JPS63102917A - Injection controlling apparatus - Google Patents

Injection controlling apparatus

Info

Publication number
JPS63102917A
JPS63102917A JP24856686A JP24856686A JPS63102917A JP S63102917 A JPS63102917 A JP S63102917A JP 24856686 A JP24856686 A JP 24856686A JP 24856686 A JP24856686 A JP 24856686A JP S63102917 A JPS63102917 A JP S63102917A
Authority
JP
Japan
Prior art keywords
mold
displacement
injection
screw
parting surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24856686A
Other languages
Japanese (ja)
Other versions
JPH0615190B2 (en
Inventor
Hideo Kuroda
英夫 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP24856686A priority Critical patent/JPH0615190B2/en
Publication of JPS63102917A publication Critical patent/JPS63102917A/en
Publication of JPH0615190B2 publication Critical patent/JPH0615190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/80Measuring, controlling or regulating of relative position of mould parts

Abstract

PURPOSE:To mold a molding without burrs with automatic measuring, by controlling the displacement of the parting face of a mold and the plasticizing measuring position of a screw by means of a specific sensor set on the mold. CONSTITUTION:A detecting device 8 with a displacement sensor is set on a mold 7 to detect the displacement 8 of parting faces of molds 6 and 7. deltaD is a displacement of the parting face in a state where no clamping force is applied just after the molds 6 and 7 are closed. By clamping the mold (a), the displacement of the parting face decreases and reaches the min. value deltaE. Then, a resin pressure in a molding cavity 20 acts to open the molds 6 and 7 in the injection filling period (f) and the displacement of the parting face thereby begins to increase and reaches a displacement deltaC. At this point, it is switched to the injection dwelling period (h), where a servo valve 38 is worked to make the displacement of the parting face to be constant value deltaS and an injection is controlled. The parting face does not thereby open and no burr occurs.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は射出成形機のスクリュ計量位置を自動法めする
射出制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an injection control device that automatically adjusts the screw metering position of an injection molding machine.

(従来の技術) 第7図は従来の射出成形機とその制御回路図の概要を示
す。
(Prior Art) FIG. 7 shows an outline of a conventional injection molding machine and its control circuit diagram.

第7図において、1は型締シリンダ、2は同シリンダ内
の型締ラム、3は型締シリンダ1と固定型盤5を連結す
るタイバー、4は前記タイバー3により前後進可能に支
持されるとともに、前記型締ラム2に連結された可動型
盤である。
In FIG. 7, 1 is a mold clamping cylinder, 2 is a mold clamping ram inside the cylinder, 3 is a tie bar connecting the mold clamping cylinder 1 and the fixed mold platen 5, and 4 is supported by the tie bar 3 so as to be movable back and forth. It is also a movable mold board connected to the mold clamping ram 2.

6は可動型盤4に取付けられた可動側金型、107は固
定型盤5に取付けられた固定側金型、20は成形品キャ
ビティである。
6 is a movable mold attached to the movable mold platen 4, 107 is a fixed mold attached to the fixed mold platen 5, and 20 is a molded product cavity.

また、油圧流入源90から切換弁91を経て、圧力油を
油圧モータ18に送ることにより、油圧モータ18に連
結するスクリュ14を回転させる。そして原料樹脂は、
図示しないホッパからシリンダ13内のスクリュ14の
図面右側部に供給され、図示しないヒータによる加熱と
、油圧モータ18で駆動されるスクリュ14の回転によ
り溶融可塑化され、スクリュ14の前方へ送られて溶融
樹脂12として貯えられる。
Further, by sending pressure oil from the hydraulic pressure inflow source 90 to the hydraulic motor 18 via the switching valve 91, the screw 14 connected to the hydraulic motor 18 is rotated. And the raw resin is
It is supplied from a hopper (not shown) to the right side of the screw 14 in the cylinder 13 in the figure, and is melted and plasticized by heating by a heater (not shown) and rotation of the screw 14 driven by a hydraulic motor 18, and then sent to the front of the screw 14. It is stored as molten resin 12.

