JPS6242818A - Injection-controlling device - Google Patents

Injection-controlling device

Info

Publication number
JPS6242818A
JPS6242818A JP18359285A JP18359285A JPS6242818A JP S6242818 A JPS6242818 A JP S6242818A JP 18359285 A JP18359285 A JP 18359285A JP 18359285 A JP18359285 A JP 18359285A JP S6242818 A JPS6242818 A JP S6242818A
Authority
JP
Japan
Prior art keywords
mold
mold clamping
injection
displacement
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18359285A
Other languages
Japanese (ja)
Other versions
JPH053813B2 (en
Inventor
Hideo Kuroda
英夫 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18359285A priority Critical patent/JPS6242818A/en
Publication of JPS6242818A publication Critical patent/JPS6242818A/en
Publication of JPH053813B2 publication Critical patent/JPH053813B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/80Measuring, controlling or regulating of relative position of mould parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To surely prevent flashes from developing by a method wherein a mold clamping oil pressure, under which the changing-over from filling during injection to dwelling during injection is performed, is set within a range corresponding to the range of the displacement of a mold parting face so as to change over to the dwelling during injection by means of the set displacement of the mold parting face. CONSTITUTION:A displacement-detecting device of the parting face 8 is used to detect a gap (delta) or a displacement sensor 21 sends an output in proportion to the gap (delta) through a lead wire 21a. A mold clamping oil pressure PC under which the changing- over to dwelling during injection is performed is set. In addition, the displacement deltaC of the parting face at the time when mold clamping pressure P reaches PC within the rising range (a) of mold clamping pressure is memorized. When the displacement (delta) of the parting face reaches deltaC in the filling section (f) during injection, the section (f) is changed over to the dwelling section (h) during injection. Further, because the maximum mold clamping oil pressure PE is set at a setter so as to set PC to satisfy the condition of O<PC<PE, the relation of deltaE<deltaC<deltaD is also satisfied. Because the relation of deltaC<deltaD is kept, no opening of the parting faces occurs and consequently no flashes develop.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は射出成形機、ダイカストマシン等に応用できる
金型パーティング面変位による射出保圧切換制御装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an injection holding pressure switching control device using mold parting surface displacement, which can be applied to injection molding machines, die casting machines, etc.

(従来の技術) 第5図は従来の射出成形機とその制御回路図の概要を示
1〜.第6図は同制御回路による制御変数グラフを示す
(Prior Art) Fig. 5 shows an overview of a conventional injection molding machine and its control circuit diagram. FIG. 6 shows a graph of controlled variables by the same control circuit.

第5図においてlは型締シリンダ、2は同シリンダl内
の型締ラム、3は型締シリンダ1と固定型盤5を連結す
るタイバー、4は前記タイバー3により前後進可能に支
持されるとともに、前記型締ラム2に連結された可動型
盤である。6は可動型盤4に取付けられた可動側金型、
107は固定型盤5に取付けられた固定側金型、20は
成形品キャビティである。
In FIG. 5, l is a mold clamping cylinder, 2 is a mold clamping ram inside the cylinder l, 3 is a tie bar connecting the mold clamping cylinder 1 and the fixed mold platen 5, and 4 is supported by the tie bar 3 so as to be movable back and forth. It is also a movable mold board connected to the mold clamping ram 2. 6 is a movable side mold attached to the movable mold board 4;
107 is a stationary side mold attached to the stationary mold board 5, and 20 is a molded product cavity.

また原料樹脂は1図示しないホッパからシリンダ13内
のスジ95140図面右側部に供給され、図示しないヒ
ータによる加熱と、油圧モータエ8で駆動されるスクリ
ュj4の回転により溶融可塑化され、スクリュ14の前
方へ送られて溶融樹脂12として貯えられる。
Further, the raw resin is supplied from a hopper (not shown) to the right side of the line 95140 in the cylinder 13 in the figure, and is melted and plasticized by heating by a heater (not shown) and rotation of the screw j4 driven by the hydraulic motor 8, and then transferred to the front of the screw 14. and stored as molten resin 12.

