JPS6237711Y2 - - Google Patents

Info

Publication number
JPS6237711Y2
JPS6237711Y2 JP14458081U JP14458081U JPS6237711Y2 JP S6237711 Y2 JPS6237711 Y2 JP S6237711Y2 JP 14458081 U JP14458081 U JP 14458081U JP 14458081 U JP14458081 U JP 14458081U JP S6237711 Y2 JPS6237711 Y2 JP S6237711Y2
Authority
JP
Japan
Prior art keywords
pressure
injection
circuit
holding
delay circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14458081U
Other languages
Japanese (ja)
Other versions
JPS5848418U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14458081U priority Critical patent/JPS5848418U/en
Publication of JPS5848418U publication Critical patent/JPS5848418U/en
Application granted granted Critical
Publication of JPS6237711Y2 publication Critical patent/JPS6237711Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案はロボツト、工作機械等にも応用できる
射出成形機の制御装置に関するものである。
[Detailed Description of the Invention] The present invention relates to a control device for an injection molding machine that can be applied to robots, machine tools, etc.

第1図に示す如き油圧系統図に依つて射出成形
機の射出、保圧を制御する場合、即ち射出工程に
於ける射出速度はサーボ弁2に依り制御し、その
時のシリンダ5の油圧は圧力制御弁3でプリセツ
ト調節する。次に保圧工程に切換えると、圧力制
御弁3はブロツクし、サーボ弁2を制御すること
に依り保圧制御を行なう場合、速度制御から圧力
制御に切換時にシリンダ油圧が変動する。
When the injection and pressure holding of an injection molding machine are controlled by the hydraulic system diagram shown in Fig. 1, the injection speed in the injection process is controlled by the servo valve 2, and the hydraulic pressure of the cylinder 5 at that time is Control valve 3 performs preset adjustment. Next, when switching to the pressure holding process, the pressure control valve 3 is blocked, and when pressure holding control is performed by controlling the servo valve 2, the cylinder oil pressure fluctuates when switching from speed control to pressure control.

第1図の油圧系統図を制御する従来の制御ブロ
ツクダイヤグラムを第2図に示す。この場合の油
圧シリンダ5の油圧の変動例を第4図に示す。さ
て第2図に於いて、射出工程中は一次遅れ回路1
3を経て射出速度設定器11で設定された指令値
と、第1図に示す油圧シリンダ5に依り前進する
ラム7の射出速度を、速度センサ用増巾器14を
経て速度センサ12で検出したフイードバツク量
とを演算増巾器15で比較演算する。
A conventional control block diagram for controlling the hydraulic system diagram of FIG. 1 is shown in FIG. FIG. 4 shows an example of fluctuations in the oil pressure of the hydraulic cylinder 5 in this case. Now, in Figure 2, during the injection process, the first-order delay circuit 1
The command value set by the injection speed setter 11 through the speed sensor 3 and the injection speed of the ram 7, which is advanced by the hydraulic cylinder 5 shown in FIG. A calculation amplifier 15 compares and calculates the feedback amount.

演算増巾器15の出力は、アナログスイツチ2
8、電圧増巾器16、電力増巾器17を経てサー
ボ弁2の制御コイル2aに伝送され、サーボ弁2
を制御することに依りラム7の射出速度を制御す
る。この射出速度制御中は、シリンダ5の油圧は
この系統に接続された比例電磁式圧力制御弁3に
依り開ループで制御される。
The output of the operational amplifier 15 is sent to the analog switch 2.
8, the voltage is transmitted to the control coil 2a of the servo valve 2 via the voltage amplifier 16 and the power amplifier 17, and the servo valve 2
The injection speed of the ram 7 is controlled by controlling. During this injection speed control, the oil pressure of the cylinder 5 is controlled in an open loop by the proportional electromagnetic pressure control valve 3 connected to this system.

