JPS6034496B2 - Manufacturing method of alumina sol - Google Patents

Manufacturing method of alumina sol

Info

Publication number
JPS6034496B2
JPS6034496B2 JP53095073A JP9507378A JPS6034496B2 JP S6034496 B2 JPS6034496 B2 JP S6034496B2 JP 53095073 A JP53095073 A JP 53095073A JP 9507378 A JP9507378 A JP 9507378A JP S6034496 B2 JPS6034496 B2 JP S6034496B2
Authority
JP
Japan
Prior art keywords
alumina
aluminum
hydrothermal treatment
acid
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53095073A
Other languages
Japanese (ja)
Other versions
JPS5523034A (en
Inventor
興一 山田
眞郎 吉原
隆浩 石田
和夫 里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Aluminum Smelting Co
Asahi Kagaku Kogyo Co Ltd
Original Assignee
Sumitomo Aluminum Smelting Co
Asahi Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Aluminum Smelting Co, Asahi Kagaku Kogyo Co Ltd filed Critical Sumitomo Aluminum Smelting Co
Priority to JP53095073A priority Critical patent/JPS6034496B2/en
Publication of JPS5523034A publication Critical patent/JPS5523034A/en
Publication of JPS6034496B2 publication Critical patent/JPS6034496B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】 本発明はアルミナゾルの製造法に関する。[Detailed description of the invention] The present invention relates to a method for producing alumina sol.

更に詳細には経時安定性が優れ且つ所望の粘度を有する
アルミナゾルの製造法、またはこれらの性質を有する再
分散性の優れたアルミナ粉末を与えるアルミナゾルの製
造法に関する。
More specifically, the present invention relates to a method for producing an alumina sol that has excellent stability over time and a desired viscosity, or a method for producing an alumina sol that provides alumina powder having these properties and excellent redispersibility.

現在、種々のアルミナゾル及び該ゾルを乾燥粉末化し、
これを再分散させて使用することを目的とした分散性ア
ルミナ粉末が市販されているが、いずれの製品も約1の
重量%以上のAI203濃度のゾルになると経時安定性
が著しく劣り、数日以内にゲル化してしまう。
Currently, various alumina sols and the sols are made into dry powder,
There are commercially available dispersible alumina powders that are intended to be used after redispersing this material, but when these products become sol with an AI203 concentration of about 1% by weight or more, their stability over time is significantly poor, and it can last for several days. It will gel within a short time.

また低N203濃度のゾルの場合には大量の媒体を運搬
しなければならないとか、あるいは使用に際して多量の
媒体を蒸発させなければならないという不利益が存在す
る。更に既存の市販品では所望の粘度の製品が得がたく
、使用に際して適当な薬剤を添加して粘度を調整しなけ
ればならないという問題を派生することもある。通常ア
ルミナゾルはアルミナゲルの分散液を無機酸あるいは有
機酸により解腰処理することにより製造されている。
Furthermore, in the case of a sol with a low N203 concentration, there are disadvantages in that a large amount of medium must be transported or a large amount of medium must be evaporated during use. Furthermore, it is difficult to obtain a product with a desired viscosity with existing commercially available products, which may lead to the problem that the viscosity must be adjusted by adding an appropriate agent during use. Alumina sol is usually produced by dissolving a dispersion of alumina gel with an inorganic or organic acid.

従来アルミナゾルの製造法として ■ アルミン酸ソーダ水溶液と水溶性アルミニウム塩溶
液とをpH9〜10になるようにして短時間に反応させ
てアルミナゲルを生成熟成させ、ついでこのアルミナゲ
ルに一価の無機酸あるいは有機酸を酸根/N(モル比)
が0.15以上になるように添加し、均一なゾルを生成
させる方法(特公昭40−840叫号公報)■ アルミ
ン酸ソーダ溶液中に損拝しつつ炭酸ガスを吹込み生成し
た擬べ−マィトァルミナスラリ−を酸線/山(モル比)
が0.05〜0.2の一価の無機強酸中に分散させる方
法(英国特許第】440194号明細書)■ アルミナ
ゲルの分散液を酸根/N(モル比)0.125以上の酸
の存在下に水熱処理し、べ−マィト結晶格子を有しファ
イバーの形態をとるアルミナゾルを製造する方法(特公
昭40一14292号公報)等が提案されている。
Conventional methods for producing alumina sol: ■ A sodium aluminate aqueous solution and a water-soluble aluminum salt solution are brought to a pH of 9 to 10 and reacted in a short period of time to form an alumina gel. Or organic acid as acid group/N (molar ratio)
0.15 or more to produce a uniform sol (Special Publication No. 40-840) Acid ray/mountain (molar ratio) of mitolumina slurry
A method of dispersing alumina gel in a strong monovalent inorganic acid of 0.05 to 0.2 (British Patent No. 440194) A method of producing an alumina sol in the form of fibers having a boehmite crystal lattice by subjecting it to hydrothermal treatment in the presence of boehmite (Japanese Patent Publication No. 40-14292) has been proposed.

しかしながら■の方法によって得られるアルミナゾル用
粉末は再分散性が劣り、AI203濃度が10重量%以
下のアルミナゾルしか調整しがたく、しかも経時安定性
が劣るという不都合を有している。
However, the powder for alumina sol obtained by the method (2) has poor redispersibility, it is difficult to prepare an alumina sol with an AI203 concentration of 10% by weight or less, and it has the disadvantages of poor stability over time.

さらに該特公昭40−8409号公報によれば該方法に
よって製造されたアルミナゲルは解腰操作の際、酸の添
加量が酸根/N(モル比)で0.15より少ないと水を
添加してもゾル形態に転化せず、単にアルミナゲル粉末
の分散液を与えるに過ぎないと記載している。■の方法
ではアルミン酸ソーダと炭酸ガスという特定の組合せに
より得られるアルミナゲルを無機強酸でゾル化を行なう
が、得られたゾルは山203濃度が約10重量%以上と
なると数日間しか安定でないという不都合を有する。
Furthermore, according to Japanese Patent Publication No. 40-8409, water is added to the alumina gel produced by this method if the amount of acid added is less than 0.15 (acid group/N (mole ratio)) during the loosening operation. However, it is stated that the dispersion of alumina gel powder is merely provided without converting it into a sol form. In method (2), alumina gel obtained by a specific combination of sodium aluminate and carbon dioxide gas is solified with a strong inorganic acid, but the resulting sol is stable for only a few days if the Yama 203 concentration exceeds about 10% by weight. This has the disadvantage of

また該英国特許明細書には該特許方法で得られた凝べー
マィトアルミナ粒は酢酸、ギ酸、フッ酸のごとく一価の
弱酸、硫酸、綾酸のごとき多価酸によってはゾル化され
ないと記載している。
The British patent specification also states that the agglomerated boehmite alumina grains obtained by the patented method cannot be solified by monovalent weak acids such as acetic acid, formic acid, and hydrofluoric acid, and by polyhydric acids such as sulfuric acid and yakic acid. ing.