一方、油圧流入源34からサーボ弁38を経て、圧力油
を射出シリンダの図示の側へ送ることにより、射出ラム
16、軸受箱17を介してスクリュ14を図面の左方へ
前進させ、同スクリュ14の先端の溶融樹脂12を成形
品キャビティ20へ射出する。なお、図中130はコン
トローラ、19は位置センサ、31.32は油圧センサ
、33は型締シリンダ1の油圧流入源、35.37はリ
リーフ弁、36は切換弁である。
On the other hand, by sending pressure oil from the hydraulic inflow source 34 through the servo valve 38 to the illustrated side of the injection cylinder, the screw 14 is advanced to the left in the drawing via the injection ram 16 and the bearing box 17, and the screw The molten resin 12 at the tip of 14 is injected into the molded product cavity 20. In the figure, 130 is a controller, 19 is a position sensor, 31.32 is an oil pressure sensor, 33 is an oil pressure inflow source for the mold clamping cylinder 1, 35.37 is a relief valve, and 36 is a switching valve.

スクリュ14の前方に貯えられる溶融樹脂12の量は、
成形品キャビティ20を満たすと同時に、同キャビティ
20内の溶融樹脂が冷却収縮する分を補うのに必要かつ
十分でなければならない。
The amount of molten resin 12 stored in front of the screw 14 is
It must be necessary and sufficient to fill the molded product cavity 20 and at the same time compensate for the cooling shrinkage of the molten resin within the cavity 20.

同溶融樹脂12の量が不足すると、ショートショットや
ヒケが生じ成形不良になる。また、その量が多すぎると
、成形品キャビティ20内に過充填されてパリが生じる
If the amount of the molten resin 12 is insufficient, short shots and sink marks may occur, resulting in poor molding. Moreover, if the amount is too large, the molded product cavity 20 will be overfilled, causing cracks.

溶融樹脂12の量は、スクリュ14の回転による溶融可
塑化を停止させるスクリュ位置、すなわち計量位置を運
転者が設定し、位置センサ19によるスクリュ位置検出
値が上記設定値に達した時、切換弁91を中立位置に戻
して油圧モータ18への圧力油を断ち、可塑化を止める
ことにより決まる。しかるに、上記計量位置の設定は試
行錯誤により行わざるをえないので、適切な設定値を決
めるまでに時間がかかったり、溶融樹脂12の量が多す
ぎてパリが生じ、金型を損傷したりする。このため、計
量位置の設定は運転者が神経を使わざるを得ない煩わし
い作業であった。
The amount of the molten resin 12 is determined by the operator setting the screw position at which melting and plasticization by rotation of the screw 14 is stopped, that is, the metering position, and when the screw position detected by the position sensor 19 reaches the set value, the switching valve is activated. 91 to the neutral position to cut off the pressure oil to the hydraulic motor 18 and stop plasticization. However, since the measurement position has to be set by trial and error, it may take time to determine the appropriate setting value, or the amount of molten resin 12 may be too large, causing flakes and damaging the mold. do. Therefore, setting the weighing position is a troublesome task that requires the driver to use his/her nerves.

(発明が解決しようとする問題点) つまり、従来方法によればスクリュ回転による溶融可塑
化の計量位置を運転者が試行錯誤で設定しければならな
いため、上記計量位置の適正化に手間がかかったり、或
は計量を多くしすぎて成形パリを生じ金型を損傷したり
するという問題点があった。
(Problem to be Solved by the Invention) In other words, according to the conventional method, the operator has to set the measuring position for melting and plasticizing by trial and error, which takes time and effort to optimize the measuring position. Alternatively, there is a problem in that too much metering may result in formation of molding chips and damage to the mold.

本発明は、かかる問題点を解決させて、成形パリを生ず
ることなく、溶融可塑化の計量位置を自動的に適正化す
る射出制御装置を提供しようとするものである。
The present invention aims to solve these problems and provide an injection control device that automatically optimizes the melting and plasticizing metering position without causing molding flash.