射出速度制御中の油圧シリンダの油圧々力を設
定する射出高圧設定器22は、マルチプレクサ2
3を経て射出高圧の設定値を線形補償回路24へ
伝達する。電力増巾器25はアナログスイツチ3
0を経て伝達され線形補償回路24の出力信号を
入力とし、電力増巾器26へ出力する。電力増巾
器26の出力信号は圧力制御弁3の制御コイル3
aへ伝達される。
The injection high pressure setting device 22 that sets the hydraulic pressure of the hydraulic cylinder during injection speed control is connected to the multiplexer 2.
3, the set value of the injection high pressure is transmitted to the linear compensation circuit 24. Power amplifier 25 is analog switch 3
0, the output signal of the linear compensation circuit 24 is input, and the output signal is output to the power amplifier 26. The output signal of the power amplifier 26 is transmitted to the control coil 3 of the pressure control valve 3.
transmitted to a.

即ち、射出工程の速度制御期間はアナログスイ
ツチ28,30が導通し、アナログスイツチ29
は不導通状態にあり、油圧シリンダ5の油圧は設
定器22の射出高圧設定値に依りプリセツトされ
た比例電磁式制御弁3で調節される。
That is, during the speed control period of the injection process, the analog switches 28 and 30 are conductive, and the analog switch 29 is closed.
is in a non-conducting state, and the oil pressure of the hydraulic cylinder 5 is regulated by the proportional electromagnetic control valve 3, which is preset according to the injection high pressure setting value of the setting device 22.

次に射出工程から保圧工程に切換えると、アナ
ログスイツチ28が不導通となり、アナログスイ
ツチ29,30が導通状態となる。この時前記圧
力制御弁3は、制御コイル3aがマルチプレクサ
23で選択された圧力弁ブロツク設定器33の信
号に依りブロツクされる。
Next, when the injection process is switched to the pressure holding process, the analog switch 28 becomes non-conductive and the analog switches 29 and 30 become conductive. At this time, the pressure control valve 3 is blocked by the signal from the pressure valve block setter 33 whose control coil 3a is selected by the multiplexer 23.

保圧工程に入ると、一次遅れ回路20を経た保
圧圧力設定器19で設定された設定値と、圧力セ
ンサ用増巾器18aを経由して圧力センサ18で
検出された油圧シリンダの油圧圧力のフイードバ
ツク値とを演算増巾器21で比較演算する。演算
増巾器21の出力信号は、導通状態となつたアナ
ログスイツチ29、電圧増巾器16、電力増巾器
17を経てサーボ弁2の制御コイル2aを制御す
ることに依り、ラム7の保圧圧力を制御する。
When entering the pressure holding process, the setting value set by the holding pressure setting device 19 via the first-order delay circuit 20 and the hydraulic pressure of the hydraulic cylinder detected by the pressure sensor 18 via the pressure sensor amplifier 18a. The arithmetic amplifier 21 performs a comparison operation with the feedback value of . The output signal of the operational amplifier 21 passes through the analog switch 29, the voltage amplifier 16, and the power amplifier 17, which are in a conductive state, and controls the control coil 2a of the servo valve 2, thereby maintaining the ram 7. Control pressure pressure.

保圧圧力設定器19は通常多段設定であり、一
次遅れ回路20は保圧圧力設定値を切換える場
合、予め設定されたその設定値から次の設定値に
切換えられる時、指令値が連続してスムースに切
換わる機能を有するものである。
The holding pressure setting device 19 normally has a multi-stage setting, and the first-order delay circuit 20 allows the command value to be continuously set when changing the setting value of the holding pressure. It has a smooth switching function.

射出工程では射出速度が精度良く制御される必
要があるが、圧力はラフで良いため、圧力は開ル
ープ制御の圧力制御弁が使用されており、速度は
高精度のサーボ弁を閉ループで使用している。ま
た保圧工程では、速度の方は関係なく、圧力精度
のみが要求される。
In the injection process, the injection speed needs to be precisely controlled, but a rough pressure is fine, so a pressure control valve with open loop control is used for pressure, and a high precision servo valve is used in closed loop for speed. ing. In addition, in the pressure holding process, only pressure accuracy is required, regardless of speed.