さらに■の方法では、ゾル化時の水熱処理温度とアルミ
ナ濃度との関係について、約2500○以下の温度で約
15重量%以上のAI203濃度を用いると、生成物は
非常に不良で不可逆的にゲル化してしまうと明言してお
り、また該方法によって得られた分散性アルミナ粉末を
水に分散させ液状ゾルを調整する場合にもかかるアルミ
ナ粉末がファイバー状であるためと思われるがその山2
03濃度が約1の重量%以下という低濃度でさえ分散性
が劣り、ゾルが効率的に得ることができないという問題
がある。水熱処理の際使用する解離恒数が0.1以上の
強−塩基性酸の酸根のアルミナ濃度に対するモル比も0
.25以上、すなわち酸根/AIモル比0.125以上
とはしているが、実際には相対的に高い酸濃度比を使用
するものである。
Furthermore, in the method (■), regarding the relationship between the hydrothermal treatment temperature during solization and the alumina concentration, if an AI203 concentration of about 15% by weight or more is used at a temperature of about 2500° or less, the product will be extremely poor and irreversible. This seems to be because the dispersible alumina powder obtained by this method is in the form of fibers when dispersing the dispersible alumina powder in water to prepare a liquid sol.
Even when the 03 concentration is as low as about 1% by weight or less, there is a problem that the dispersibility is poor and a sol cannot be efficiently obtained. The molar ratio of the acid radical to the alumina concentration of the strong basic acid with a dissociation constant of 0.1 or more used during hydrothermal treatment is also 0.
.. 25 or more, that is, the acid radical/AI molar ratio is 0.125 or more, but in reality, a relatively high acid concentration ratio is used.

さらに酢酸やギ酸を使用する場合には酸線モル濃度がA
I203濃度比、4以上となることもありうるとしてい
る。以上のごとく、従来公知の方法によっては高N20
3濃度において経時安定性の優れたアルミナゾル、また
再分散性のすぐれたアルミナ粉末を与えるアルミナゾル
の製造法は知られていない。
Furthermore, when using acetic acid or formic acid, the acid line molar concentration is A.
It is possible that the I203 concentration ratio could be 4 or higher. As mentioned above, depending on conventionally known methods, high N20
There is no known method for producing an alumina sol that provides an alumina sol with excellent stability over time at three concentrations or an alumina powder with excellent redispersibility.

さらにこれら従来方法により製造されたアルミナゾルの
粘度は各製造法に固有するものであり所望の粘度のアル
ミナゾルを任意に製造する方法も知られていない。かか
る状況下において本発明者らは経時安定性のきわめて優
れたアルミナゾル、また再分散性の優れたアルミナ粉末
を与えるアルミナゾルを製造する方法を見し・出すべく
鋭意研究を行なった結果、本願発明の方法を完成するに
至った。
Furthermore, the viscosity of alumina sol produced by these conventional methods is unique to each production method, and there is no known method for producing alumina sol having a desired viscosity. Under such circumstances, the present inventors conducted intensive research in order to discover and develop a method for producing alumina sol that has excellent stability over time and alumina sol that provides alumina powder with excellent redispersibility.As a result, the present invention has been developed. I have completed the method.

すなわち、本発明は酸性の水溶性アルミニウム正塩また
は後の水熱処理の際共存させる一価の有機酸の可溶性塩
基性アルミニウム塩の少なくとも1種をアルカリ金属、
アルカリ士金属またはアンモニアの水酸化物、炭酸塩、
重炭酸塩、亜硫酸塩、ホウ酸塩の少なくとも1種のアル
カリ性物質により中和して得られるアルミナゲルを酸根
/山のモル比が0.001〜0.12となる量の一価の
有機酸またはこれらの酸の水溶性アルミニウム塩の存在
下に水熱処理することにより経時安定性の優れ且つ所望
の粘度を有するアルミナゾル、また再分散性のすぐれた
アルミナ粉末を与えるアルミナゾルの製造法を提供する
ものである。
That is, in the present invention, at least one of an acidic water-soluble aluminum normal salt or a soluble basic aluminum salt of a monovalent organic acid coexisting during subsequent hydrothermal treatment is treated with an alkali metal,
alkali metal or ammonia hydroxides, carbonates,
A monovalent organic acid in an amount such that the molar ratio of acid roots/mountain is 0.001 to 0.12 to the alumina gel obtained by neutralizing the alumina gel with at least one alkaline substance of bicarbonate, sulfite, and borate. Alternatively, the present invention provides a method for producing an alumina sol which, by hydrothermal treatment in the presence of a water-soluble aluminum salt of these acids, provides an alumina sol with excellent stability over time and a desired viscosity, and an alumina powder with excellent redispersibility. It is.

以下本発明を詳細に説明する。The present invention will be explained in detail below.

本発明においてアルミナゲルの水熱処理に際して共存せ
しめる一価の有機酸の酸根とはアルカリ性物質で中和滴
定することのできる酸線が存在することであって、例え
ば酢酸アルミニウムを苛性ソーダで中和して生ずる酢酸
ソーダとしての酢酸イオンは本発明でいう酸根には該当
しない。
In the present invention, the acid radical of the monovalent organic acid that coexists during the hydrothermal treatment of alumina gel means that there is an acid ray that can be neutralized and titrated with an alkaline substance. For example, aluminum acetate is neutralized with caustic soda. The acetate ion produced as sodium acetate does not correspond to the acid radical in the present invention.