(問題点を解決するための手段) このため、本発明は金型のパーティング面に設けられ型
閉時のパーティング面変位を検出する検出手段と、同検
出手段により検出された値と目標値を比較して射出時に
おける金型パーティング面変位を目標値制御する制御手
段を有するとともに、スクリュのストローク位置検出手
段と、同検出手段により検出される射出時の最前進スク
リュ位置が一定目標値とずれた分だけスクリュ計量位置
を補正する補正手段とを有することを特徴とする射出側
′a装置を構成とし、これをもって上記問題点の解決手
段とするものである。
(Means for Solving the Problems) Therefore, the present invention provides a detection means provided on the parting surface of a mold to detect the displacement of the parting surface when the mold is closed, and a value detected by the detection means and a target value. It has a control means that compares the values and controls the displacement of the mold parting surface during injection to a target value, and also has a screw stroke position detection means, and the most advanced screw position during injection detected by the detection means is a constant target. The injection side 'a device is characterized in that it has a correction means for correcting the screw metering position by the amount of deviation from the value, and this is used as a means for solving the above-mentioned problem.

更に詳しくは、本発明では金型が閉じた直後の低型締力
における金型パーティング面変位を基準点として記憶さ
せ、射出時において金型パーティング面変位が上記基準
点までは戻らないように射出制御するとともに、同時に
射出時の最前進スクリュ位置が一定目標値とずれた分だ
けスクリュ計量位置を自動的に補正しようとするもので
ある。
More specifically, in the present invention, the displacement of the mold parting surface at low mold clamping force immediately after the mold is closed is stored as a reference point, and the displacement of the mold parting surface is prevented from returning to the reference point during injection. At the same time, the screw metering position is automatically corrected by the amount that the most advanced screw position during injection deviates from a fixed target value.

(作用) このように、金型が閉じた直後の低型締力における金型
パーティング面変位を基準点とし、金型パーティング面
変位が基準点まで戻らないよう射出制御しているので、
射出中にも金型パーティング面が開くような惧れかない
(Function) In this way, the mold parting surface displacement at low mold clamping force immediately after the mold is closed is used as the reference point, and injection control is performed so that the mold parting surface displacement does not return to the reference point.
There is no risk that the mold parting surface will open during injection.

他方、最前進スクリュ位置が一定目標値とずれた分だけ
スクリュ計量位置を自動的に補正しているので、lショ
ット毎に最前進スクリュ位置が一定目標値に近づけられ
計量位置を適正化する。
On the other hand, since the screw metering position is automatically corrected by the amount that the most advanced screw position deviates from the constant target value, the most advanced screw position is brought closer to the constant target value every shot, thereby optimizing the metering position.

(実施例) 以下、本発明が適用された代表的な実施例につき図面に
従って詳述する。
(Example) Hereinafter, typical examples to which the present invention is applied will be described in detail with reference to the drawings.

第1図〜第6図に本発明の実施例を示す。第1図は射出
成形機とその制御回路の概要を、第2図は本発明の主要
構成要素であるパーティング面変位検出装置が組込まれ
た部分の拡大断面図を、第3図はコントローラのパーテ
ィング面変位制御の主要回路を、第4図はパーティング
面変位の変化グラフを、第5図はコントローラのスクリ
ュ計量位置補正の制御回路を、第6図はスクリュ計量位
置補正のフローチャートを示す。
Embodiments of the present invention are shown in FIGS. 1 to 6. Fig. 1 shows an overview of the injection molding machine and its control circuit, Fig. 2 shows an enlarged sectional view of the part in which the parting surface displacement detection device, which is the main component of the present invention, is incorporated, and Fig. 3 shows the controller. Figure 4 shows the main circuit for parting surface displacement control, Figure 4 shows a change graph of parting surface displacement, Figure 5 shows the control circuit for controller screw metering position correction, and Figure 6 shows a flowchart for screw metering position correction. .

第1図において金型7、後述するパーティング面変位検
出装置8、同じく後述するリード線21a及びコントロ
ーラ30の各部分以外は、前記第7図に示した従来装置
と同一であるので、この同一部分についてはその説明を
省略する。
In FIG. 1, the parts other than the mold 7, the parting surface displacement detection device 8, which will be described later, the lead wire 21a, which will also be described later, and the controller 30 are the same as the conventional device shown in FIG. The explanation of the parts will be omitted.