従つて射出工程で使用した圧力制御弁3では圧
力精度が不充分となり、射出工程で使用されたサ
ーボ弁2が利用され、圧力センサー18を用いる
ことにより、高精度の圧力制御が行なえる様考慮
されている。この様にサーボ弁2が速度制御と、
圧力制御に兼用されるのは、主としてコスト上の
問題である。
Therefore, the pressure accuracy of the pressure control valve 3 used in the injection process was insufficient, and consideration was given to using the servo valve 2 used in the injection process and using the pressure sensor 18 to achieve highly accurate pressure control. has been done. In this way, the servo valve 2 controls the speed,
The reason why it is also used for pressure control is mainly a cost issue.

この制御回路は射出工程も、保圧工程も精度が
良く、且つコスト的にも満足され、射出成形機で
使用される制御回路として好適ではあるが、次の
ような欠点があつた。
Although this control circuit has good accuracy in both the injection process and the pressure holding process, and is satisfactory in terms of cost, it is suitable as a control circuit for use in an injection molding machine, but it has the following drawbacks.

即ち、射出工程の速度制御から保圧工程の圧力
制御に切換わる時、保圧設定器の設定値が一次遅
れ回路20のため、圧力センサから来るフイード
バツク信号よりも遅れて立上るため、サーボ弁は
一旦シリンダ油圧を下げ一次遅れ回路20の出力
が立上つた後再度保圧圧力設定器の設定値によつ
て制御される。
That is, when switching from speed control in the injection process to pressure control in the pressure holding process, the setting value of the holding pressure setting device rises later than the feedback signal coming from the pressure sensor due to the first-order delay circuit 20, so the servo valve Once the cylinder oil pressure is lowered and the output of the primary delay circuit 20 rises, it is again controlled by the set value of the holding pressure setting device.

従つてシリンダ油圧の急激な圧力降下は、金型
内に射出中の樹脂圧を一瞬降下させ、成形品の寸
法、重量、表面仕上げが要求される精密成形品の
品質に悪影響を及ぼす欠点があつた。
Therefore, a sudden drop in cylinder oil pressure causes a momentary drop in the pressure of the resin being injected into the mold, which has the disadvantage of adversely affecting the quality of precision molded products that require specific dimensions, weight, and surface finish. Ta.

本考案は前記従来の欠点を解消するために提案
されたもので、射出成形機で射出工程の速度制御
から保圧工程の圧力制御に切換わる場合に生じる
シリンダ油圧の瞬時圧力降下を除去するために、
圧力制御に切換わる前の速度制御期間中の圧力セ
ンサからのフイードバツク信号を、保圧圧力設定
器の設定値が印加される一次遅れ回路の出力側に
印加しておき、圧力制御に切換わる時、その時の
シリンダ油圧圧力から保圧圧力設定値でプリセツ
トされた保圧圧力へ急激に変化することなく、連
続して円滑に移行されながら制御される様にした
射出成形機の制御装置を提供せんとするものであ
る。
The present invention was proposed to eliminate the above-mentioned conventional drawbacks, and is intended to eliminate the instantaneous pressure drop in cylinder oil pressure that occurs when switching from speed control in the injection process to pressure control in the holding process in an injection molding machine. To,
The feedback signal from the pressure sensor during the speed control period before switching to pressure control is applied to the output side of the primary lag circuit to which the setting value of the holding pressure setting device is applied, and when switching to pressure control. To provide a control device for an injection molding machine that allows continuous and smooth transition from the cylinder hydraulic pressure at that time to the holding pressure preset by the holding pressure setting value without sudden changes. That is.