しかし苛性ソーダの中和反応に際して当量以下の苛性ソ
ーダを使用したことにより残存する部分的に中和された
塩基性酢酸アルミニウムとして残存する酢酸根は本発明
でいう酸根として有効に働ら〈。本発明方法の実施に当
り使用される酸性成分として使用されるアルミニウム塩
としては水落‘性のアルミニウム正塩又は後の水熱処理
の際共存させる一価の有機酸の可溶性塩基性アルミニウ
ム塩であって具体的には塩化アルミニウム、硝酸アルミ
ニウム、硫酸アルミニウム、酢酸アルミニウム、臭化ア
ルミニウム、ョウ化アルミニウム、ナトリウムミヨウバ
ン、カリウムミヨウバン、アンモニアミョゥバン、塩基
性酢酸アンモニウムなどが挙げられる。一般には入手の
容易な塩化アルミニウム、硝酸アルミニウム、酢酸アル
ミニウムなどを使用するのが適当である。
However, due to the use of less than the equivalent amount of caustic soda in the neutralization reaction of caustic soda, the acetate radicals remaining as partially neutralized basic aluminum acetate do not function effectively as acid radicals in the present invention. The aluminum salt used as the acidic component in carrying out the method of the present invention is a water-removalable normal aluminum salt or a soluble basic aluminum salt of a monovalent organic acid coexisting during the subsequent hydrothermal treatment. Specific examples include aluminum chloride, aluminum nitrate, aluminum sulfate, aluminum acetate, aluminum bromide, aluminum iodide, sodium alum, potassium alum, ammonia alum, and basic ammonium acetate. Generally, it is appropriate to use readily available aluminum chloride, aluminum nitrate, aluminum acetate, etc.

他方アルカIJ性物質としてはアルカリ金属、アルカリ
士金属またはアンモニアの水酸化物、炭酸塩、重炭酸塩
、亜硫酸塩、ホウ酸塩が使用されるが、一般には炭酸ナ
トリウム、炭酸カリウム、炭酸アンモニウムなどのアル
カリ金属またアンモニアの炭酸塩が好適である。
On the other hand, hydroxides, carbonates, bicarbonates, sulfites, and borates of alkali metals, alkali metals, or ammonia are used as alkali-IJ substances, but generally sodium carbonate, potassium carbonate, ammonium carbonate, etc. Alkali metal or ammonia carbonates are preferred.

尚、該中和反応においてアルミナ以外の不溶性塩が生成
してアルミナと同時に析出するごとき細合せは当然除か
れる。
Incidentally, cases where insoluble salts other than alumina are produced and precipitated simultaneously with alumina in the neutralization reaction are naturally excluded.

中和反応によるアルミナゲルの生成反応は10000よ
り高い温度で反応を実施すると得られるゲルは結晶化が
進み解腰しがたくなるので一般には100午0以下、好
ましくは約5〜5000の温度において実施される。こ
のようにして生成させたアルミナゲルは必要により熟成
した後、洗浄し副生付着する不純物を除去する。洗浄後
のアルミナゲルは常法に従って炉過、乾燥により任意の
AI203含有率の分散液乃至ケーキ状とすることがで
きるが、その形態は使用目的により適宜選択すればよい
が、本発明の方法をより効果的に実施するためには炉液
後のケーキを適当な手段により乾燥すると、後の水熱処
理の際の鱗豚性が著しく向上する。このため一般にはア
ルミナゲルのケーキはAI203含有率が約15〜90
重量%、好ましくは約55〜8の重量%まで自然に又は
強制的に乾燥処理されて後の水熱処理に供される。本発
明方法の実施に際しては以上により得られたアルミナゲ
ルを酸根/AIのモル比が0.001〜0.12となる
量の一価の有機酸またはこれらの酸の水溶性アルミニウ
ム塩の存在下に水熱処理しゾル化する。本発明方法の水
熱処理に際して共存させる一価の有機酸としては酢酸、
ギ酸などが挙げられるが、一般には酢酸が適当である。
If the reaction for producing alumina gel by neutralization reaction is carried out at a temperature higher than 10,000 ℃, the resulting gel will crystallize and become difficult to disintegrate. Implemented. The alumina gel thus produced is aged if necessary and then washed to remove impurities attached as by-products. The alumina gel after washing can be made into a dispersion liquid or a cake shape with any AI203 content by oven filtration and drying according to a conventional method.The form can be appropriately selected depending on the purpose of use, but the method of the present invention can be used. In order to carry out the process more effectively, drying the cake after the furnace solution by an appropriate means will significantly improve the scalability during the subsequent hydrothermal treatment. For this reason, alumina gel cake generally has an AI203 content of about 15 to 90.
% by weight, preferably about 55-8% by weight, and is subjected to a subsequent hydrothermal treatment. When carrying out the method of the present invention, the alumina gel obtained as described above is treated in the presence of a monovalent organic acid or a water-soluble aluminum salt of these acids in an amount such that the molar ratio of acid group/AI is 0.001 to 0.12. It is hydrothermally treated and turned into a sol. The monovalent organic acids coexisting during the hydrothermal treatment of the method of the present invention include acetic acid,
Examples include formic acid, but acetic acid is generally suitable.

また該有機酸の水溶性アルミニウム塩としては例えば酢
酸アルミニウムが挙げられる。
Examples of the water-soluble aluminum salt of the organic acid include aluminum acetate.

