable. As the aluminum salt, any aluminum salt such as aluminum sulfate, aluminum chloride, and aluminum nitrate can be used. Further, as the aluminate, any one such as sodium aluminate and potassium aluminate can be used. The neutralization reaction includes a method of adding an alkaline aqueous solution such as sodium hydroxide, potassium hydroxide, and aqueous ammonia to an aqueous aluminum salt solution, a method of adding an aqueous solution of an acid such as sulfuric acid, hydrochloric acid, and nitrate to an aqueous solution of aluminate, and an aluminum salt. Either of the methods of mixing the aqueous solution and the aluminate aqueous solution may be used, but from the viewpoint of production cost, the method of mixing the aluminum salt aqueous solution and the aluminate aqueous solution to obtain a pseudo-boehmite alumina hydrate aqueous solution is preferable. ..

《a−2.熟成工程》
中和反応を行うため二液を混合した後、擬ベーマイトアルミナ水和物への反応促進(以下、「熟成」とも言う。)のために、溶液のpHを7.0〜10.0の範囲、温度を30〜70℃の範囲に調整することで、反応が促進し擬ベーマイトアルミナ水和物を得ることができる。pHが10.0を越えると、比表面積の小さなバイヤライト相が生成するため、最終的に製造した触媒の活性が低下することがある。また、pHが7.0を低いと、最終的に得られる擬ベーマイトアルミナ粒子の細孔容積が低下する傾向があり、触媒に適した擬ベーマイトアルミナ粒子の製造が難しくなることがある。
<< a-2. Aging process >>
After mixing the two liquids to carry out a neutralization reaction, the pH of the solution is in the range of 7.0 to 10.0 in order to promote the reaction to pseudo-boehmite alumina hydrate (hereinafter, also referred to as “aging”). By adjusting the temperature in the range of 30 to 70 ° C., the reaction is promoted and pseudoboehmite alumina hydrate can be obtained. When the pH exceeds 10.0, a biasite phase having a small specific surface area is formed, which may reduce the activity of the finally produced catalyst. Further, when the pH is lower than 7.0, the pore volume of the finally obtained pseudo-boehmite alumina particles tends to decrease, which may make it difficult to produce pseudo-boehmite alumina particles suitable for the catalyst.

熟成の温度は、30〜70℃の範囲に入っていることが望ましい。温度が30℃以下では、粒子が強固に凝集する傾向があり、熟成乾燥工程を経て得られた粉の細孔容積が小さくなることがある。また、70℃以上では、バイヤライトが析出しやすくなるため、好ましくない。熟成時間は、5分〜120分間、好ましくは10〜100分間、さらに好ましくは10〜90分間の範囲であることが望ましい。この範囲から外れると、最終的に得られる擬ベーマイトアルミナ粒子の細孔容積が0.8cc/g以下となることがあり、触媒用の擬ベーマイトアルミナ粒子として使用できなくなることがある。熟成時間に関しては特に制限はないが、生産効率上から判断して、120分以内が好ましい。熟成時間が長過ぎると、最終的に得られる擬ベーマイトアルミナ粒子の比表面積が小さくなる傾向がある。 The aging temperature is preferably in the range of 30-70 ° C. When the temperature is 30 ° C. or lower, the particles tend to agglomerate strongly, and the pore volume of the powder obtained through the aging and drying step may become small. Further, at 70 ° C. or higher, biased light is likely to precipitate, which is not preferable. The aging time is preferably in the range of 5 to 120 minutes, preferably 10 to 100 minutes, more preferably 10 to 90 minutes. If it deviates from this range, the pore volume of the finally obtained pseudo-boehmite alumina particles may be 0.8 cc / g or less, and it may not be possible to use the pseudo-boehmite alumina particles for a catalyst. The aging time is not particularly limited, but it is preferably 120 minutes or less from the viewpoint of production efficiency. If the aging time is too long, the specific surface area of the finally obtained pseudo-boehmite alumina particles tends to be small.

<b.シリカヒドロゲル水溶液を得る工程>
シリカヒドロゲルの調製方法は、広く知られておりその中でも、調合中のpHはケイ酸塩水溶液と酸の供給速度を調整することにより、又SiO濃度はあらかじめ計算された規定濃度のケイ酸水溶液と酸を用いることによって制御できる。
反応はケイ酸塩水溶液と酸を10〜100℃、好ましくは20〜95℃に保った反応器で撹拌しながら供給することにより、シリカヒドロゲル溶液の得ることができる。
<B. Step to obtain silica hydrogel aqueous solution>
The method for preparing the silica hydrogel is widely known, and among them, the pH during preparation is adjusted by adjusting the supply rate of the silicate aqueous solution and the acid, and the SiO 2 concentration is the silicate aqueous solution having a predetermined concentration calculated in advance. It can be controlled by using and acid.
In the reaction, a silica hydrogel solution can be obtained by supplying an aqueous silicate solution and an acid at 10 to 100 ° C., preferably 20 to 95 ° C. with stirring in a reactor.

ケイ酸塩として使用できるものはケイ酸ソーダ1号、2号、3号、ケイ酸カリウムその他可溶性ケイ酸塩および珪藻土ならいずれでもよい。 Any of sodium silicate No. 1, No. 2, No. 3, potassium silicate and other soluble silicate and diatomaceous earth can be used as the silicate.

酸としては硫酸、硝酸、塩酸、リン酸などの無機酸あるいはギ酸のような有機酸でもよいが無機酸が好ましい。 The acid may be an inorganic acid such as sulfuric acid, nitric acid, hydrochloric acid or phosphoric acid, or an organic acid such as formic acid, but an inorganic acid is preferable.

供給するケイ酸塩の濃度はSiO換算として30質量%以下、好ましくは10質量%以下である。ケイ酸塩の濃度の下限は特に設けるものではないが、例えば5質量%以上で供給すれば、必要なSiO量を調整するために大容積の調合容器や大量の水を必要としないので好ましい。一方、上限設定理由は、無機酸との中和で生じるゲル化により強固なゲル状物の影響で攪拌機が過負荷となり停止または充分な攪拌が出来なくなるからである。 The concentration of the silicate to be supplied is 30% by mass or less, preferably 10% by mass or less in terms of SiO 2. The lower limit of the silicate concentration is not particularly set, but for example, if it is supplied in an amount of 5% by mass or more, it is preferable because a large volume compounding container and a large amount of water are not required to adjust the required amount of SiO 2. .. On the other hand, the reason for setting the upper limit is that the agitator becomes overloaded due to the influence of a strong gel-like substance due to gelation caused by neutralization with an inorganic acid, and the stirrer cannot be stopped or sufficiently agitated.