以下本考案の実施例を図面について説明する
と、本考案を適用する場合の一例として、油圧系
統図を第1図に、制御ブロツクダイヤグラムを第
3図に示す。第1図において油圧ポンプ1は油流
量を制御コイル2aに依つて制御するサーボ弁2
を経由して、油圧シリンダ5へ油圧配管等で接続
される。サーボ弁2の出力側と油圧シリンダ5の
接続回路の中間部に、比例電磁式圧力制御弁3が
接続されている。比例電磁式圧力制御弁3は、制
御コイル3aにより開ループで前記油圧シリンダ
5の入口系の圧力を射出工程の速度制御期間中制
御される。
An embodiment of the present invention will be described below with reference to the drawings. As an example of the case where the present invention is applied, a hydraulic system diagram is shown in FIG. 1, and a control block diagram is shown in FIG. 3. In FIG. 1, a hydraulic pump 1 has a servo valve 2 that controls the oil flow rate by a control coil 2a.
It is connected to the hydraulic cylinder 5 via hydraulic piping or the like. A proportional electromagnetic pressure control valve 3 is connected to an intermediate portion of the connection circuit between the output side of the servo valve 2 and the hydraulic cylinder 5. The proportional electromagnetic pressure control valve 3 controls the pressure in the inlet system of the hydraulic cylinder 5 in an open loop by a control coil 3a during the speed control period of the injection process.

またラム7は図示されていないバレル内ラム先
端の溶融樹脂を金型内へ射出し、射出完了後の保
圧工程期間中は、金型内の同樹脂を所定の圧力で
保圧し成形するためのもので、油圧シリンダのロ
ツド6とつながり前進後退する。圧力センサ18
は油圧シリンダ5の油圧圧力を検出するセンサ
で、速度センサ12はラム7が射出方向(矢印方
向)に移動する速度を検出するセンサであ。また
ラム7の射出速度を速度センサで検出するための
機構は、ラツク・ピニオンやレバーなどいずれの
方法でも良く、図示を省略してある。
In addition, the ram 7 injects the molten resin at the tip of the ram inside the barrel (not shown) into the mold, and during the pressure holding process after injection is completed, the resin in the mold is held at a predetermined pressure and molded. It is connected to the rod 6 of the hydraulic cylinder and moves forward and backward. Pressure sensor 18
is a sensor that detects the hydraulic pressure of the hydraulic cylinder 5, and the speed sensor 12 is a sensor that detects the speed at which the ram 7 moves in the injection direction (arrow direction). Further, the mechanism for detecting the injection speed of the ram 7 using a speed sensor may be any method such as a rack and pinion or a lever, and is not shown in the drawings.

ここで第1図の油圧系統を制御するための本考
案の実施例を示す制御ブロツクダイヤグラム(第
3図)に於いて、射出速度設定器11はラム7の
射出速度を設定するもので、通常複数の値を設定
出来、図示していないシーケーン回路からの信号
に依り切換えられ、一次遅れ回路13を経て演算
増巾器15へ接続される。12は速度センサで、
前記の如くラム7の射出速度を検出し、速度セン
サ用増巾器14で増巾レベル変換後、演算増巾器
15へフイードバツク値として印加される。そし
てこの射出速度設定値とラムの速度フイードバツ
ク値とは、演算増巾器15で比較演算され、アナ
ログスイツチ28を経由して電圧増巾器16へ印
加される。
In the control block diagram (Fig. 3) showing an embodiment of the present invention for controlling the hydraulic system shown in Fig. 1, an injection speed setting device 11 is used to set the injection speed of the ram 7. A plurality of values can be set, and it is switched by a signal from a sequence circuit (not shown), and is connected to an operational amplifier 15 via a first-order delay circuit 13. 12 is a speed sensor,
As described above, the injection speed of the ram 7 is detected, and after the speed sensor amplifier 14 converts the amplification level, it is applied to the operational amplifier 15 as a feedback value. The injection speed setting value and the ram speed feedback value are compared and calculated by the arithmetic amplifier 15 and applied to the voltage amplifier 16 via the analog switch 28.