一方、油圧流入源34からサーボ弁38を経て、圧力油
を射出シリンダの図示の側へ送ることにより、射出ラム
16、軸受箱17を介してスクリュ14を図の左方へ前
進させ、同スクリュ14の先端の溶融樹脂I2を成形品
キャビティ20へ射出する。なお、図中130はコント
ローラ、19は位置センザ、31..32は油圧センサ
、33は油圧流入源、 35.37はIJ IJ−フ弁
、36は切換弁である。
On the other hand, by sending pressure oil from the hydraulic inflow source 34 to the illustrated side of the injection cylinder via the servo valve 38, the screw 14 is advanced to the left in the figure via the injection ram 16 and the bearing box 17. The molten resin I2 at the tip of 14 is injected into the molded product cavity 20. In the figure, 130 is a controller, 19 is a position sensor, 31. .. 32 is an oil pressure sensor, 33 is an oil pressure inflow source, 35.37 is an IJ valve, and 36 is a switching valve.

次に第6図において、Poは射出シリンダ15の射出油
圧で油圧センサ32の検出値である。VFはスクリュ1
4の前進速度で一般に射出速度と呼ばれている。tは時
間で、I、T1.ITJ、IVは射出区間を示す。通常
■〜■のように射出速度VFを変化させて成形不良を防
ぎ、品質を向」ニさせる。また■の区間は、射出保持で
成形品キャビティ2oの溶融樹脂が冷却収縮する分を補
うため、一定の射出油圧を作用させる。なお、I 、 
丁l 、 ■の区間は、時間の代りにスクリュ位置セン
ザ19で検出されるスクリュ位置により設定することも
ある。
Next, in FIG. 6, Po is the injection oil pressure of the injection cylinder 15, which is the detected value of the oil pressure sensor 32. VF is screw 1
The forward speed of 4 is commonly referred to as the injection speed. t is time, I, T1. ITJ and IV indicate the injection section. Usually, the injection speed VF is changed as shown in ■ to ■ to prevent molding defects and improve quality. Further, in the section (2), a constant injection hydraulic pressure is applied to compensate for the cooling shrinkage of the molten resin in the molded product cavity 2o during injection holding. Furthermore, I,
The sections 1 and 2 may be set based on the screw position detected by the screw position sensor 19 instead of time.

第6図で実線グラフのように目標制御される。Target control is performed as shown in the solid line graph in FIG.

点線グラフは、各々の実線の従属変数値部を示す。The dotted line graph shows the dependent variable value portion of each solid line.

Pmaxはリリーフ弁37の設定値である。I〜■の各
区間では図示のようなVP (一定値部分)となるよう
、また■の区間では図のようなPo(一定値)となるよ
う、第5図のサーボ弁で射出油量を制御する。
Pmax is the set value of the relief valve 37. The amount of injected oil is controlled by the servo valve shown in Figure 5 so that in each section from I to ■, VP (constant value part) as shown, and in the section ■, Po (constant value) as shown in the figure. Control.

しかしこの従来例では、第6図の矢印Bで示すような射
出油圧のオーバシュートを生じたり、区間■の射出保持
油圧Poが一定でも油温、機械温度、金型温度、樹脂温
度などが一定でないため、肝心の金型キャビティ内樹脂
圧力がばらついたりする。
However, in this conventional example, an overshoot of the injection oil pressure as shown by arrow B in Fig. 6 occurs, and even if the injection holding oil pressure Po in section (■) is constant, the oil temperature, machine temperature, mold temperature, resin temperature, etc. are constant. As a result, the important resin pressure inside the mold cavity may vary.

また条件変動や条件設定ミスなどにより、キャビティ内
樹脂圧力が型締力に打ち勝って金型のパーティング面を
押し開き、開かれた隙間へ溶融樹脂がはみ出してパリが
生じたりもする。射出成形では1度パリが出るとくせに
なり易く、また金型を痛めてしまう。上述のように従来
例では、パリと直接結びつく変量を検出、制御していな
いので、確実にパリを防止することができなかった。
Furthermore, due to condition fluctuations or incorrect setting of conditions, the resin pressure inside the cavity may overcome the mold clamping force and push the parting surface of the mold open, causing molten resin to overflow into the opened gap and causing cracks. In injection molding, once a break occurs, it tends to become a habit and can also damage the mold. As described above, in the conventional example, variables that are directly connected to Paris are not detected and controlled, and therefore Paris cannot be reliably prevented.