共存させる酸根の量はアルミナゲル中のAI203に対
して有機酸の酸根/AIのモル比が0.001〜0.1
2の範囲、好ましくは0.002〜0.10の範囲で使
用されるが、取得するアルミナゾルの形態、例えば高A
I203濃度でしかも極めて経時安定性がすぐれたアル
ミナゾルを製造する場合には酸根/山のモル比が約0.
002〜0.02であることが適当であり、また水熱処
理時の解腰性がすぐれ、かつ得られるアルミナゾルが高
AI203濃度の状態で多少経時増粘性を示す程度のゾ
ルを取得するには酸線/山のモル比が約0.02〜0.
10の範囲で制御するのが適当である。酸根/Nのモル
比を約0.0沙久上とすれば、アルミナゲルのほぼ10
0%が解離され、得られるソルは清澄であり残造の炉別
操作などは必要がない。以上の範囲内で酸根/AIのモ
ル比を適宜選択することにより水熱処理後に取得される
アルミナゾルは同一山203濃度でも粘度は異なり、一
般には酸線/AIモル比が高くなるほどアルミナゾルの
粘度は上昇する。以上のごとく一価の有機酸、酸根/A
Iのモル比を用いて水熱処理することにより従来品に〈
らべ高AI203濃度化され、経時安定性が優れた任意
の所望の粘度を有するアルミナゾルを取得することがで
きるが、酸根/AIのモル比が0.001未満では解豚
が著しく困難となり、水熱処理後の残澄とゾルの分離操
作も難かしく生産性が低下し、かつゾルへの転化率も低
い。
The amount of acid radicals to coexist is such that the molar ratio of organic acid acid radicals/AI to AI203 in alumina gel is 0.001 to 0.1.
2, preferably in the range 0.002 to 0.10, depending on the form of the alumina sol obtained, e.g.
When producing an alumina sol with an I203 concentration and excellent stability over time, the molar ratio of acid radicals/mountains is approximately 0.
002 to 0.02, and in order to obtain a sol that has excellent disintegration properties during hydrothermal treatment and exhibits some degree of viscosity increase over time in a state where the resulting alumina sol has a high AI203 concentration, the acid The line/mountain molar ratio is about 0.02-0.
It is appropriate to control within a range of 10. If the molar ratio of acid radicals/N is about 0.0, the ratio of alumina gel to about 10
0% is dissociated, the resulting sol is clear, and there is no need for separate furnace operations for the remaining product. By appropriately selecting the acid radical/AI molar ratio within the above range, the alumina sol obtained after hydrothermal treatment will have a different viscosity even at the same mountain 203 concentration, and in general, the higher the acid radical/AI molar ratio, the higher the viscosity of the alumina sol. do. As mentioned above, monovalent organic acids, acid radicals/A
By hydrothermal treatment using the molar ratio of I, the conventional product
It is possible to obtain an alumina sol with a high AI203 concentration and any desired viscosity with excellent stability over time. However, if the acid radical/AI molar ratio is less than 0.001, it becomes extremely difficult to defrost the pig, and water Separation of the residue and sol after heat treatment is difficult, resulting in low productivity and low conversion to sol.

また酸根/山のモル比が0.12を越えると繊維状アル
ミナの生成が起こるものと考えられ、水熱処理に際し一
且解豚されてもすぐゲル化してしまったり、例えゾルが
得られても経時安定性が著しく劣る。アルミナゲルスラ
リーの水熱処理に際して共存させる一価の有機酸または
これらの酸の水溶性アルミニウム塩は水熱処理前のアル
ミナゲルスラリ−の調整時に必要量添加してもよいし、
また原料アルミナを得る過程で、すなわち水勢処理の際
使用される一価の有機酸のアルミニウム塩、例えば酢酸
アルミニウムを当量以下のアルカリ性物質で中和して一
価の酸根が適当量結合したアルミナゲルを生成せしめ、
このアルミナゲルが後の水熱処理の際の所定量の残存酸
根を含有する場合にはそのまま、あるいは不足分を新し
く添加して水熱処理することもできる。
Furthermore, if the molar ratio of acid roots/mountains exceeds 0.12, it is thought that fibrous alumina will be formed, and even if it is decomposed during hydrothermal treatment, it will immediately gel, or even if a sol is obtained. Stability over time is significantly poor. Monovalent organic acids or water-soluble aluminum salts of these acids to be coexisting during the hydrothermal treatment of the alumina gel slurry may be added in the required amount when preparing the alumina gel slurry before the hydrothermal treatment.
In addition, in the process of obtaining raw material alumina, that is, aluminum salts of monovalent organic acids used during water treatment, such as aluminum acetate, are neutralized with less than an equivalent amount of alkaline substances to form an alumina gel in which an appropriate amount of monovalent acid groups are bonded. to generate
If this alumina gel contains a predetermined amount of residual acid radicals during the subsequent hydrothermal treatment, it can be hydrothermally treated as is or by newly adding the missing amount.

一価の有機酸を残存させて得たアルミナゲルは解腰性の
点ですぐれており、かような実施態様は好ましいもので
ある。本発明方法の水熱処理は約1200C〜300o
o、好ましくは約14000〜20000の温度にて、
約15分〜7時間、好ましくは約3び分〜4時間実施さ
れる。
Alumina gel obtained by leaving a monovalent organic acid in it has excellent disintegration properties, and such an embodiment is preferable. The hydrothermal treatment in the method of the present invention is approximately 1200C to 300o.
o, preferably at a temperature of about 14,000 to 20,000 °C,
It is carried out for about 15 minutes to 7 hours, preferably about 3 minutes to 4 hours.

処理温度が約120℃より低温度では解豚に長時間を要
し、また約30000より高温度になると急冷設備、高
圧容器などを必要とするので望ましくない。以上の条件
により水熱処理を行なうとアルミナゲルスラリーは徐々
に解勝し乳伯色から乳光色半透明状に変わり、しかも約
30重量%までの任意のアルミナ濃度、任意の粘度のア
ルミナゾルを製造することができる。以上により取得ら
れたアルミナゾルの粘度は例えばAI203濃度が25
重量%のゾルの場合20ooで約5比.p(センチポィ
ズ)から数100c.pの高粘性のものまで、またAI
203濃度が10重量%のゾルの場合、数c.pという
極めて低粘性のものから約10比.pという比較的高粘
性のものまで任意の所望の粘度を有するアルミナゾルを
製造することができ、しかもこれらのゾルは3ケ月以上
放置してもゲル化することなく非常に安定である。
If the processing temperature is lower than about 120° C., it will take a long time to slaughter the pig, and if the processing temperature is higher than about 30,000° C., quenching equipment, high-pressure containers, etc. will be required, which is not desirable. When hydrothermal treatment is carried out under the above conditions, the alumina gel slurry gradually dissolves and changes from opalescent to opalescent and translucent, producing an alumina sol with any alumina concentration up to about 30% by weight and any viscosity. can do. The viscosity of the alumina sol obtained as described above is, for example, when the concentration of AI203 is 25
In the case of a weight% sol, the ratio is about 5 at 20oo. p (centipoise) to several 100 c. p to high viscosity ones, and AI
In the case of a sol with a 203 concentration of 10% by weight, several c. Approximately 10 ratio from extremely low viscosity called p. It is possible to produce alumina sols having any desired viscosity up to the relatively high viscosity of p, and these sols are very stable without gelation even after being left for more than three months.