電力増巾器17は電圧増巾器16の出力を入力
とし、油圧シリンダ5へ送り込む油流量を制御す
るサーボ弁2の制御コイル2aを制御する。また
保圧圧力設定器19は、ラム7の保圧圧力を設定
するもので、通常複数の値を設定出来、図示して
いないシーケンス回路からの信号に依り切換ら
れ、一次遅れ回路20へアナログスイツチ32を
経て接続される。
The power amplifier 17 inputs the output of the voltage amplifier 16 and controls the control coil 2a of the servo valve 2 that controls the flow rate of oil sent to the hydraulic cylinder 5. The holding pressure setting device 19 is used to set the holding pressure of the ram 7, and can normally set a plurality of values.It is switched by a signal from a sequence circuit (not shown), and is sent to the first-order delay circuit 20 by an analog switch. 32.

この一次遅れ回路20は、図示していないシー
ケンス回路に依り、所定の圧力設定値から他の設
定値に切換える場合、同設定値の切換移行が連続
してスムースに行なわれる機能を有するものであ
り、出力は演算増巾器21へ印加される。また油
圧シリンダ5の油圧圧力を検出する圧力センサ1
8は、圧力センサ用増巾器18aでレベル変換さ
れた後、演算増巾器21へ圧力フイードバツク値
として印加される。前記圧力センサ用増巾器18
aの出力端と、一次遅れ回路20の出力端とは、
アナログスイツチ31を経て接続される。油圧シ
リンダ5の圧力フイードバツク信号と、保圧圧力
設定値とは演算増巾器21で比較演算され、アナ
ログスイツチ29を経て保圧工程時サーボ弁2の
制御コイルを作動させる電力増巾器16の入力へ
接続される。
This first-order delay circuit 20 has a function that, when switching from a predetermined pressure setting value to another setting value, the switching transition of the same setting value is performed continuously and smoothly using a sequence circuit (not shown). , the output is applied to the operational amplifier 21. Also, a pressure sensor 1 that detects the hydraulic pressure of the hydraulic cylinder 5
8 is level-converted by the pressure sensor amplifier 18a and then applied to the operational amplifier 21 as a pressure feedback value. The pressure sensor amplifier 18
The output terminal of a and the output terminal of the first-order lag circuit 20 are:
It is connected via an analog switch 31. The pressure feedback signal of the hydraulic cylinder 5 and the holding pressure set value are compared and calculated by the arithmetic amplifier 21, and the power amplifier 16 which operates the control coil of the servo valve 2 during the pressure holding process via the analog switch 29 is operated. Connected to input.

マルチプレクサ23は、射出高圧設定器22、
圧力制御弁ブロツク設定器33、実際の射出機で
はもう一つの図では省略しているスクリユ背圧設
定器をシーケンス信号に依り切換え、線形補償回
路24へ所定の設定値を印加する。線形補償回路
24は圧力制御弁3の設定値一圧力特性を直線関
係に変換するもので必ずしも必要としない。また
この線形補償回路24の出力は、所定のシーケン
ス信号に依り導通するアナログスイツチ30を経
て、電圧増巾器25へ印加される。一方電力増巾
器26は電圧増巾器25の出力を入力し、油圧シ
リンダ5の油圧圧力を制御する圧力制御弁3の制
御コイル3aを制御する。
The multiplexer 23 includes an injection high pressure setting device 22,
The pressure control valve block setting device 33 and the screw back pressure setting device, which is omitted in the other figure in the actual injection machine, are switched in accordance with a sequence signal, and a predetermined setting value is applied to the linear compensation circuit 24. The linear compensation circuit 24 converts the set value-pressure characteristic of the pressure control valve 3 into a linear relationship, and is not necessarily required. The output of this linear compensation circuit 24 is applied to a voltage amplifier 25 via an analog switch 30 which is turned on in response to a predetermined sequence signal. On the other hand, the power amplifier 26 inputs the output of the voltage amplifier 25 and controls the control coil 3a of the pressure control valve 3 that controls the hydraulic pressure of the hydraulic cylinder 5.