(発明が解決しようとする問題点) 上述のとおり、従来の射出制御装置では、しばしば金型
パーティング面にパリが生じ金型を損傷するという問題
点を有1〜ており、本発明はこの問題点を解決して確実
にパリの発生を防Iトする対策を講じたものである。
(Problems to be Solved by the Invention) As mentioned above, conventional injection control devices often have the problem of forming flashes on the mold parting surface, damaging the mold. Measures were taken to solve the problems and reliably prevent the occurrence of Paris.

(問題点を解決するための手段) このため本発明は、射出充填から射出保圧への切換点を
型締昇圧区間内の型締油圧または型締力により設定し、
この型締油圧または型締力に相当する金型パーティング
面変位δCを自動的に検出記憶し、射出充填時には金型
パーティング面変位がδCに到達した時に射出保圧へ切
換えるようにすることを、その構成としてこれを問題点
解決のための手段とするものである。
(Means for Solving the Problems) For this reason, the present invention sets the switching point from injection filling to injection holding pressure using the mold clamping oil pressure or mold clamping force within the mold clamping pressure increase section,
The mold parting surface displacement δC corresponding to this mold clamping oil pressure or mold clamping force is automatically detected and stored, and during injection filling, when the mold parting surface displacement reaches δC, the switch is made to injection holding pressure. This structure is used as a means to solve problems.

(作  用) 前記構成において、射出保持への切換の設定な型締油圧
または型締力によって行ない、その設定値に相当するパ
ーティング面変位が型締昇圧時に自動的に検出記憶され
、射出充填時にパーティング面変位が上記記憶値に達し
た時、射出保持へ切換わる。
(Function) In the above configuration, the switching to injection holding is performed by the set mold clamping oil pressure or mold clamping force, and the parting surface displacement corresponding to the set value is automatically detected and stored when the mold clamping pressure is increased, and the injection filling is performed. When the parting surface displacement reaches the above memorized value, the injection holding mode is switched.

(実施例) 以下本発明の実施例を図面について説明すると、第1図
乃至第3図は本発明の実施例を示し、第1図は射出成形
機とその制御回路の概要を、第2図は本発明の主要部で
あるパーティング面変位検出装置が組込まれた部分の拡
大断面図を、第3図は本発明のコントローラの主要部回
路を夫々示す。
(Example) An example of the present invention will be described below with reference to the drawings. Figures 1 to 3 show an example of the present invention, Figure 1 shows an outline of an injection molding machine and its control circuit, and Figure 2 shows an outline of an injection molding machine and its control circuit. 3 is an enlarged sectional view of a part in which a parting surface displacement detection device, which is the main part of the present invention, is incorporated, and FIG. 3 shows the main circuit of the controller of the present invention.

第1図において金型7、後述するパーティング面変位検
出装置8、同じく後述するリード線21.a及びコント
ローラ30の各部分以外は、前記第5図に示した従来装
置と同一であるので、この同一部分についてはその説明
を省略する。
In FIG. 1, a mold 7, a parting surface displacement detection device 8, which will be described later, and a lead wire 21, which will also be described later. Since the components other than a and the controller 30 are the same as the conventional device shown in FIG. 5, the explanation of these same components will be omitted.

次に、本発明の主要部である第1図におけるAで示す部
分について詳細に説明すると、Aで示す部分の詳細は第
2図に示してあり、6Pは可動側金型のパーティング面
、7Pは固定側金型パーティング面、21は変位センサ
で、成句げスリーブ22に嵌め込まれている。取付はス
リーブ22はその外周が大径部と小径部とに肩部22a
を介して分けられ、その一端小径部側を固定側金型7に
固定し、その他端大径部側には取付はスリーブ22の抜
は防止のためにゴムパッド23が貼付ゆられて1図のよ
うに金型が閉じた状態では、ゴムバッド23が少し圧縮
されるような寸法関係となっている。
Next, to explain in detail the part indicated by A in Fig. 1, which is the main part of the present invention, the details of the part indicated by A are shown in Fig. 2, and 6P is the parting surface of the movable mold; 7P is a stationary mold parting surface, and 21 is a displacement sensor, which is fitted into the sleeve 22. For installation, the sleeve 22 has shoulders 22a on its outer periphery at the large diameter part and the small diameter part.
One end of the small-diameter side is fixed to the stationary mold 7, and the other end is attached to the large-diameter side with a rubber pad 23 attached to prevent the sleeve 22 from coming off, as shown in Figure 1. The dimensions are such that the rubber pad 23 is slightly compressed when the mold is closed.