得られるアルミナゾルはX線回析、及び電子顕微鏡観察
の結果、ベーマィト態結晶格子を有する約0.1〜0.
02仏の大きさの板状物が分散乃至集合した状態にあり
繊維状態のものではなかった。
As a result of X-ray diffraction and electron microscopic observation, the obtained alumina sol has a boehmite crystal lattice of approximately 0.1 to 0.0.
02 Buddha-sized plate-like objects were in a dispersed or aggregated state and were not in a fibrous state.

このようにして生成されたアルミナゾルはそのまま分散
液としての用途に用いることもできるし、また頃霧乾燥
または蒸発乾固などの手段により乾燥して粉末化した後
、水に再分散させてゾルに転化させるかまたは粉末のま
ま用いることもできる。以上詳述したごとく本発明の方
法によれば公知方法に比較して極めて低粘性のゾルから
高粘性のゾルまで、また高AI203濃度でかつ経時安
定性のすぐれたアルミナゾル、また再分散性のすくれた
アルミナ粉末を与えるアルミナゾルを製造することがで
きる。本発明方法により製造されたアルミナゾルは電気
、電子工業および陶磁器、鋳物工業における耐熱性バイ
ンダー、化粧品、医薬品における軟膏類の配合ベース、
エアゾール製品、繊維工業における風合改良、毛玉防止
、帯電防止、ペイント、顔料、印刷インクの乳化剤、安
定剤、接着性向上剤、樹脂、紙類の表面コーティング剤
、サイズ剤、石油工業における触媒担体等として特に有
用である。
The alumina sol produced in this way can be used as it is as a dispersion, or it can be dried and powdered by means such as mist drying or evaporation, and then redispersed in water to form a sol. It can also be converted or used as a powder. As described in detail above, the method of the present invention can produce alumina sol that has a very low viscosity to a highly viscous sol compared to known methods, has a high AI203 concentration and has excellent stability over time, and has excellent redispersibility. It is possible to produce an alumina sol that gives the alumina powder. The alumina sol produced by the method of the present invention can be used as a heat-resistant binder in the electrical and electronic industries, ceramics, and foundry industries, as a compounding base for ointments in cosmetics and pharmaceuticals, and as a base for ointments in cosmetics and pharmaceuticals.
Aerosol products, texture improvement in the textile industry, anti-pilling, antistatic properties, emulsifiers for paints, pigments, printing inks, stabilizers, adhesion improvers, resins, surface coating agents for paper, sizing agents, catalysts in the petroleum industry It is particularly useful as a carrier.

以下に実施例により本発明方法を更に詳細に説明するが
、本発明方法はこれにより制限されるものではない。
The method of the present invention will be explained in more detail with reference to Examples below, but the method of the present invention is not limited thereto.

実施例 1 AI20310.21重量%、酢酸根/AI(当量比)
1.0の酢酸アルミニウム水溶液各々100重量部に第
1表に示す酸根/AI(モル比)となる量の未反応の酢
酸根が残留するように7.9刃重量%の炭酸ナトリウム
の所要量を各々20q0にて添加、反応せしめ生じたア
ルミナゲルを約1時間熟成後洗浄、炉過して得られたケ
ーキを100q0のエアーバス中で乾燥して乾燥ゲルを
取得した。
Example 1 AI203 10.21% by weight, acetic acid radical/AI (equivalent ratio)
The required amount of sodium carbonate is 7.9% by weight so that an amount of unreacted acetic acid radicals having the acid radical/AI (mole ratio) shown in Table 1 remains in each 100 parts by weight of the 1.0 aqueous aluminum acetate solution. The resulting alumina gel was aged for about 1 hour, washed and filtered, and the resulting cake was dried in an air bath at 100 q0 to obtain a dry gel.

得られた乾燥ゲルのAI203含有率は第1表に示す。The AI203 content of the dried gel obtained is shown in Table 1.

第1表系 引き続き得られた乾燥ゲルを水にて第2表に
示したAI203濃度のアルミナゲルスラIJ−に調製
した。
Table 1 The dried gel subsequently obtained was prepared with water into an alumina gel slurry IJ- having the AI203 concentration shown in Table 2.

これらの各アルミナゲルスラリーをオートクレープ中に
移し150〜16000の温度でそれぞれ2時間水熱処
理をした。その結果得られたアルミナゾルの性状を第2
表に示す。第2表 ※電子顕微鏡観察Kょる。
Each of these alumina gel slurries was transferred into an autoclave and subjected to hydrothermal treatment at a temperature of 150 to 16,000 for 2 hours. The properties of the alumina sol obtained as a result are
Shown in the table. Table 2 *Electron microscope observation.

実施例 2 AI2034.36重量%、酢酸根/AI(当量比)1
.04の酢酸アルミニウム水溶液の各々10の重量部に
第3表に示す酸板/AI(モル比)となる量の未反応の
酢酸根が残留するように同じく第3表に示すアルカリ性
物質の所要量を各々3000にて添加、反応せしめ生じ
たアルミナゲルを約1時間熟成後洗浄、炉過して得られ
たケーキを11000のエアーハス中で乾燥して乾燥ゲ
ルを取得した。
Example 2 AI2034.36% by weight, acetic acid radical/AI (equivalent ratio) 1
.. Add the required amount of the alkaline substance shown in Table 3 so that an amount of unreacted acetic acid radical corresponding to the acid plate/AI (molar ratio) shown in Table 3 remains in each 10 parts by weight of the aluminum acetate aqueous solution of No. 04. The resulting alumina gel was aged for about 1 hour, washed and filtered, and the resulting cake was dried in an air bath at 11,000 to obtain a dry gel.

得られた乾燥ゲルのAI203含有量は第3表に示す。The AI203 content of the resulting dry gel is shown in Table 3.

第3表引き続き得られた乾燥ゲルを水にて第4表に示し
たAI203濃度のアルミナゲルスラリーとなる如く調
製した。
Table 3 The dried gel subsequently obtained was prepared with water to give an alumina gel slurry having the AI203 concentration shown in Table 4.

これらの各スラリーをガラス製オートクレープ中に移し
150〜16000の温度で水熱処理をした。その結果
、得られたアルミナゾルの性状を第4表に示す。
Each of these slurries was transferred into a glass autoclave and subjected to hydrothermal treatment at a temperature of 150 to 16,000°C. Table 4 shows the properties of the alumina sol obtained.