次に作用を説明すると、射出工程の速度制御期
間中、ゲート端子S1にゲート信号が印加され、ア
ナログスイツチ28,30,31が導通状態にな
る。この間ゲート端子S2にはゲート信号は印加さ
れず、アナログスイツチ29,32は不導通状態
にある。アナログスイツチ32は、一次遅れ回路
20の入力側を開閉するもので、射出工程時に一
次遅れ回路の一次側へのリークを防止するための
ものである。
Next, the operation will be explained. During the speed control period of the injection process, a gate signal is applied to the gate terminal S1 , and the analog switches 28, 30, and 31 become conductive. During this time, no gate signal is applied to the gate terminal S2 , and the analog switches 29 and 32 are in a non-conducting state. The analog switch 32 opens and closes the input side of the first-order lag circuit 20, and is used to prevent leakage to the primary side of the first-order lag circuit during the injection process.

次に保圧工程の圧力制御期間に入ると、端子S1
のゲート信号が切れ、端子S2にゲート信号が印加
され、アナログスイツチ28,30,31は不導
通、アナログスイツチ29,32は導通状態にな
る。ゲート端子S3,S4は、ラム7が回転中や静止
状態などの場合に、その機能に応じて圧力制御弁
3を作動させるためのゲート信号を印加する端子
である。
Next, when entering the pressure control period of the pressure holding process, terminal S 1
The gate signal is turned off, the gate signal is applied to the terminal S2 , the analog switches 28, 30, and 31 are rendered nonconductive, and the analog switches 29 and 32 are rendered conductive. The gate terminals S 3 and S 4 are terminals that apply a gate signal to operate the pressure control valve 3 according to its function when the ram 7 is rotating or in a stationary state.

今油圧シリンダ5の油圧圧力は、射出高圧設定
器22で設定された値に圧力制御弁3に依つて開
ループで調節され、ラム7の射出速度は、射出速
度設定器11で設定された値にサーボ弁2によつ
て閉ループ制御されている射出工程中とする。こ
の時演算増巾器21の2つの比較入力端子には、
アナログスイツチ31が導通しているため圧力セ
ンサ18の出力に比例したフイードバツク信号が
印加されており、その時の圧力に相当した値に一
次遅れ回路は充電されている。
Now, the hydraulic pressure of the hydraulic cylinder 5 is adjusted in an open loop by the pressure control valve 3 to the value set by the injection high pressure setting device 22, and the injection speed of the ram 7 is adjusted to the value set by the injection speed setting device 11. It is assumed that the injection process is being controlled in a closed loop by the servo valve 2. At this time, the two comparison input terminals of the operational amplifier 21 are
Since the analog switch 31 is conductive, a feedback signal proportional to the output of the pressure sensor 18 is applied, and the first-order delay circuit is charged to a value corresponding to the pressure at that time.

次に保圧工程に入ると、ゲート信号S1
OFF、S2がONすることにより、アナログスイツ
チ28,30,31が不導通、アナログスイツチ
29,32が導通するため、演算増巾器21は保
圧圧力設定器19の設定値と、圧力センサ18か
らのフイードバツク値の偏差に依つて作動する。
この場合一次遅れ回路20は、切換前の圧力に相
当した値に充電されており、この値から保圧圧力
設定器で設定された値に移行する。
Next, when the pressure holding process begins, the gate signal S 1 is
When OFF and S2 are turned ON, the analog switches 28, 30, and 31 are disconnected and the analog switches 29 and 32 are conductive. It operates depending on the deviation of the feedback value from 18.
In this case, the primary delay circuit 20 is charged to a value corresponding to the pressure before switching, and the pressure shifts from this value to the value set by the holding pressure setting device.