24は止めねじで、変位センサ21が取付げスリーブ2
2から抜けないようにするためのものである。21aは
変位センサ21のリード線で、金型の外部へ導かれ、第
1図に示したコントローラ30へ繋がっている。
24 is a set screw, and the displacement sensor 21 is attached to the mounting sleeve 2.
This is to prevent you from getting out of 2. 21a is a lead wire of the displacement sensor 21, which is guided to the outside of the mold and connected to the controller 30 shown in FIG.

成句げスリーブ22は、例えば固定側金型7に圧入され
ており、取付はスリーブ22の肩部22aが金型7にし
っかりと密着している。しかし、使用中にこの肩部22
aの密着がゆるむと、ギャップ測定を誤差となるので、
これを防止するため金型が閉鎖される時、常に取付はス
リーブ22はゴムパッド23によって前記肩部22a側
に押圧されるようになっている。
The sleeve 22 is press-fitted, for example, into the stationary mold 7, and the shoulder portion 22a of the sleeve 22 is firmly attached to the mold 7. However, during use, this shoulder 22
If the adhesion of a becomes loose, it will cause an error in the gap measurement, so
To prevent this, when the mold is closed, the sleeve 22 is always pressed against the shoulder 22a by the rubber pad 23.

第3図において、31は第1図に示すものと同じ油圧セ
ンサ、21は第2図に示すものと同じ変位センサ、40
は射出充填から射出保圧へ切換える型締油圧Paの設定
器である。
In FIG. 3, 31 is the same oil pressure sensor as shown in FIG. 1, 21 is the same displacement sensor as shown in FIG. 2, and 40
is a setting device for mold clamping oil pressure Pa for switching from injection filling to injection holding pressure.

41と42は増幅器、43と44は比較器、47は信号
線で同図で型締油圧P≧PaO時比較器43より信号が
出力(ON)される。45は記憶器で比較器43からの
信号がOF FからONに切換わった時の信号線46か
らのパーティング面変位人力δを記憶し、その時の値δ
0を信号線48に出力する。このδ0の直は信号線47
からの信号がONの間は変わらず、同信号がONからO
F F’に切換わるとOにクリアされる。49は射出工
程時のみONになる信号で、49の信号がONの時のみ
比較器44が働く。50は射出充填から射出保圧への切
換信号で、信号49がONでかっδ≧δ0の時に比較器
44より出力(ON )される。
41 and 42 are amplifiers, 43 and 44 are comparators, and 47 is a signal line. In the figure, when the mold clamping oil pressure P≧PaO, a signal is output (ON) from the comparator 43. 45 is a memory device that stores the parting surface displacement force δ from the signal line 46 when the signal from the comparator 43 switches from OFF to ON, and stores the parting surface displacement force δ at that time.
Outputs 0 to the signal line 48. The direct line of this δ0 is the signal line 47
There is no change while the signal from
When switched to FF', it is cleared to O. A signal 49 is turned on only during the injection process, and the comparator 44 operates only when the signal 49 is turned on. 50 is a switching signal from injection filling to injection holding pressure, which is output (ON) from the comparator 44 when the signal 49 is ON and δ≧δ0.