上記調整法によればBET法による比表面積が190〜600m/gの範囲に入るシリカヒドロゲル水溶液を容易に得ることができる。 According to the above-mentioned adjustment method, an aqueous silica hydrogel solution having a specific surface area of 190 to 600 m 2 / g according to the BET method can be easily obtained.

<c.シリカアルミナ混合物水溶液を得る工程>
(前記擬ベーマイトアルミナ水和物水溶液と前記シリカヒドロゲル水溶液を混合し、シリカアルミナ粒子混合物水溶液を得る。)
固形分濃度を1〜5質量%に調整した擬ベーマイトアルミナ水和物水溶液と固形分濃度を5〜10質量%に調整したシリカヒドロゲル水溶液とを混合し、さらにpH7.0〜10.0の範囲、より好ましくはpH8.0〜9.0の範囲に調整し、温度40〜60℃の範囲で10分〜2時間熟成を行い、シリカアルミナ混合物水溶液を得ることができる。この2液を混合する際は、擬ベーマイトアルミナ水和物水溶液にシリカヒドロゲル水溶液を添加しても、シリカヒドロゲル水溶液に擬ベーマイトアルミナ水和物水溶液を添加してもよい。
<C. Step to obtain silica-alumina mixture aqueous solution>
(The pseudo boehmite alumina hydrate aqueous solution and the silica hydrogel aqueous solution are mixed to obtain a silica-alumina particle mixture aqueous solution.)
A pseudo-bemite alumina hydrate aqueous solution having a solid content concentration adjusted to 1 to 5% by mass and a silica hydrogel aqueous solution having a solid content concentration adjusted to 5 to 10% by mass are mixed, and the pH is in the range of 7.0 to 10.0. , More preferably, the pH is adjusted to the range of 8.0 to 9.0, and the mixture is aged at a temperature of 40 to 60 ° C. for 10 minutes to 2 hours to obtain an aqueous solution of a silica-alumina mixture. When mixing these two liquids, a silica hydrogel aqueous solution may be added to the pseudo-bemite alumina hydrate aqueous solution, or a pseudo-bemite alumina hydrate aqueous solution may be added to the silica hydrogel aqueous solution.

<d.第1洗浄工程>
前記工程cで得られたシリカアルミナ混合物水溶液を濾別した後、シリカアルミナ混合物ケーキ1を得る。該混合物ケーキ1を洗浄容器に移し、50〜70℃の水で洗浄し、未反応の原料や夾雑イオン等を除去し、シリカアルミナ混合物ケーキ1を得る。
<D. First cleaning process>
After the silica-alumina mixture aqueous solution obtained in the step c is filtered off, a silica-alumina mixture cake 1 is obtained. The mixture cake 1 is transferred to a washing container and washed with water at 50 to 70 ° C. to remove unreacted raw materials, contaminant ions and the like to obtain a silica-alumina mixture cake 1.

洗浄水の温度は、未反応の原料や夾雑イオン等の除去効率をあげるため、常温より高い50〜70℃の範囲のものを用いることが好ましい。ここで用いる50〜70℃の水の量は、理論的に得られるシリカアルミナ粒子の質量の35倍程度の量を用いて洗浄することが好ましい。 The temperature of the washing water is preferably in the range of 50 to 70 ° C., which is higher than room temperature, in order to improve the efficiency of removing unreacted raw materials and contaminant ions. The amount of water at 50 to 70 ° C. used here is preferably about 35 times the mass of the theoretically obtained silica-alumina particles for washing.

<e.シリカアルミナゲルスラリーを得る工程>
前記工程dで得られたシリカアルミナ混合物ケーキ1を水に分散した後、温度30〜50℃でpHを8.0〜12.0の範囲、より好ましくはpH8.5〜11.5に調整した後、さらに80℃以上に加熱して1〜20時間、より好ましくは1〜15時間撹拌し、シリカアルミナ混合物からシリカアルミナゲルへ反応を促進しシリカアルミナゲルスラリーを得る。
ここで80℃以上での加熱においては、シリカアルミナゲルの熟成の促進・完結を目的としているため、常圧で行っても、オートクレーブ等の加圧条件で行ってもよく、加圧条件で行うことで、処理時間が短くて済むという利点がある。
<E. Step to obtain silica-alumina gel slurry>
After the silica-alumina mixture cake 1 obtained in the step d was dispersed in water, the pH was adjusted to a range of 8.0 to 12.0, more preferably pH 8.5 to 11.5 at a temperature of 30 to 50 ° C. After that, the mixture is further heated to 80 ° C. or higher and stirred for 1 to 20 hours, more preferably 1 to 15 hours to accelerate the reaction from the silica-alumina mixture to the silica-alumina gel to obtain a silica-alumina gel slurry.
Here, since the purpose of heating at 80 ° C. or higher is to promote and complete the aging of the silica alumina gel, it may be carried out at normal pressure or under pressurized conditions such as an autoclave, and it is carried out under pressurized conditions. Therefore, there is an advantage that the processing time can be shortened.

<f.第1乾燥工程>
前記工程eで得られたシリカアルミナゲルスラリーを乾燥し、シリカアルミナ粒子1を得る。
<F. First drying process>
The silica-alumina gel slurry obtained in the step e is dried to obtain silica-alumina particles 1.

乾燥して、シリカアルミナ粒子1を得るには、スプレードライまたはその他の通常用いられている乾燥装置を使用することができる。乾燥温度は特に制限はないが、温度が高すぎると擬ベーマイトアルミナからガンマ−アルミナへ相転移するため好ましくない。このため、入口温度500℃以下、出口温度200℃以下が好ましく、すなわち、入口温度300〜500℃、出口温度130〜200℃の範囲で乾燥することが好ましい。 To dry to obtain silica-alumina particles 1, a spray dry or other commonly used drying device can be used. The drying temperature is not particularly limited, but if the temperature is too high, the phase transition from pseudoboehmite alumina to gamma-alumina is not preferable. Therefore, the inlet temperature is preferably 500 ° C. or lower and the outlet temperature is preferably 200 ° C. or lower, that is, the drying is preferably performed in the range of the inlet temperature of 300 to 500 ° C. and the outlet temperature of 130 to 200 ° C.

<g.第2洗浄工程>
前記工程fで得られたシリカアルミナ粒子1を、再度懸濁させ撹拌した後、濾別を行い、洗浄しシリカアルミナ粒子ケーキ2を得る。
<G. Second cleaning process>
The silica-alumina particles 1 obtained in the step f are suspended again, stirred, filtered, and washed to obtain a silica-alumina particle cake 2.