以上詳細に説明した如く本考案は構成されてお
り、射出工程から保圧工程に切換わる場合、一次
遅れ回路は切換前の圧力に相当する値に圧力セン
サからのフイードバツク信号で充電されているた
め、その充電値から保圧圧力設定器の設定値に連
続して移行し、その結果ラムの油圧シリンダの油
圧圧力を急激に圧力降下させることなく、射出高
圧から保圧圧力に切換えることが出来る。
The present invention is configured as explained in detail above, and when switching from the injection process to the pressure holding process, the primary lag circuit is charged with the feedback signal from the pressure sensor to a value corresponding to the pressure before switching. , the charging value is continuously shifted to the setting value of the holding pressure setting device, and as a result, it is possible to switch from the injection high pressure to the holding pressure without causing a sudden pressure drop in the hydraulic pressure of the hydraulic cylinder of the ram.

第5図は射出工程から保圧工程に於ける油圧シ
リンダの油圧変化を示したものであ。第5図にお
いて曲線o′−a′−b′−c′−d′−e′−f′は、射出
工程
中の負荷油圧圧力の変化を示し、曲線f′−g′−
r′−s′は保圧圧力設定値の方が射出中の負荷圧力
f′より高い場合の、また曲線f′−g″−r″は低い場
合の保圧工程中の保圧圧力である。
FIG. 5 shows changes in the hydraulic pressure of the hydraulic cylinder from the injection process to the pressure holding process. In Fig. 5, the curve o'-a'-b'-c'-d'-e'-f' shows the change in the load hydraulic pressure during the injection process, and the curve f'-g'-
For r′−s′, the holding pressure setting value is the load pressure during injection.
The curve f'-g''-r'' is the packing pressure during the packing process when it is higher than f', and the curve f'-g''-r'' is lower than f'.

また切換り点A′−B′に於けるf′−g′,f′−g″の
曲線は、連続的に変化しており、本考案を用いな
い場合の第4図に示す切換り点A−Bに於けるf
−p−gの如き油圧シリンダの油圧が、一瞬急降
圧することを防止出来る。これは即ち、射出成形
機の射出中に降温冷却される成形品にとつて、特
に精密成形を行なう場合に於いて、成形品の寸
法、重量、表面仕上りに効果を有する。
In addition, the curves of f'-g' and f'-g'' at the switching point A'-B' change continuously, and the switching point shown in Fig. 4 when the present invention is not used. f in A-B
- It is possible to prevent the oil pressure of a hydraulic cylinder such as pg from dropping suddenly for a moment. This has an effect on the size, weight, and surface finish of a molded product whose temperature is lowered and cooled during injection by an injection molding machine, especially when precision molding is performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な射出成形機の油圧系統図、第
2図は従来の射出成形機の制御ブロツクダイヤグ
ラム、第3図は本考案の実施例を示す射出成形機
の制御ブロツクダイヤグラム、第4図は従来の射
出、保圧工程における時間と油圧との関係を示す
線図、第5図は本考案の射出、保圧工程における
時間と油圧との関係を示す線図である。 図の主要部分の説明、1……油圧ポンプ、2…
…サーボ弁、3……電磁式圧力制御弁、5……油
圧シリンダ、7……ラム、11……射出速度設定
器、12……速度センサ、13……一次遅れ回
路、15……演算増巾器、18……圧力センサ、
19……保圧圧力設定器、20……一次遅れ回
路、21……演算増巾器、28,29,30,3
1,32……アナログスイツチ。
Fig. 1 is a hydraulic system diagram of a general injection molding machine, Fig. 2 is a control block diagram of a conventional injection molding machine, Fig. 3 is a control block diagram of an injection molding machine showing an embodiment of the present invention, and Fig. 4 is a control block diagram of an injection molding machine showing an embodiment of the present invention. The figure is a diagram showing the relationship between time and oil pressure in the conventional injection and pressure holding process, and FIG. 5 is a diagram showing the relationship between time and oil pressure in the injection and pressure holding process of the present invention. Explanation of the main parts of the diagram, 1... Hydraulic pump, 2...
... Servo valve, 3 ... Solenoid pressure control valve, 5 ... Hydraulic cylinder, 7 ... Ram, 11 ... Injection speed setting device, 12 ... Speed sensor, 13 ... Primary delay circuit, 15 ... Calculation increase Wiper, 18...pressure sensor,
19... Holding pressure setting device, 20... Primary delay circuit, 21... Arithmetic amplifier, 28, 29, 30, 3
1, 32...Analog switch.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 一次遅れ回路を経て演算増巾器の入力側に接続
する保圧圧力設定器と、シリンダ油圧又は金型内
樹脂圧を検出する圧力センサの信号処理回路を入
力として比較演算される回路において、同圧力セ
ンサの信号処理出力回路と前記一次遅れ回路の
間、及び保圧圧力設定器と一次遅れ回路の間に
各々アナログスイツチを設け、同アナログスイツ
チを前者は射出工程中、後者は保圧工程中に導通
させることにより、前記一次遅れ回路を予め射出
工程中に圧力センサのフイードバツク信号に比例
した値に充電させ、射出工程から保圧工程に切換
えた時、所定の保圧圧力設定に連続して移行でき
ることを特徴とする射出成形機の制御装置。
The holding pressure setter, which is connected to the input side of the arithmetic amplifier through the first-order delay circuit, and the signal processing circuit of the pressure sensor that detects the cylinder oil pressure or the resin pressure in the mold are input, and the comparison calculation is performed in the same circuit. An analog switch is provided between the signal processing output circuit of the pressure sensor and the first-order delay circuit, and between the holding pressure setting device and the first-order delay circuit. By making the circuit conductive, the first-order delay circuit is charged in advance to a value proportional to the feedback signal of the pressure sensor during the injection process, and when the injection process is switched to the holding pressure process, the holding pressure is continuously maintained at the predetermined holding pressure setting. A control device for an injection molding machine characterized by being able to transfer.
JP14458081U 1981-09-29 1981-09-29 Injection molding machine control device Granted JPS5848418U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14458081U JPS5848418U (en) 1981-09-29 1981-09-29 Injection molding machine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14458081U JPS5848418U (en) 1981-09-29 1981-09-29 Injection molding machine control device