次に前記実施例について作用を説明すると、第1図にお
いて、切換井36は油圧流入源33がらの圧力油を型締
めシリンダ1の型閉めl’1lll (図の左側)又は
型開は側(図の右側)へ切換えて供給する。即ち、ソレ
ノイドaを励磁させると、油圧流入源33からの圧力油
は型締めシリンダIの左側へ流れ、型締めラム2、従っ
てそれに連絡している可動型盤4及び可動側金型6を右
方−・動かし型閉め動作を行なう。逆にソレノイド1〕
を励磁させると油圧流入源33からの圧力油は型締めシ
リンダlの右側へ流れ、型締めラム2、可動型盤4、可
動側金型6を左方へ動かし、型開は動作を行なう。また
ソレノイドa、bいずれも励磁されない中立位置では、
型締め側、型開は側双方の油ともタンクへ開放されてい
る。
Next, to explain the operation of the above embodiment, in FIG. 1, the switching well 36 transfers the pressure oil from the hydraulic inflow source 33 to the mold closing cylinder 1 (on the left side of the figure) or the mold opening side (on the left side of the figure). (on the right side of the figure). That is, when the solenoid a is energized, the pressure oil from the hydraulic inflow source 33 flows to the left side of the mold clamping cylinder I, causing the mold clamping ram 2, and therefore the movable mold platen 4 and the movable mold 6 connected thereto, to the right side. Method: Move and perform the mold closing action. On the contrary, solenoid 1]
When energized, the pressure oil from the hydraulic inflow source 33 flows to the right side of the mold clamping cylinder 1, moves the mold clamping ram 2, movable mold platen 4, and movable mold 6 to the left, and performs the mold opening operation. In addition, in the neutral position where neither solenoids a nor b are energized,
Oil on both the mold closing side and the mold opening side are open to the tank.

前述のようにソレノイドaを励磁させて型閉め動作を行
なうと、金型が閉じた後、型締め圧はリリーフ弁35の
設定圧まで」−昇して保持される。
When the mold closing operation is performed by energizing the solenoid a as described above, after the mold is closed, the mold clamping pressure rises to the set pressure of the relief valve 35 and is held there.

また射出動作は型締め圧が十分上昇してから行なわれる
Further, the injection operation is performed after the mold clamping pressure has increased sufficiently.

次に射出動作を説明すると、油圧流入源34がらサーボ
弁38を経て圧力油を射出シリンダ15の図示の側へ送
ることにより、射出ラムI6、軸受箱17を介してスク
リュ14を図の左側へ前進させ、同スクリュ14の先端
の溶融樹脂12を成形品キャビティ20へ射出する。な
お、リリーフ弁37は油圧が上がり過ぎた時、リリーフ
させる安全弁である。
Next, explaining the injection operation, by sending pressure oil from the hydraulic inflow source 34 through the servo valve 38 to the illustrated side of the injection cylinder 15, the screw 14 is moved to the left side of the figure through the injection ram I6 and the bearing box 17. The screw is moved forward, and the molten resin 12 at the tip of the screw 14 is injected into the molded product cavity 20. Note that the relief valve 37 is a safety valve that provides relief when the oil pressure increases too much.

またパーティング面変位検出装置8は、第2図における
隙間δを検出するものである。即ち、第2図において、
変位センサ21は隙間δに比例1〜だ出力(電圧又は電
流)を、リード線2 +、 aを通して発生させる。さ
て第1図において、パーティング面変位検出装置8によ
り検出された変位(第2図の隙間δ)はコントローラ3
0へ送られ、コントローラ30では第3図の回路により
第4図に示すような射出制御を行なう。
Further, the parting surface displacement detecting device 8 detects the gap δ in FIG. 2. That is, in Figure 2,
The displacement sensor 21 generates an output (voltage or current) proportional to the gap δ through the lead wires 2 + and a. Now, in FIG. 1, the displacement detected by the parting surface displacement detection device 8 (gap δ in FIG. 2) is calculated by the controller 3.
0, and the controller 30 performs injection control as shown in FIG. 4 using the circuit shown in FIG.

ここで、第4図について説明すると、型締圧とパーティ
ング面変位のグラフは時間軸が共通で、両グラフで同一
アルファベノト記号にそれぞれ添字1,2を付1−だ点
が同一時点を表わす。同図でδ1、は各金型6,7が閉
じた直後で、型締力が作用しない状態のパーティング面
変位である。また型締昇圧区間aでは、パーティング面
受圧力増加に伴う金型の圧縮変形のため、第2図の隙間
δで表わされるパーティング面変位は減少し、最小値δ
ヤに達する。なお、02点で折れ曲っているのは、型締
圧が十分」二昇した02点(型締油圧のグラフのG、点
に対応)で型締保持に間に合うだけの油解に油圧流入海
33の油量を減らすからである。
Now, to explain Fig. 4, the graphs of mold clamping pressure and parting surface displacement have a common time axis, and the same point in time is indicated in both graphs by the same alphabenoto symbol with subscripts 1 and 2 respectively. represent. In the same figure, δ1 is the parting surface displacement immediately after each of the molds 6 and 7 is closed, and when no clamping force is applied. In addition, in the mold clamping pressure increase section a, the parting surface displacement represented by the gap δ in Fig. 2 decreases, and the minimum value δ
reach ya. The bend at point 02 indicates that the mold clamping pressure is sufficient. At point 02 (corresponding to point G on the mold clamping pressure graph), the hydraulic pressure inflows into the oil solution in time to maintain the mold clamping. This is because the amount of oil in 33 is reduced.