前記工程fで得られたシリカアルミナ粒子1の残留アルカリ金属イオン濃度を低減するために、懸濁液の温度は、40〜70℃の範囲のものを用いることが好ましく、また懸濁液には、水溶性酸性物質を含む水溶液で濾別を行うことが好ましい。ここで用いる水溶性酸性物質としては、例えば、硫酸アンモニウム、硝酸アンモニウム、塩化アンモニウムなどが挙げられる。 In order to reduce the residual alkali metal ion concentration of the silica alumina particles 1 obtained in the step f, the suspension temperature is preferably in the range of 40 to 70 ° C., and the suspension is used. , It is preferable to perform filtration with an aqueous solution containing a water-soluble acidic substance. Examples of the water-soluble acidic substance used here include ammonium sulfate, ammonium nitrate, ammonium chloride and the like.

さらに、濾別後、残留塩等の除去を行うため、水溶性塩基性物質を含む温水等で洗浄、濾別を行い、シリカアルミナ粒子ケーキ2を得ることができる。洗浄水の温度は、未反応の原料や夾雑イオン等の除去効率をあげるため、常温より高い50〜70℃の範囲のものを用いることが好ましい。ここで用いる水溶性塩基性物質としては、例えば、アンモニア水、水酸化物塩、炭酸塩、炭酸水素塩(ここでいう塩とは、アルカリ金属塩やアルカリ土類金属塩を意味する)を用いることができる。 Further, in order to remove residual salts and the like after filtration, the silica-alumina particle cake 2 can be obtained by washing with warm water or the like containing a water-soluble basic substance and filtering. The temperature of the washing water is preferably in the range of 50 to 70 ° C., which is higher than room temperature, in order to improve the efficiency of removing unreacted raw materials and contaminant ions. As the water-soluble basic substance used here, for example, aqueous ammonia, hydroxide salt, carbonate, or hydrogen carbonate (the salt here means an alkali metal salt or an alkaline earth metal salt) is used. be able to.

<h.第2乾燥工程>
前記工程gで得られた濾別後のシリカアルミナ粒子ケーキ2の乾燥は、前記工程fに記載の乾燥方法で行うことで、目的のシリカアルミナ粒子2を得ることができる。
<H. Second drying process>
The desired silica-alumina particles 2 can be obtained by drying the silica-alumina particle cake 2 after filtration obtained in the step g by the drying method described in the step f.

また、夾雑イオン等の不純物の残存量によっては、前記工程gの後に必要に応じて、さらに工程fおよび/またはgを再度行ってもよい。 Further, depending on the residual amount of impurities such as contaminant ions, the steps f and / or g may be performed again after the step g, if necessary.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

<測定方法ないし評価方法>
実施例等における測定方法ないし評価方法は、以下のとおりである。
<Measurement method or evaluation method>
The measurement method or evaluation method in the examples and the like is as follows.

(各元素、化合物および金属成分(Si、Al、Na、SO 2−)の含有量の測定方法)
測定試料3gを容量30mlの蓋付きジルコニアボールに採取して、加熱処理(200℃、20分)し、焼成(700℃、5分)した後、Na:2gおよびNaOH:1gを加えて15分間溶融した。さらに、HSO:25mlと水200mlを加えて溶解したのち、純水で500mlになるように希釈して試料とした。得られた試料について、誘導結合プラズマ(ICP)発光分光分析装置((株)島津製作所製、ICPS−8100、解析ソフトウェアICPS−8000)を用いて、各成分の含有量を酸化物換算質量基準で測定した。
(Each element, compound and metal components (Si, Al, Na, SO 4 2-) method of measuring the content of)
3 g of the measurement sample was collected in a zirconia ball with a lid having a capacity of 30 ml, heat-treated (200 ° C., 20 minutes), calcined (700 ° C., 5 minutes), and then Na 2 O 2 : 2 g and NaOH: 1 g were added. Melted for 15 minutes. Further, 25 ml of H 2 SO 4 : and 200 ml of water were added and dissolved, and then diluted with pure water to 500 ml to prepare a sample. For the obtained sample, using an inductively coupled plasma (ICP) emission spectroscopic analyzer (ICPS-8100 manufactured by Shimadzu Corporation, analysis software ICPS-8000), the content of each component is measured on an oxide-equivalent mass basis. It was measured.

(細孔容積PVと平均細孔径PDの測定方法)
マイクロトラック・ベル株式会社製のBELSORP−mini Ver2.5.6により細孔容積PVと平均細孔径PDを測定した。具体的には、真空排気しながら500℃で2時間熱処理した試料に対して、窒素ガスを吸着させ、BJH法の相対圧力(P/P=0.99)の脱着側等温線により細孔容積PV(ml/g)と平均細孔径PD(nm)を算出した。
(Measuring method of pore volume PV and average pore diameter PD)
The pore volume PV and the average pore diameter PD were measured by BELSORP-mini Ver2.5.6 manufactured by Microtrac Bell Co., Ltd. Specifically, nitrogen gas is adsorbed on a sample that has been heat-treated at 500 ° C. for 2 hours while evacuating, and pores are formed by the desorption-side isotherm of the relative pressure (P / P 0 = 0.99) of the BJH method. The volume PV (ml / g) and the average pore diameter PD (nm) were calculated.

(比表面積SAの測定方法)
比表面積SAの測定のために、測定試料を磁製ルツボ(B−2型)に約30mL採取し、500℃の温度で2時間加熱処理後、デシケータに入れて室温まで冷却し、測定用サンプルを得た。次に、このサンプルを1g取り、全自動表面積測定装置(湯浅アイオニクス社製、マルチソーブ12型)を用いて、試料の比表面積SA(m/g)をBET法にて測定した。
(Measuring method of specific surface area SA)
For the measurement of specific surface area SA, about 30 mL of the measurement sample was collected in a porcelain crucible (B-2 type), heat-treated at a temperature of 500 ° C. for 2 hours, placed in a desiccator and cooled to room temperature, and the sample for measurement was taken. Got Next, 1 g of this sample was taken, and the specific surface area SA (m 2 / g) of the sample was measured by the BET method using a fully automatic surface area measuring device (manufactured by Yuasa Ionics, Multisorb 12 type).