第4表 実施例 3 AI2034.27重量%、CI/山(当量比)1.0
2の塩化アルミニウム水溶液100重量部に19.92
重量%の重炭酸ナトリウム113.5重量部を約300
0にて鍵拝しながら徐々に添加、反応せしめ、生じたア
ルミナゲルを約1時間熟成後、塩素根の流出が見し、出
されなくなる迄洗浄し、引き続き炉遇し得られたケーキ
を110℃のエアーバス中で乾燥してN20372.4
重量%の乾燥ゲルを得た。
Table 4 Example 3 AI2034.27% by weight, CI/mountain (equivalent ratio) 1.0
19.92 parts by weight of aluminum chloride aqueous solution of 2
Approximately 300 parts by weight of 113.5 parts by weight of sodium bicarbonate
The resulting alumina gel was aged for about 1 hour, washed until no chlorine radicals were observed to flow out, and the resulting cake was heated in a furnace at 110 °C. Dry in an air bath at ℃N20372.4
% dry gel was obtained.

この乾燥ゲルを分割して第5表に示す山203濃度及び
酸様/川(モル比)となるように酢酸アルミニウム水溶
液中に分散させてアルミナゲルスラリーを調製した。次
いでこれらのアルミナゲルスラリーをガラス製オートク
レープ中に移し、150〜16000の温度で3時間水
熱処理をした。その結果、得られたアルミナゾルの性状
を第5表に示す。
This dried gel was divided and dispersed in an aluminum acetate aqueous solution so as to have the mountain 203 concentration and acid-like/river (molar ratio) shown in Table 5 to prepare an alumina gel slurry. These alumina gel slurries were then transferred into a glass autoclave and subjected to hydrothermal treatment at a temperature of 150 to 16,000 for 3 hours. Table 5 shows the properties of the alumina sol obtained.

第5表 実施例 4 AI2034.07重量%、S04/N(当量比)1.
03の硫酸アルミニウム水溶液100重量部にNH3と
して4.26重量%の炭酸アンモニウム水溶液103.
5重量部を約4000にて徐々に添加反応せしめ生じた
アルミナゲルを約1時間熟成後硫酸根の流出が見し、出
されなくなる迄洗浄し引き続き炉過し得られたケーキを
120o○のエアーバス中で乾燥して山20367.8
重量%の乾燥ゲルを得た。
Table 5 Example 4 AI2034.07% by weight, S04/N (equivalent ratio) 1.
Add 4.26% by weight of ammonium carbonate aqueous solution as NH3 to 100 parts by weight of aluminum sulfate aqueous solution of 103.03.
5 parts by weight were gradually added to react at about 4,000 ℃, and the resulting alumina gel was aged for about 1 hour. After the sulfuric acid radicals were observed to flow out, the cake was washed until no more sulfuric acid radicals came out, and the resulting cake was then filtered in a furnace. Drying in the bus and mountain 20367.8
% dry gel was obtained.

この乾燥ゲルを分割して第6表に示す山203濃度及び
酸根/AI(モル比)となるように希酢酸水溶液中に分
散させアルミナゲルスラリーを調整した。次いでこれら
のアルミナゲルスラリ−をガラス製オートクレープ中に
移し150〜16000の温度でそれぞれ3時間水熱処
理をした。その結果得られたアルミナゾルの性状を第6
表に示す。
This dried gel was divided and dispersed in a dilute acetic acid aqueous solution so that the mountain 203 concentration and acid radical/AI (molar ratio) shown in Table 6 were obtained to prepare an alumina gel slurry. Next, these alumina gel slurries were transferred into a glass autoclave and subjected to hydrothermal treatment at a temperature of 150 to 16,000 for 3 hours. The properties of the alumina sol obtained as a result are shown in the sixth column.
Shown in the table.

第6表実施例 5 AI2034.25%、N03/AI(当量比)1.0
1の硝酸アルミニウム水溶液100重量部にNH3とし
て3.99重量%の水酸化アンモニウム水溶液113.
1重量部を約3000にて徐々に添加反応せしめ生じた
アルミナゲルを約1時間熟成後硝酸根の流出が見い出さ
れなくなる迄洗浄し引き続き炉遇し得られたケーキを1
2000のエアーバス中で乾燥してAI20377.3
重量%の乾燥ゲルを得た。
Table 6 Example 5 AI2034.25%, N03/AI (equivalence ratio) 1.0
Aqueous ammonium hydroxide solution containing 3.99% by weight as NH3 was added to 100 parts by weight of aluminum nitrate aqueous solution of 113.
1 part by weight was gradually added and reacted at about 3000°C, and the resulting alumina gel was aged for about 1 hour, washed until no nitrate radicals were found to flow out, and then heated in a furnace.
Dry in 2000 air bath to obtain AI20377.3
% dry gel was obtained.

この乾燥ゲルを分割して酸根/N(モル比)が0.02
となる様に酢酸アルミニウム溶液中に添加して、且つ第
7表に示すN203濃度となる様にアルミナゲルスラリ
ーを調製した。次いでこれらのアルミナゲルスラリーを
ガラス製オートクレープ中に移し、150〜160CO
の温度で2.虫時間水熱処理をした。その結果、得られ
たアルミナゾルの性状を第7表に示す。第7表 実施例 6 山2034.42重量%、酢酸根/AI(当量比)1.
0の酢酸アルミニウム水溶液10の重量部に11.9鑓
重量%の炭酸ナトリウム水溶液121重量部を約30q
0にて蝿拝しながら徐々に添加反応せしめ、生じたアル
ミナゲルを約1時間熟成後、酢酸根の流出が見し、出さ
れなくなる迄洗浄し、引き続き炉遇し得られたケーキを
110qoのエアーバス中で乾燥してN20376.丸
重量%の乾燥ゲルを得た。
This dry gel was divided to give an acid group/N (molar ratio) of 0.02.
An alumina gel slurry was prepared by adding it to an aluminum acetate solution so that the N203 concentration was as shown in Table 7. These alumina gel slurries were then transferred into a glass autoclave and heated to 150-160 CO
At a temperature of 2. Hydrothermal treatment was carried out for insect time. Table 7 shows the properties of the alumina sol obtained. Table 7 Example 6 Mountain 2034.42% by weight, acetic acid radical/AI (equivalent ratio) 1.
Approximately 30q of 121 parts by weight of a 11.9% by weight sodium carbonate aqueous solution was added to 10 parts by weight of a 0% aluminum acetate aqueous solution.
The resulting alumina gel was aged for about 1 hour, washed until no acetic acid radicals were observed to flow out, and the resulting cake was heated in a furnace and heated to 110 qo. Dry in an air bath and use N20376. A round weight percent dry gel was obtained.