続いて射出充填区間fにおいて、成形品キャビティ20
の樹脂圧力が金型を開く向きに作用するため、前記圧縮
変形が減少し、従ってパーティング面変位が増え始め、
射出保圧区間りへ切換わる点Cで最大変位δCになる。
Subsequently, in the injection filling section f, the molded product cavity 20
Since the resin pressure acts in the direction of opening the mold, the compressive deformation decreases and the parting surface displacement begins to increase.
The maximum displacement δC is reached at point C, where the injection and holding pressure section is switched.

区間りでは、キャビティ20内樹脂の冷却につれて樹脂
圧力が下がってくるため、前記圧縮変形が再び増加し、
従ってパーティング面変位(隙間δ)は再び減少する。
In the section, the resin pressure decreases as the resin inside the cavity 20 cools, so the compressive deformation increases again.
Therefore, the parting surface displacement (gap δ) decreases again.

前記最大変位δ0が初期変位δ。より小さい場合は、パ
ーティング面が開いていないから、パリは発生しない。
The maximum displacement δ0 is the initial displacement δ. If it is smaller, the parting surface is not open and no paris will occur.

逆にδ。がδ。より太き(なると、パーティング面が開
くので、キャビティ20内の溶融樹脂がパーティング面
に流れ出てパリとなるおそれがある。従って射出充填区
間から射出保圧区間への切替点Cのパーティング面変位
δ。はδ。〈δ0となるように設定しなければならない
On the contrary, δ. is δ. (If the parting surface becomes thicker, the parting surface will open, and there is a risk that the molten resin in the cavity 20 will flow out onto the parting surface and become flaky. Therefore, the parting at the switching point C from the injection filling section to the injection holding section The surface displacement δ. must be set so that δ.<δ0.

第3図の回路により、第4図の射出保圧切換えの型締油
圧Pcが設定され、型締昇圧区間aにおいて型締油圧P
7111″−Pcに到達した時(点C1およびqが対応
)、その時のパーティング面変位がδ。とじて記憶され
、射出充填区間fにおいてパーティング面変位δがδ。
The circuit shown in FIG. 3 sets the mold clamping pressure Pc for switching the injection holding pressure shown in FIG.
When reaching 7111''-Pc (points C1 and q correspond), the parting surface displacement at that time is stored as δ. In the injection filling section f, the parting surface displacement δ is δ.

に到達した時(点Cが対応)射出保圧区間りへ切換わる
。すなわち、δCを設定するがわりに、Pcを設定し、
 PcからδCを自動的に求めるようにしたものである
。また最大型締油圧Pgも図示しない設定器で設定され
、その値がわかっているので、必ずO<PC<P8を満
足するようにPcが設定できるため、δ8〈δ。〈δ0
の関係も満足されることとなる。このようにδ0〈δ、
の関係が保たれるので、パーティング面が開かずパリが
発生しない。
When it reaches (corresponds to point C), it switches to the injection and holding pressure section. That is, instead of setting δC, Pc is set,
δC is automatically calculated from Pc. Further, the maximum mold clamping oil pressure Pg is also set by a setting device not shown, and since its value is known, Pc can be set so as to always satisfy O<PC<P8, so that δ8<δ. 〈δ0
The relationship will also be satisfied. In this way, δ0〈δ,
Since this relationship is maintained, the parting surface will not open and no cracks will occur.