(平均粒子径の測定方法)
実施例等の触媒の粒度分布を、堀場製作所(株)製レーザー回折・散乱式粒度分布測定装置(LA−300)により測定した。具体的には、光線透過率が70〜95%の範囲となるように試料を溶媒(水)に投入し、循環速度:2.8L/分、超音波照射:3分間、反復回数:30回の条件で測定した。得られた粒度分布から、メジアン径(D50)を平均粒子径として採用した。
(Measuring method of average particle size)
The particle size distribution of the catalyst of Examples and the like was measured by a laser diffraction / scattering type particle size distribution measuring device (LA-300) manufactured by HORIBA, Ltd. Specifically, the sample was put into a solvent (water) so that the light transmittance was in the range of 70 to 95%, the circulation speed was 2.8 L / min, the ultrasonic irradiation was 3 minutes, and the number of repetitions was 30 times. It was measured under the conditions of. From the obtained particle size distribution, the median diameter (D50) was adopted as the average particle size.

(強熱減量(ignition loss、loss of ignition。以下、単に「強熱減量」ともいう)の測定方法)
測定試料である触媒を1000℃で1時間焼成し、焼成による質量減少量から算出している。
(Measurement method of ignition loss, loss of ignition; hereinafter, also simply referred to as "ignition loss"))
The catalyst, which is the measurement sample, is calcined at 1000 ° C. for 1 hour, and is calculated from the amount of mass loss due to calcining.

(X線回折測定条件)
シリカアルミナ粒子のX線回折は、株式会社リガク製MiniFlexにより測定した。測定条件は、操作軸を2θ/θとし、線源にCuKαを用い、連続式測定方法により、電圧を40kV、電流を15mAとし、開始角度:2θ=5°から終了角度:2θ=50°まで、サンプリング幅を0.020°とし、スキャン速度を10.000°/minとした。
非晶質の判断基準は、5°≦2θ≦50°の範囲で半値全幅が1.0°未満である回折ピークを示さないこと、とした。
(X-ray diffraction measurement conditions)
The X-ray diffraction of the silica-alumina particles was measured by MiniFlex manufactured by Rigaku Co., Ltd. The measurement conditions are as follows: the operating axis is 2θ / θ, the radiation source is CuKα, the voltage is 40 kV, the current is 15 mA, and the start angle: 2θ = 5 ° to the end angle: 2θ = 50 °. The sampling width was 0.020 ° and the scanning speed was 10.000 ° / min.
The criterion for determining amorphousness was that it did not show a diffraction peak with a full width at half maximum of less than 1.0 ° in the range of 5 ° ≤ 2θ ≤ 50 °.

[実施例1]
(工程a).擬ベーマイトアルミナ水和物水溶液を得る工程
200Lのスティームジャケット付ステンレスタンクに水60kgを張り込み、撹拌しながら25質量%のグルコン酸ソーダ水溶液:24gを投入した後、Al:22.6質量%、NaO:17.3質量%のアルミン酸ソーダ水溶液:885gを投入し、続いて24質量%の硫酸アルミニウム水溶液:1408gを2分間掛けて投入してpH7.2の擬ベーマイトアルミナ種子スラリーを調製した。この種子スラリーにAl:22.6質量%、NaO:17.3質量%のアルミン酸ソーダ水溶液を275ml/minの流量で、23.6質量%の硫酸アルミニウム溶液を488ml/minの流量で其々、20分間、60℃の温度を保ちながら種子スラリーに滴下した。仕上がりスラリーのpHは7.2であった。5分間撹拌した後、Al:22.6質量%、NaO:17.3質量%のアルミン酸ソーダ水溶液642gにてpHを8.8に調整し60℃にて2時間撹拌を続けて、擬ベーマイトアルミナ水和物水溶液を調製した。
[Example 1]
(Step a). Step to obtain pseudo-boehmite alumina hydrate aqueous solution 60 kg of water is filled in a 200 L stainless steel tank with a steam jacket, 25 mass% sodium gluconate aqueous solution: 24 g is added while stirring, and then Al 2 O 3 : 22.6 mass. %, Na 2 O: 17.3 mass% sodium aluminate aqueous solution: 885 g was added, and then 24 mass% aluminum sulfate aqueous solution: 1408 g was added over 2 minutes to add a pseudo-bemite alumina seed slurry having a pH of 7.2. Was prepared. Al 2 O in the seed slurry 3: 22.6 wt%, Na 2 O: 17.3% by mass aqueous sodium aluminate solution at a flow rate of 275 ml / min, a 23.6 mass% aluminum sulfate solution 488ml / min The mixture was added dropwise to the seed slurry at the same flow rate for 20 minutes while maintaining the temperature of 60 ° C. The pH of the finished slurry was 7.2. After stirring for 5 minutes, Al 2 O 3: 22.6 wt%, Na 2 O: 2 hours stirring the pH at 17.3 wt% of aqueous sodium aluminate solution 642g at adjusted 60 ° C. to 8.8 Subsequently, a pseudo-boehmite alumina hydrate aqueous solution was prepared.

(工程b).シリカヒドロゲル水溶液を得る工程
25質量%の硫酸 4.72kgと純水 2.0kgを40Lのプラスティック製のタンクに張り込み30℃に調整した。この硫酸溶液を撹拌しながら45℃に調整した8.5質量%SiO濃度、SiO/NaOモル比3.2のケイ酸ソーダ溶液を0.56kg/minの流量、45分で滴下した後、流量を0.1kg/minに下げてpH4.0まで上記ケイ酸ソーダ液を30分間滴下した。滴下終了後165min撹拌を続けシリカヒドロゲル水溶液を得た。このシリカヒドロゲルに15%濃度のアンモニア水400mlを加えpH7.0にして1時間熟成した。
(Step b). Step to Obtain Silica Hydrogel Aqueous Solution 4.72 kg of sulfuric acid and 2.0 kg of pure water of 25% by mass were placed in a 40 L plastic tank and adjusted to 30 ° C. A sodium silicate solution having an 8.5 mass% SiO 2 concentration and a SiO 2 / Na 2 O molar ratio of 3.2 adjusted to 45 ° C. while stirring this sulfuric acid solution was added dropwise at a flow rate of 0.56 kg / min at 45 minutes. Then, the flow rate was reduced to 0.1 kg / min, and the sodium silicate solution was added dropwise to pH 4.0 for 30 minutes. After completion of the dropping, stirring was continued for 165 minutes to obtain an aqueous silica hydrogel solution. To this silica hydrogel, 400 ml of 15% concentrated aqueous ammonia was added to adjust the pH to 7.0, and the mixture was aged for 1 hour.