Publications (2)

Publication Number Publication Date
JPS5848418U JPS5848418U (en) 1983-04-01
JPS6237711Y2 true JPS6237711Y2 (en) 1987-09-26

Family

ID=29937539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14458081U Granted JPS5848418U (en) 1981-09-29 1981-09-29 Injection molding machine control device

Country Status (1)

Country Link
JP (1) JPS5848418U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661810B2 (en) * 1985-12-26 1994-08-17 日精樹脂工業株式会社 Control device for fluid pressure actuator

Also Published As

Publication number Publication date
JPS5848418U (en) 1983-04-01

Similar Documents

Publication Publication Date Title
JP2537089B2 (en) Automatic greasing method for injection molding machine
EP0422224B1 (en) Nozzle touch device for injection molding machine
JPS6323898B2 (en)
US5256345A (en) Injection control method for injection molder
EP1136226B1 (en) Method and apparatus for controlling injection molding machine capable of reducing variations in weight of molded products
JPS6237711Y2 (en)
JPS6365010B2 (en)
JPS62151315A (en) Controller of fluid pressure actuator
JPH0655599A (en) Controller for injection molding machine
JP2798170B2 (en) Die casting machine injection equipment
JPH0124055B2 (en)
JPH02120019A (en) Control method of injection molding machine and device
JPS6332607B2 (en)
JPH0622831B2 (en) Injection compression molding method
JPS6242818A (en) Injection-controlling device
JP2592111B2 (en) Hydraulic cylinder pressure control device
JP2786440B2 (en) Control method of mold clamping pressure
SU804494A1 (en) Device for controlling the process of moulding plastic articles
JPH0639884A (en) Injection molding machine
JPS60242025A (en) Control of injection molding
CA1180056A (en) Electrical control circuits for flash welders
JPS62170318A (en) Injection molding device
JPS6410327B2 (en)
SU865671A1 (en) Method of automatic control of volumetric doze of melt at pressure-moulding of plastic articles
JPH0516197A (en) Method for controlling injection of injection molding machine