一方、δ0がδ8に近すぎると、まだ十分に成形品キャ
ビティが充填されない内に射出充填から射出保圧へ切換
わってしまうおそれがあるが、前記型締油圧0−PEが
パーティング面変位δ8〜δ0に対応するので、射出保
圧切換用の型締油圧Pcを最大型締油圧P8に対して十
分小さく(例えばP8の半分に)設定することが容易に
でき、δ0と九が近くならないようにすることができる
On the other hand, if δ0 is too close to δ8, there is a risk of switching from injection filling to injection holding pressure before the molded product cavity is sufficiently filled. Since it corresponds to ~δ0, it is easy to set the mold clamping oil pressure Pc for injection holding pressure switching to be sufficiently smaller than the maximum mold clamping oil pressure P8 (for example, half of P8), so that δ0 and 9 are not close to each other. It can be done.

また、パーティング面変位δの検出においては、温度そ
の他の環境の影響を受けて誤差を生じるが、本装置では
射出成形の毎サイクルにおいて射出保圧切換用の設定型
締油圧Pcに対応するパーティング面変位δCを検出し
て使用するので、前記誤差は1サイクル内でしか影響せ
ず、パーティング面変位による射出保圧切換制御の精度
が良い。なお、型締油圧と型締力は比例関係にあるので
、その換算回路を組込むことにより、前記の例における
型締油圧に代えて型締力を用いることは容易に変更が可
能である。
In addition, when detecting the parting surface displacement δ, errors occur due to the influence of temperature and other environments, but in this device, in every cycle of injection molding, the parting surface displacement δ corresponding to the set mold clamping pressure Pc for switching injection holding pressure is detected. Since the parting surface displacement δC is detected and used, the error affects only within one cycle, and the injection holding pressure switching control based on the parting surface displacement has good accuracy. Incidentally, since the mold clamping oil pressure and the mold clamping force are in a proportional relationship, it is possible to easily change the above example to use the mold clamping force in place of the mold clamping oil pressure by incorporating a conversion circuit therefor.

(発明の効果) 以上、詳細に説明した如く本発明によると、型締時の金
型パーティング面変位範囲に対応する0〜最大型締油圧
(または最大型締力)の範囲内で、射出充填から射出保
圧への切換え型締油圧(または型締力)を設定し、その
設定値での金型パーティング面変位で射出保圧へ切換え
るので、射出保圧への切換時に金型パーティング面が開
くことがな(、確実にパリを防止できるものである。ま
た、上記設定の型締油圧(または型締力)に和尚する金
型パーティング面変位の自動検出を射出成形の各サイク
ル毎に実施することにより、金型パーティング面変位検
出の誤差の影響を十分に排除し得もって射出保圧切換制
御の精度を確保することができる。
(Effects of the Invention) As described above in detail, according to the present invention, injection can be performed within the range of 0 to maximum mold clamping oil pressure (or maximum mold clamping force) corresponding to the mold parting surface displacement range during mold clamping. Switching from filling to injection holding pressure The mold clamping oil pressure (or mold clamping force) is set, and the mold parting surface displacement at that setting value causes the switch to injection holding pressure. In addition, automatic detection of mold parting surface displacement, which is compatible with the mold clamping oil pressure (or mold clamping force) set above, is used for each injection molding process. By performing the process every cycle, the influence of errors in detecting displacement of the mold parting surface can be sufficiently eliminated, thereby ensuring the accuracy of injection holding pressure switching control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す射出成形機の側面図とそ
の制御回路の概要図、第2図は第1図のA部拡大図、第
3図は本発明のコントローラの主要部回路図、第4図は
型締昇圧および射出時の時間経過と型締油圧、パーティ
ング面変位との関係を示す線図、第5図は従来の射出成
形機の側面図とその制御回路の概要図、第6図は従来に
おける射出制御変数の変化を示す線図である。 図の主要部分の説明
Fig. 1 is a side view of an injection molding machine showing an embodiment of the present invention and a schematic diagram of its control circuit, Fig. 2 is an enlarged view of part A in Fig. 1, and Fig. 3 is the main circuit of the controller of the present invention. Figure 4 is a diagram showing the relationship between mold clamping pressure increase and elapsed time during injection, mold clamping oil pressure, and parting surface displacement. Figure 5 is a side view of a conventional injection molding machine and an overview of its control circuit. 6 are diagrams showing changes in injection control variables in the prior art. Description of main parts of diagram

Claims (1)