(工程c).シリカアルミナ混合物水溶液を得る工程
前記擬ベーマイトアルミナ水和物水溶液を78,191gと前記シリカヒドロゲル水溶液を893gとを撹拌混合した後、15質量%のアンモニア水でpH8.8に調整して、温度40〜60℃で10分間熟成しシリカアルミナ混合物水溶液を得た。
(Step c). Step to Obtain Silica-Alumina Mixture Aqueous Solution After stirring and mixing 78,191 g of the pseudo-bemite alumina hydrate aqueous solution and 893 g of the silica hydrogel aqueous solution, the pH is adjusted to 8.8 with 15% by mass of ammonia water, and the temperature is 40. Aqueous solution of silica-alumina mixture was obtained by aging at ~ 60 ° C. for 10 minutes.

(工程d).第1洗浄工程
前記工程cで得られたシリカアルミナ混合物水溶液の濾別を行い、濾別したシリカアルミナ混合ケーキ1aに60℃の水、105Lで掛水洗浄して、硫酸イオンとナトリウムイオンの除去を行った。(この段階での不純物含有量は、乾燥物基準でNaO換算濃度は0.1質量%、SO 2−濃度は2.1質量%であった。)
(Step d). First Cleaning Step The silica-alumina mixture aqueous solution obtained in the step c is filtered off, and the filtered silica-alumina mixed cake 1a is washed with water at 60 ° C. and 105 L to remove sulfate ions and sodium ions. Was done. (Impurity content at this stage, Na 2 O concentration in terms on a dry matter basis 0.1% by weight, SO 4 2-concentration was 2.1 wt%.)

(工程e).シリカアルミナゲルスラリーを得る工程
前記工程dで得られたシリカアルミナ混合物ケーキ1aの重量23.0kgに60℃温純水7kgを加え、シリカアルミナ濃度10質量%に調整した後、撹拌してスラリー化した。このスラリーの温度は45℃でpHは8.7であった。このスラリーに15質量%のアンモニア水を1.8L加えpHを10.8に調整した後、スティームジャッケットの付いた50L密閉タンクに移し、95℃で10時間熟成した。
(Step e). Step of Obtaining Silica Alumina Gel Slurry 7 kg of pure water at 60 ° C. was added to a weight of 23.0 kg of the silica-alumina mixture cake 1a obtained in the step d to adjust the silica-alumina concentration to 10% by mass, and then the mixture was stirred to form a slurry. The temperature of this slurry was 45 ° C. and the pH was 8.7. 1.8 L of 15 mass% aqueous ammonia was added to this slurry to adjust the pH to 10.8, and then the slurry was transferred to a 50 L closed tank equipped with a steam jacket and aged at 95 ° C. for 10 hours.

(工程f).第1乾燥工程
前記工程eで得られた熟成スラリーを乳化器で均一にした後、噴霧乾燥装置の入口温度300℃、出口温度150℃で乾燥して平均粒径70μmのシリカアルミナ粒子1aを得た。
(Step f). First Drying Step After homogenizing the aging slurry obtained in the step e with an emulsifier, it is dried at an inlet temperature of 300 ° C. and an outlet temperature of 150 ° C. of a spray drying device to obtain silica alumina particles 1a having an average particle size of 70 μm. rice field.

(工程g).第2洗浄工程
前記工程fで得られたシリカアルミナ粒子1aについて、乾燥基準で300gを10質量%濃度で60℃の硫酸アンモニウム3000gに懸濁し、20分間撹拌した後、減圧濾過器にて固液分離して残ったケーキに60℃の温純水3000gを掛水して再懸濁した。続いて、15質量%のアンモニア水にてpHを8.8に調整して20分間撹拌した後、減圧濾過器にて固液分離してシリカアルミナ混合ケーキ2aを得た。
(Step g). Second cleaning step With respect to the silica alumina particles 1a obtained in the step f, 300 g of the silica alumina particles 1a was suspended in 3000 g of ammonium sulfate at 60 ° C. at a concentration of 10% by mass based on a drying standard, stirred for 20 minutes, and then solid-liquid separated by a vacuum filter. Then, 3000 g of warm pure water at 60 ° C. was sprinkled on the remaining cake and resuspended. Subsequently, the pH was adjusted to 8.8 with 15% by mass of aqueous ammonia, the mixture was stirred for 20 minutes, and then solid-liquid separated with a vacuum filter to obtain a silica-alumina mixed cake 2a.

(工程h).第2乾燥工程
濾過器からステンレスバットに得られたシリカアルミナ粒子ケーキ2aを取り出し、130℃で1晩乾燥し、目的のシリカアルミナ粒子Iを得た。化学組成分析と物理性状を表1に示す。
(Step h). Second Drying Step The silica-alumina particle cake 2a obtained in a stainless steel bat was taken out from the filter and dried at 130 ° C. overnight to obtain the desired silica-alumina particles I. Table 1 shows the chemical composition analysis and physical properties.

[実施例2]
(工程a〜c)
実施例1と同様に擬ベーマイトアルミナ水和物水溶液とシリカヒドロゲル水溶液を得て、Al換算基準で2400g、SiO換算基準で600gのスラリーを計量した後、撹拌混合し、15質量%のアンモニア水でpH8.8に調整して10分間熟成した。
(工程d)
この混合スラリーを実施例1と同様に濾別・洗浄を行った。(この段階での不純物含有量は、乾燥物基準でNaO:0.9質量%、SO 2−:1.7質量%であった。)
(工程e〜h)
その後の処理は、実施例1と同様に処理を行い、目的のシリカアルミナ粒子IIを得た。
[Example 2]
(Steps a to c)
In the same manner as in Example 1, an aqueous solution of pseudo-boehmite alumina hydrate and an aqueous solution of silica hydrogel were obtained , 2400 g of slurry was weighed based on Al 2 O 3 conversion standard, and 600 g was weighed based on SiO 2 conversion standard, and then stirred and mixed to obtain 15% by mass. The pH was adjusted to 8.8 with aqueous ammonia and aged for 10 minutes.
(Step d)
This mixed slurry was filtered and washed in the same manner as in Example 1. (The impurity content at this stage was Na 2 O: 0.9% by mass and SO 4 2- : 1.7% by mass based on the dry matter.)
(Steps e to h)
Subsequent treatment was carried out in the same manner as in Example 1 to obtain the desired silica-alumina particles II.