この乾燥ゲルを分割して第8表に示す各々の一価の有機
酸またはこれらの酸のアルミニウム塩溶液中に分散させ
N203濃度が10重量%、酸根/N(モル比)0.0
3のアルミナゲルスラリーを調製した。次いでこれらの
アルミナゲルスラリーをガラス製オートクレープ中に移
し150〜160つ○の温度で2時間水熱処理をした。
その結果、得られたアルミナゾルの性状を第8表に示す
This dry gel was divided and dispersed in each monovalent organic acid shown in Table 8 or an aluminum salt solution of these acids, and the N203 concentration was 10% by weight and the acid group/N (molar ratio) was 0.0.
Alumina gel slurry No. 3 was prepared. These alumina gel slurries were then transferred into a glass autoclave and subjected to hydrothermal treatment at a temperature of 150 to 160 o for 2 hours.
Table 8 shows the properties of the alumina sol obtained.

第8表 実施例 7 AI2034.36重量%、酢酸根/AI(当量比)1
.04の酢酸アルミニウム水溶液100重量部に5.4
7重量%の炭酸カリウム水溶液118重量部を約40o
oにて徐々に添加反応せしめ生じたアルミナゲルを約1
時間熟成後、酢酸イオンの流出が見し、出されなくなる
迄洗浄し、引き続き炉遇し得られたケーキを12000
のエアーバス中で乾燥してAI20369.2重量%の
乾燥ゲル6.3重量部を得た。
Table 8 Example 7 AI2034.36% by weight, acetic acid radical/AI (equivalent ratio) 1
.. 5.4 parts by weight of aluminum acetate aqueous solution of 04
118 parts by weight of 7% by weight potassium carbonate aqueous solution at about 40o
The alumina gel produced by gradual addition reaction at
After aging for a few hours, acetic acid ions were observed to flow out, and the cake was washed until it no longer came out.
The gel was dried in an air bath to obtain 6.3 parts by weight of a dry gel containing 9.2% by weight of AI2036.

この乾燥ゲル6.3重量部を0.53重量%のギ酸溶液
37.$重量部に添加してAI20310.の重量%、
酸根/AI(モル比)0.05のアルミナゲルスラリー
を調製した。次いでこのアルミナゲルスラリーをガラス
製オートクレープ中に移し150〜1600Cの温度で
1時間水熱処理をした。その結果、得られたアルミナゾ
ルの性状を第9表に示す。第9表 実施例 8 実施例2のNo.5で得たアルミナゾルを入口ガス温度
13000、出口ガス温度5500で贋霧乾燥し、アル
ミナ粉末を製造した。
6.3 parts by weight of this dry gel was added to 37% by weight of a 0.53% by weight formic acid solution. Add to $ parts by weight AI20310. weight%,
An alumina gel slurry having an acid radical/AI (molar ratio) of 0.05 was prepared. Next, this alumina gel slurry was transferred into a glass autoclave and subjected to hydrothermal treatment at a temperature of 150 to 1600C for 1 hour. Table 9 shows the properties of the alumina sol obtained. Table 9 Example 8 No. of Example 2 The alumina sol obtained in step 5 was mist-dried at an inlet gas temperature of 13,000 and an outlet gas temperature of 5,500 to produce alumina powder.

その結果得られたアルミナ粉末の性状は次のようであっ
た。Al203含有率:67.の重量% 形 状:球状 平均粒子蚤:20仏 これらのアルミナ粉末をAI203濃度として15重量
%となるようにlyoの水に添加して5分間再分散させ
た。
The properties of the alumina powder obtained as a result were as follows. Al203 content: 67. Weight % Shape: Spherical Average particle size: 20 flea These alumina powders were added to lyo water to give an AI203 concentration of 15% by weight and redispersed for 5 minutes.

その結果、得られたアルミナゾルの性状及び比較のため
市販の分散性アルミナ粉末を上記と同様にして再分散さ
せアルミナゾルとなした結果もあわせ第1頃表‘こ示す
。第10表 第1隻表より本発明品は市販品と比較しても分散率が優
れておりまたゾルの経時安定性も著しく優れていること
が明らかである。
As a result, the properties of the obtained alumina sol and the results obtained by redispersing commercially available dispersible alumina powder to form an alumina sol in the same manner as above are also shown in Table 1 for comparison. From Table 10, Table 1, it is clear that the product of the present invention has an excellent dispersion rate even when compared with commercially available products, and also has significantly superior sol stability over time.

Claims (1)