【特許請求の範囲】[Claims] 射出充填から射出保圧への切換点を型締昇圧区間内の型
締油圧または型締力により設定し、この型締油圧または
型締力に相当する金型パーティング面変位δ_0を自動
的に検出記憶し、射出充填時には金型パーティング面変
位がδ_0に到達した時に射出保圧へ切換えるようにす
ることを特徴とする射出制御装置。
The switching point from injection filling to injection holding pressure is set by the mold clamping oil pressure or mold clamping force in the mold clamping pressure increase section, and the mold parting surface displacement δ_0 corresponding to this mold clamping oil pressure or mold clamping force is automatically set. An injection control device characterized by detecting and storing the detection and switching to injection holding pressure when the mold parting surface displacement reaches δ_0 during injection filling.
JP18359285A 1985-08-21 1985-08-21 Injection-controlling device Granted JPS6242818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18359285A JPS6242818A (en) 1985-08-21 1985-08-21 Injection-controlling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18359285A JPS6242818A (en) 1985-08-21 1985-08-21 Injection-controlling device

Publications (2)

Publication Number Publication Date
JPS6242818A true JPS6242818A (en) 1987-02-24
JPH053813B2 JPH053813B2 (en) 1993-01-18

Family

ID=16138516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18359285A Granted JPS6242818A (en) 1985-08-21 1985-08-21 Injection-controlling device

Country Status (1)

Country Link
JP (1) JPS6242818A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150659A (en) * 1987-11-05 1989-06-13 Beloit Corp Roll cutter
EP0649721A1 (en) * 1993-10-01 1995-04-26 Sumitomo Heavy Industries, Ltd. Injection molding machine for controlling a molding process using the platen interval and clamping pressure as control variables
FR2759319A1 (en) * 1997-02-13 1998-08-14 Inoplast Sa Determination of the instant of mould opening when moulding composites
JP2015189128A (en) * 2014-03-28 2015-11-02 三洋熱工業株式会社 Method for fitting casting heater to injection nozzle of injection molding device and fitting structure of casting heater to the injection nozzle of injection molding device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150659A (en) * 1987-11-05 1989-06-13 Beloit Corp Roll cutter
EP0649721A1 (en) * 1993-10-01 1995-04-26 Sumitomo Heavy Industries, Ltd. Injection molding machine for controlling a molding process using the platen interval and clamping pressure as control variables
FR2759319A1 (en) * 1997-02-13 1998-08-14 Inoplast Sa Determination of the instant of mould opening when moulding composites
JP2015189128A (en) * 2014-03-28 2015-11-02 三洋熱工業株式会社 Method for fitting casting heater to injection nozzle of injection molding device and fitting structure of casting heater to the injection nozzle of injection molding device

Also Published As

Publication number Publication date
JPH053813B2 (en) 1993-01-18

Similar Documents

Publication Publication Date Title
US3840312A (en) Dynamic pressure control system
US5147659A (en) Nozzle touch apparatus in an injection molding machine
US4325896A (en) Electro-hydraulic ram control apparatus
US4222725A (en) Electro-hydraulic ram control apparatus
JPS6242818A (en) Injection-controlling device
JP6795716B1 (en) Injection device and injection control method
JP2013256019A (en) Pressure control device for injection molding machine
JPH0622831B2 (en) Injection compression molding method
JPS60154028A (en) Control on injection process of injecting molding machine
US5063008A (en) Method for precision volumetric control of a moldable material in an injection molding process
JPH0522563B2 (en)
JPH0563289B2 (en)
JPH054893B2 (en)
JPS63102917A (en) Injection controlling apparatus
US4147200A (en) Method and apparatus for eliminating entrapped gas in die castings
JPH02204017A (en) Method and apparatus for controlling injection molder
JPH10156902A (en) Injection molding machine, resin injection pressure controlling method, and resin injecting method
JPH0513809B2 (en)
JP2005335078A (en) Injection control method of injection molding machine and injection control device therefor
JPH08318554A (en) Injection compression molding method and apparatus
JP3282436B2 (en) Injection compression molding method and injection compression molding apparatus
JPS6232019A (en) Injection molding machine
JPS6237711Y2 (en)
JP2000334795A (en) Injection molding machine
JPS6130891B2 (en)