[実施例3]
(工程a〜c)
実施例1と同様に擬ベーマイトアルミナ水和物水溶液とシリカヒドロゲル水溶液を得て、Al換算基準で1800g、SiO換算基準で1200gのスラリーを計量した後、撹拌混合し、15質量%のアンモニア水でpH8.8に調整して10分間熟成した。
(工程d)
この混合スラリーを実施例1と同様に濾別・洗浄を行った。(この段階での不純物含有量は、乾燥物基準でNaO:1.8質量%、SO 2−:1.1質量%であった。)
(工程e〜h)
その後の処理は、実施例1と同様に処理を行い、目的のシリカアルミナ粒子IIIを得た。
[Example 3]
(Steps a to c)
Pseudo-behimite alumina hydrate aqueous solution and silica hydrogel aqueous solution are obtained in the same manner as in Example 1, and 1800 g of slurry based on Al 2 O 3 conversion standard and 1200 g of slurry based on SiO 2 conversion standard are weighed and mixed by stirring to 15% by mass. The pH was adjusted to 8.8 with aqueous ammonia and aged for 10 minutes.
(Step d)
This mixed slurry was filtered and washed in the same manner as in Example 1. (The impurity content at this stage was Na 2 O: 1.8% by mass and SO 4 2- : 1.1% by mass based on the dry matter.)
(Steps e to h)
Subsequent treatment was carried out in the same manner as in Example 1 to obtain the desired silica-alumina particles III.

[実施例4]
(工程a〜c)
実施例1と同様に擬ベーマイトアルミナ水和物水溶液とシリカヒドロゲル水溶液を得て、Al換算基準で1200g、SiO換算基準で1800gのスラリーを計量した後、撹拌混合し、15質量%のアンモニア水でpH8.8に調整して10分間熟成した。
(工程d)
この混合スラリーを実施例1と同様に減圧フィルターにて固液分離を行い温純水で掛水洗浄した。(この段階での不純物含有量は、乾燥物基準でNaO:2.7質量%、SO 2−:0.8質量%であった。)
(工程e〜h)
その後の処理は、実施例1と同様に処理を行い、目的のシリカアルミナ粒子IVを得た。
[Example 4]
(Steps a to c)
Pseudo-behimite alumina hydrate aqueous solution and silica hydrogel aqueous solution are obtained in the same manner as in Example 1, and 1200 g of slurry based on Al 2 O 3 conversion standard and 1800 g based on SiO 2 conversion standard are weighed and mixed by stirring to 15% by mass. The pH was adjusted to 8.8 with aqueous ammonia and aged for 10 minutes.
(Step d)
This mixed slurry was solid-liquid separated by a vacuum filter in the same manner as in Example 1, and washed with warm pure water. (The impurity content at this stage was Na 2 O: 2.7% by mass and SO 4 2- : 0.8% by mass based on the dry matter.)
(Steps e to h)
Subsequent treatment was carried out in the same manner as in Example 1 to obtain the desired silica-alumina particles IV.

[実施例5]
(工程a〜c)
実施例1と同様に擬ベーマイトアルミナ水和物水溶液とシリカヒドロゲル水溶液を得て、Al換算基準で1200g、SiO換算基準で1800gのスラリーを計量した後、撹拌混合し、15質量%のアンモニア水でpH8.8に調整して10分間熟成した。
(工程d)
この混合スラリーを実施例1と同様に濾別・洗浄を行った。(この段階での不純物含有量は、乾燥物基準でNaO:0.6質量%、SO 2−:3.2質量%であった。)
(工程e〜h)
その後の処理は、実施例1と同様に処理を行い、目的のシリカアルミナ粒子Vを得た。
[Example 5]
(Steps a to c)
Pseudo-behimite alumina hydrate aqueous solution and silica hydrogel aqueous solution are obtained in the same manner as in Example 1, and 1200 g of slurry based on Al 2 O 3 conversion standard and 1800 g based on SiO 2 conversion standard are weighed and mixed by stirring to 15% by mass. The pH was adjusted to 8.8 with aqueous ammonia and aged for 10 minutes.
(Step d)
This mixed slurry was filtered and washed in the same manner as in Example 1. (The impurity content at this stage was Na 2 O: 0.6% by mass and SO 4 2- : 3.2% by mass based on the dry matter.)
(Steps e to h)
Subsequent treatment was carried out in the same manner as in Example 1 to obtain the desired silica-alumina particles V.

[比較例1]
*擬ベーマイトアルミナを用いない方法
(工程a’〜c’)
25質量%の硫酸4.72kgと純水2.0kgを40Lの樹脂製のタンクに張り込み30℃に調整した。この硫酸溶液を撹拌しながら、45℃に調整した8.5質量%のSiO濃度、SiO/NaOモル比3.2のケイ酸ソーダ溶液を0.56kg/minの流量で45分間に亘り滴下した後、流量を0.1kg/minに下げてpH4.0まで上記ケイ酸ソーダ液を30分間滴下した。滴下終了後165min撹拌を続けシリカヒドロゲルを得た。このシリカヒドロゲルに15質量%濃度のアンモニア水500mlを加えpH7.0にして1時間熟成した。仕上がりシリカヒドロゲルの重量は35.54kgでこの1/2を50Lのスティームジャケット付タンクに移し替え純水を1kg加えた後、タンク内のスラリー温度を45℃に保ちながら23.6質量%濃度の硫酸アルミニウム溶液8.45kgを5分間で撹拌しながら加え、添加後のpHは2.96であった。次に22.6質量%Al濃度、17.3質量%NaO濃度のアルミン酸ソーダ溶液5.31kgを3分間で加えpHを7.0に調整した後45℃で2時間撹拌を続けた。
(工程d〜h)
この後、シリカアルミナ混合物スラリーを、実施例1と同様に処理をしてシリカアルミナ粒子VIを得た。
[Comparative Example 1]
* Method without using pseudo-boehmite alumina (steps a'to c')
4.72 kg of 25% by mass sulfuric acid and 2.0 kg of pure water were placed in a 40 L resin tank and adjusted to 30 ° C. While stirring this sulfuric acid solution, a sodium silicate solution having a SiO 2 concentration of 8.5 mass% adjusted to 45 ° C. and a SiO 2 / Na 2 O molar ratio of 3.2 was added at a flow rate of 0.56 kg / min for 45 minutes. Then, the flow rate was reduced to 0.1 kg / min, and the sodium silicate solution was added dropwise to pH 4.0 for 30 minutes. After completion of the dropping, stirring was continued for 165 minutes to obtain a silica hydrogel. To this silica hydrogel, 500 ml of aqueous ammonia having a concentration of 15% by mass was added, the pH was adjusted to 7.0, and the mixture was aged for 1 hour. The weight of the finished silica hydrogel is 35.54 kg. After transferring 1/2 of this to a tank with a 50 L steam jacket and adding 1 kg of pure water, the concentration of 23.6 mass% is maintained while keeping the slurry temperature in the tank at 45 ° C. 8.45 kg of aluminum sulfate solution was added with stirring for 5 minutes, and the pH after addition was 2.96. Next, 5.31 kg of a sodium aluminate solution having a concentration of 22.6 mass% Al 2 O 3 and a concentration of 17.3 mass% Na 2 O was added in 3 minutes to adjust the pH to 7.0, and then the mixture was stirred at 45 ° C. for 2 hours. Continued.
(Steps d to h)
After that, the silica-alumina mixture slurry was treated in the same manner as in Example 1 to obtain silica-alumina particles VI.