【特許請求の範囲】 1 酸性の水溶性アルミニウム正塩または後の水熱処理
の際共存させる一価の有機酸の可溶性塩基性アルミニウ
ム塩の少なくとも1種をアルカリ金属、アルカリ土金属
またはアンモニアの水酸化物、炭酸塩、重炭酸塩、亜流
酸塩、ホウ酸塩の少なくとも1種のアルカリ性物質によ
り中和して得られるアルミナゲルを酸根/Alのモル比
が0.001〜0.12となる量の一価の有機酸または
これらの酸の水溶性アルミニウム塩の存在下に水熱処理
することを特徴とするアルミナゾルの製造法。 2 酸性の水溶性アルミニウム正塩が塩化アルミニウム
、硝酸アルミニウム、酢酸アルミニウムである特許請求
の範囲第1項記載の方法。 3 アルカリ性物質がアルカリ金属、またはアンモニア
の炭酸塩である特許請求の範囲第1項記載の方法。 4 中和反応によつて得られるアルミナゲルをAl_2
O_3含有率が約15〜90重量%になるごとく一旦乾
燥して水熱処理する特許請求の範囲第1〜3項のいずれ
か一項記載の方法。 5 アルミナゲルをAl_2O_3含有率約55〜80
重量%となるごとく乾燥する特許請求の範囲第4項記載
の方法。 6 水熱処理の際の酸根/Alのモル比が0.002〜
0.10である特許請求の範囲第1〜5項のいずれか一
項記載の方法。 7 水熱処理を約120〜300℃の温度で実施する特
許請求の範囲第1〜6項のいずれか一項記載の方法。 8 一価の有機酸が酢酸である特許請求の範囲第1〜7
項のいずれか一項記載の方法。 9 一価の有機酸のアルミニウム塩が酢酸アルミニウム
である特許請求の範囲第1〜7項のいずれか一項記載の
方法。 10 酢酸アルミニウムを当量以下のアルカリ性物質で
中和して、酢酸根が後の水熱処理に際して必要となる量
またはそれ以下量残存するアルミナゲルを取得し、一価
の有機酸またはこれらの酸の水溶性アルミニウム塩を添
加することなくまたは必要量を補充添加して水熱処理す
る特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. At least one acidic water-soluble aluminum positive salt or a soluble basic aluminum salt of a monovalent organic acid coexisting during the subsequent hydrothermal treatment is hydroxylated with an alkali metal, alkaline earth metal, or ammonia. An amount such that the molar ratio of acid radicals/Al is 0.001 to 0.12 for the alumina gel obtained by neutralizing the alumina gel with at least one alkaline substance selected from carbonates, bicarbonates, sulfites, and borates. A method for producing an alumina sol, which comprises hydrothermal treatment in the presence of a monovalent organic acid or a water-soluble aluminum salt of these acids. 2. The method according to claim 1, wherein the acidic water-soluble aluminum normal salt is aluminum chloride, aluminum nitrate, or aluminum acetate. 3. The method according to claim 1, wherein the alkaline substance is an alkali metal or an ammonia carbonate. 4 Al_2 alumina gel obtained by neutralization reaction
The method according to any one of claims 1 to 3, wherein the method is once dried and hydrothermally treated so that the O_3 content becomes about 15 to 90% by weight. 5 Alumina gel with Al_2O_3 content of about 55-80
5. The method according to claim 4, wherein the drying method is performed in such a manner that the drying method is carried out in such a manner as to increase the weight percentage. 6 The acid radical/Al molar ratio during hydrothermal treatment is 0.002~
0.10. The method according to any one of claims 1 to 5, wherein 7. A method according to any one of claims 1 to 6, wherein the hydrothermal treatment is carried out at a temperature of about 120 to 300C. 8 Claims 1 to 7 in which the monovalent organic acid is acetic acid
The method described in any one of paragraphs. 9. The method according to any one of claims 1 to 7, wherein the aluminum salt of a monovalent organic acid is aluminum acetate. 10 Neutralize aluminum acetate with an equivalent amount of an alkaline substance to obtain an alumina gel in which acetic acid radicals remain in an amount required or less than that required for subsequent hydrothermal treatment, and prepare a monovalent organic acid or an aqueous solution of these acids. 2. The method according to claim 1, wherein the hydrothermal treatment is carried out without adding or supplementing the necessary amount of aluminum salt.
JP53095073A 1978-08-03 1978-08-03 Manufacturing method of alumina sol Expired JPS6034496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53095073A JPS6034496B2 (en) 1978-08-03 1978-08-03 Manufacturing method of alumina sol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53095073A JPS6034496B2 (en) 1978-08-03 1978-08-03 Manufacturing method of alumina sol

Publications (2)

Publication Number Publication Date
JPS5523034A JPS5523034A (en) 1980-02-19
JPS6034496B2 true JPS6034496B2 (en) 1985-08-09

Family

ID=14127801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53095073A Expired JPS6034496B2 (en) 1978-08-03 1978-08-03 Manufacturing method of alumina sol

Country Status (1)

Country Link
JP (1) JPS6034496B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104477957A (en) * 2014-12-22 2015-04-01 南通市飞宇精细化学品有限公司 Preparation method of fine-grain aluminum hydroxide

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295509A (en) * 1995-04-24 1996-11-12 Asahi Glass Co Ltd Low viscosity and high concentration alumina sol
US5989515A (en) * 1996-07-24 1999-11-23 Nissan Chemical Industries, Ltd. Process for producing an acidic aqueous alumina sol
US6565950B1 (en) 1998-06-18 2003-05-20 Canon Kabushiki Kaisha Recording medium, image forming method utilizing the same, method for producing the same, alumina dispersion and method for producing the same
WO2002002712A1 (en) * 2000-07-05 2002-01-10 Showa Denko K.K. Polishing composition and magnetic recording disk substrate polished with the polishing composition
JP2009196326A (en) 2008-02-25 2009-09-03 Fujifilm Corp Inkjet recording medium and method for manufacturing the same
CN107902684B (en) * 2017-11-21 2021-11-16 河南理工大学 Application of aluminum hydroxide nano slurry as early strength agent in cement-based material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104477957A (en) * 2014-12-22 2015-04-01 南通市飞宇精细化学品有限公司 Preparation method of fine-grain aluminum hydroxide

Also Published As

Publication number Publication date
JPS5523034A (en) 1980-02-19

Similar Documents

Publication Publication Date Title
US3520654A (en) Process for the preparation of low density alumina gel
US4211667A (en) Process for producing alumina sols
US4231893A (en) Process for preparing aqueous dispersion of ceria and resulting product
US4589997A (en) Process for preparing colloidal solution of antimony pentoxide
JPS58176123A (en) Superpure boehmite and pseudoboehmite and manufacture thereof
JPS62277145A (en) Aqueous collidal dispartion of serium for iv compound and its preparation
US4049781A (en) Method of preparing loosely aggregated 200-500 millimicron silica
JPS6034496B2 (en) Manufacturing method of alumina sol
JPS6242850B2 (en)
JP3646818B2 (en) Bismuth oxycarbonate powder and method for producing the same
US3716493A (en) Process for making fine sized low density silica
US3228784A (en) Amorphous hydrogen alumino silicate pigments
JPS6045125B2 (en) Manufacturing method of alumina sol
US3846540A (en) Method for converting high-density low-porosity alumina into low-density high porosity alumina
JPS62182116A (en) Production of antimony pentoxide sol
JP3950691B2 (en) Colloidal dispersion of cerium compound containing cerium III, process for its production and use thereof
US3055737A (en) Process for preparing alumina gels
JPH0925119A (en) Production of heat resistant transition alumina
JPS585174B2 (en) Method for producing basic aluminum lactate
US3966893A (en) Precipitating α alumina monohydrate
US3105739A (en) Method for producing alumina free from alkaline earth metal impurities
US3131156A (en) Preparation of a silica-alumina cracking catalyst
US1162926A (en) Manufacture of products from seaweed.
JP2006248862A (en) Sol comprising al-o-based particle as dispersoid, its production method, and alumina particle
JPH0457604B2 (en)