[比較例2]
(工程a’〜c’)
比較例1と同様に35.54kgのシリカヒドロゲルを調製した。このシリカヒドロゲルのう31.1kgを計量して50Lのスティームジャケット付タンクに移し替え純水を1kg加えた後、タンク内のスラリー温度を45℃に保ちながら23.6質量%濃度の硫酸アルミニウム溶液4.22kgを5分間で撹拌しながら加え、添加後のpHは3.50であった。次にAl:22.6質量%、NaO:17.3質量%のアルミン酸ソーダ溶液2.66kgを3分間に亘って加え、pHを6.9に調整した後45℃で2時間撹拌を続けた。
(工程d〜h)
このシリカアルミナ混合物スラリーを、実施例1と同様に処理を行い、シリカアルミナ粒子VIIを得た。
[Comparative Example 2]
(Steps a'to c')
35.54 kg of silica hydrogel was prepared in the same manner as in Comparative Example 1. Weigh 31.1 kg of this silica hydrogel sac, transfer it to a tank with a 50 L steam jacket, add 1 kg of pure water, and then maintain the slurry temperature in the tank at 45 ° C and maintain a 23.6% by mass concentration of aluminum sulfate solution. 4.22 kg was added with stirring for 5 minutes, and the pH after addition was 3.50. Next, 2.66 kg of sodium aluminate solution of Al 2 O 3 : 22.6 mass% and Na 2 O: 17.3 mass% was added over 3 minutes to adjust the pH to 6.9, and then at 45 ° C. Stirring was continued for 2 hours.
(Steps d to h)
This silica-alumina mixture slurry was treated in the same manner as in Example 1 to obtain silica-alumina particles VII.

上記で調整したサンプルNo.I〜VIIの成分組成、強熱減量LOI、細孔容積PV、平均細孔径PDおよび比表面積SAをまとめて、表1に示す。なお、サンプルNo.I〜VIIのX線回折測定の結果、非晶質のシリカアルミナ粒子であることを確認している。サンプルNo.I〜Vは、十分な細孔容積PVと比表面積SAを両立しているが、サンプルNo.VIおよびVIIは、平均細孔径PDが小さく、細孔容積PVが劣っている。 Sample No. adjusted above. The component compositions of I to VII, ignition loss LOI, pore volume PV, average pore diameter PD and specific surface area SA are summarized in Table 1. In addition, sample No. As a result of the X-ray diffraction measurement of I to VII, it has been confirmed that the particles are amorphous silica-alumina particles. Sample No. I to V have both a sufficient pore volume PV and a specific surface area SA, but the sample No. VI and VII have a small average pore diameter PD and an inferior pore volume PV.

Figure 2021151942
Figure 2021151942

本発明に係る多孔質シリカアルミナ粒子は、高い細孔容積、高い比表面積を有することから断熱性が期待できる。また、前記物性以外に、シリカアルミナから構成されるので固体酸を有することから、石油精製用の触媒や光学材料として利用、あるいは化粧品、樹脂フィラー、表面コート材への添加剤(光学散乱、屈折率調整などを目的とするもの)等に応用することができる。
Since the porous silica-alumina particles according to the present invention have a high pore volume and a high specific surface area, heat insulating properties can be expected. In addition to the above physical properties, since it is composed of silica-alumina and has a solid acid, it can be used as a catalyst for petroleum refining or an optical material, or as an additive to cosmetics, resin fillers, and surface coating materials (optical scattering, refraction). It can be applied to (for the purpose of rate adjustment, etc.).

Claims (3)

多孔質シリカアルミナ粒子の製造方法であって、
a.擬ベーマイトアルミナ水和物水溶液を得る工程と、
b.シリカヒドロゲル水溶液を得る工程と、
c.前記擬ベーマイトアルミナ水和物水溶液と、前記シリカヒドロゲル水溶液を混合したスラリーを、pH7.0〜9.0の範囲に調整し、温度40〜60℃で10分〜2時間の範囲で反応促進を行い、シリカアルミナ混合物水溶液を得る工程と、
d.前記シリカアルミナ混合物水溶液を濾別し、シリカアルミナ混合物ケーキ1を得た後、洗浄する第1洗浄工程と、
e.前記シリカアルミナ混合物ケーキ1を水に分散し、温度30〜50℃でpH8.0〜12.0に調整した後、さらに80℃以上に加熱してシリカアルミナゲルスラリーを得る工程と、
f.前記シリカアルミナゲルスラリーを乾燥して、シリカアルミナ粒子1を得る第1乾燥工程と、
g.乾燥して得られた前記シリカアルミナ粒子1を再度懸濁させ撹拌した後、濾別を行い、洗浄しシリカアルミナ粒子ケーキ2を得る第2洗浄工程と、
h.前記シリカアルミナ粒子ケーキ2を、乾燥してシリカアルミナ粒子2を得る第2乾燥工程と、を含む多孔質シリカアルミナ粒子の製造方法。
A method for producing porous silica-alumina particles.
a. The process of obtaining a pseudo-boehmite alumina hydrate aqueous solution and
b. The process of obtaining an aqueous silica hydrogel solution and
c. The slurry obtained by mixing the pseudo-boehmite alumina hydrate aqueous solution and the silica hydrogel aqueous solution is adjusted to a pH range of 7.0 to 9.0, and the reaction is promoted at a temperature of 40 to 60 ° C. for 10 minutes to 2 hours. And the step of obtaining an aqueous solution of silica-alumina mixture
d. The first washing step of washing after the silica-alumina mixture cake 1 is obtained by filtering out the silica-alumina mixture aqueous solution.
e. A step of dispersing the silica-alumina mixture cake 1 in water, adjusting the pH to 8.0 to 12.0 at a temperature of 30 to 50 ° C., and then further heating to 80 ° C. or higher to obtain a silica-alumina gel slurry.
f. The first drying step of drying the silica-alumina gel slurry to obtain silica-alumina particles 1 and
g. The second washing step of suspending the silica-alumina particles 1 obtained by drying again, stirring the mixture, filtering the particles, and washing the silica-alumina particles 1 to obtain the silica-alumina particle cake 2.
h. A method for producing porous silica-alumina particles, which comprises a second drying step of drying the silica-alumina particle cake 2 to obtain silica-alumina particles 2.
非晶質の多孔質シリカアルミナ粒子であって、
BET法で測定した比表面積SAが400〜600m/gの範囲にあり、
BJH法で測定した細孔容積PVが1.25〜2.00ml/gの範囲にあり、
BJH法で測定した平均細孔径PDが8〜20nmの範囲にあり、
シリカとアルミナとが質量比で、2/98〜70/30の範囲にあることを特徴とする多孔質シリカアルミナ粒子。
Amorphous porous silica-alumina particles
The specific surface area SA measured by the BET method is in the range of 400 to 600 m 2 / g.
The pore volume PV measured by the BJH method is in the range of 1.25 to 2.00 ml / g.
The average pore diameter PD measured by the BJH method is in the range of 8 to 20 nm.
Porous silica-alumina particles characterized by a mass ratio of silica and alumina in the range of 2/98 to 70/30.
さらに、アルカリ金属イオン(M)をMO換算で0.1質量%以下含有し、
無機酸イオンの残存量が1.0質量%以下であることを特徴とする請求項2に記載の多孔質シリカアルミナ粒子。
Further, an alkali metal ion (M +) containing 0.1 wt% in M 2 O in terms of,
The porous silica-alumina particles according to claim 2, wherein the residual amount of inorganic acid ions is 1.0% by mass or less.
JP2020053558A 2020-03-25 2020-03-25 Porous silica alumina particles and method for producing the same Pending JP2021151942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020053558A JP2021151942A (en) 2020-03-25 2020-03-25 Porous silica alumina particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020053558A JP2021151942A (en) 2020-03-25 2020-03-25 Porous silica alumina particles and method for producing the same

Publications (1)

Publication Number Publication Date
JP2021151942A true JP2021151942A (en) 2021-09-30

Family

ID=77887149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020053558A Pending JP2021151942A (en) 2020-03-25 2020-03-25 Porous silica alumina particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP2021151942A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196025A1 (en) * 2021-03-19 2022-09-22 日揮触媒化成株式会社 Silica-alumina powder, method for producing silica-alumina powder, fluid catalytic cracking catalyst and method for producing same
WO2023176493A1 (en) * 2022-03-18 2023-09-21 日揮触媒化成株式会社 Porous silica-alumina particles and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183609A (en) * 1995-12-27 1997-07-15 Tonen Corp Silica-alumina conjugated oxide
JP2000070730A (en) * 1998-08-27 2000-03-07 Sumitomo Metal Mining Co Ltd Production of spherical carrier for carrying catalyst
US6107236A (en) * 1998-04-14 2000-08-22 Chevron Chemical Company Llc Powders of silica-oxide and mixed silica-oxide and method of preparing same
JP2013542855A (en) * 2010-11-16 2013-11-28 ロディア オペレーションズ Sulfur resistant alumina catalyst support

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183609A (en) * 1995-12-27 1997-07-15 Tonen Corp Silica-alumina conjugated oxide
US6107236A (en) * 1998-04-14 2000-08-22 Chevron Chemical Company Llc Powders of silica-oxide and mixed silica-oxide and method of preparing same
JP2000070730A (en) * 1998-08-27 2000-03-07 Sumitomo Metal Mining Co Ltd Production of spherical carrier for carrying catalyst
JP2013542855A (en) * 2010-11-16 2013-11-28 ロディア オペレーションズ Sulfur resistant alumina catalyst support

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196025A1 (en) * 2021-03-19 2022-09-22 日揮触媒化成株式会社 Silica-alumina powder, method for producing silica-alumina powder, fluid catalytic cracking catalyst and method for producing same
WO2023176493A1 (en) * 2022-03-18 2023-09-21 日揮触媒化成株式会社 Porous silica-alumina particles and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP7141627B2 (en) Fluidization Reaction Method for Propylene Oxide Synthesis by Gas Phase Epoxidation of Propylene and Hydrogen Peroxide
EP1744825B1 (en) Colloidal compositions and methods of preparing same
JP4747353B2 (en) Novel dispersible hydrated aluminum, process for its preparation and its use in the preparation of catalysts
CN115624986B (en) Core-shell molecular sieve containing phosphorus and metal and synthesis method thereof
JPH11157828A (en) Amorphous silica alumina and its production
WO2013012201A2 (en) Method for manufacturing a porous alumina
JP2021151942A (en) Porous silica alumina particles and method for producing the same
US8580226B2 (en) Synthesis of sodium titanate and ion exchange use thereof
CN116265108B (en) Preparation method of catalytic cracking catalyst for producing more gasoline
JP5019556B2 (en) Porous particles and method for producing the same
Siahpoosh et al. Synthesis of γ-Alumina nanoparticles with high-surface-area via Sol-Gel method and their performance for the removal of Nickel from aqueous solution
EP2392548A1 (en) Process for preparing an amorphous silica-alumina composition and relative amorphous silica-alumina composition
JP3547791B2 (en) High heat water resistant high silica zeolite and method for producing the same
CN109304226A (en) Hydrocracking catalyst for increasing production of heavy naphtha and aviation kerosene, and preparation method and application thereof
CN115920961B (en) Preparation method of silicon-containing pseudo-boehmite slurry
CN110844919B (en) Preparation method of NaY molecular sieve and NaY molecular sieve prepared by preparation method
WO2022196025A1 (en) Silica-alumina powder, method for producing silica-alumina powder, fluid catalytic cracking catalyst and method for producing same
CN116265107B (en) Preparation method of catalytic cracking catalyst for producing diesel oil in large quantity
CN116265109B (en) Preparation method of heavy oil efficient conversion catalyst
WO2023176493A1 (en) Porous silica-alumina particles and manufacturing method therefor
CN116265106A (en) Preparation method of catalytic cracking catalyst for high yield of low carbon olefin
JP2022145476A (en) Method for producing porous silica-alumina particles
JP6814433B2 (en) Method for producing beta-type zeolite
JP6727884B2 (en) ZSM-5 type zeolite having almond-like shape and method for producing the same
WO2010013428A1 (en) Process for production of poly(aluminum-inorganic monobasic acid salt hydrate) and/or aqueous alumina sol, and poly(aluminum inorganic monobasic acid salt hydrate) and/or aqueous alumina sol obtained by the process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230720

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20240304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240501

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240905