次に本発明の主要部である第1図においてAで示す部分
について詳細に説明すると、Aで示す部分の詳細は第2
図に示してあり、6pは可動側金型6のパーティング面
、7pは固定側金型7のパーティング面、21は変位セ
ンサで、取付はスリーブ22に嵌め込まれている。取付
はスリーブ22はその外周が大径部と小径部に肩部22
aを介して分けられ、一端小径部側を固定側金型7に固
定され、その他端大径部側には取付はスリーブ22の抜
は防止のためにゴムバッド23が貼付けられており、図
のように金型が閉じた状態では、ゴムバッド23が少し
圧縮されるような寸法関係となっている。
Next, the main part of the present invention, which is indicated by A in FIG. 1, will be explained in detail.
As shown in the figure, 6p is a parting surface of the movable mold 6, 7p is a parting surface of the stationary mold 7, and 21 is a displacement sensor, which is fitted into a sleeve 22. For installation, the sleeve 22 has shoulders 22 on its outer periphery at the large diameter part and the small diameter part.
The small diameter side of one end is fixed to the stationary mold 7, and the other end has a rubber pad 23 attached to the large diameter side to prevent the sleeve 22 from coming off. The dimensions are such that the rubber pad 23 is slightly compressed when the mold is closed.

また、24は止めねじで、変位センサ21が取付はスリ
ーブ22から抜けないようにするためのものである。2
1aは変位センサ21のリード線で、金型の外部へ導か
れ、第1図に示したコントローラ30へつながっている
。取付はスリーブ22は、例えば固定側金型7に圧入さ
れており、取付はスリーブ22の肩部22aが金型7に
しっかりと密着している。しかし、使用中にこの肩部2
2aの密着がゆるむと、ギャップ測定の誤差となるので
、これを防止するため金型が閉鎖される時、常に取付は
スリーブ22はゴムバッド23で前記肩部22a側に押
圧されるようになっている。
Further, 24 is a set screw, which is used to prevent the displacement sensor 21 from coming off from the sleeve 22. 2
1a is a lead wire of the displacement sensor 21, which is guided to the outside of the mold and connected to the controller 30 shown in FIG. For installation, the sleeve 22 is press-fitted into, for example, the stationary mold 7, and the shoulder 22a of the sleeve 22 is firmly attached to the mold 7. However, during use, this shoulder 2
If the tightness of the sleeve 2a loosens, it will cause an error in the gap measurement, so to prevent this, when the mold is closed, the sleeve 22 is always mounted so that it is pressed against the shoulder 22a side by the rubber pad 23. There is.

第3図において、31は第1図に示すものと同じ油圧セ
ンサ、21は第2図に示すものと同じ変位センサである
。50は射出充填から射出保圧へ切換える型締油圧p、
の設定器、51は射出保圧の目標値を与える型締油圧p
3の設定器である。
In FIG. 3, 31 is the same oil pressure sensor as shown in FIG. 1, and 21 is the same displacement sensor as shown in FIG. 50 is mold clamping oil pressure p for switching from injection filling to injection holding pressure;
51 is the mold clamping oil pressure p which gives the target value of the injection holding pressure.
This is the setting device for number 3.

40と41は増幅器である。70は信号線で型締油圧が
射出保圧への切換設定値以上(pkpc)にある時、比
較器55より信号出力(ON)される。
40 and 41 are amplifiers. Reference numeral 70 denotes a signal line which is output as a signal (ON) by the comparator 55 when the mold clamping oil pressure is equal to or higher than the switching setting value for injection holding pressure (pkpc).

60は記憶器で、信号線70からの信号がOFFからO
Nに切換ねった時の信号線65からのパーティング面変
位人力δを記憶し、その時の値δCを信号線75に出力
する。このδ。の値は80からリセット信号が入力され
るとOにクリアされる。
60 is a memory device in which the signal from the signal line 70 changes from OFF to OFF.
The parting surface displacement manual force δ from the signal line 65 when the switch is not switched to N is stored, and the value δC at that time is output to the signal line 75. This δ. The value is cleared from 80 to 0 when a reset signal is input.

同様に、71は信号線で型締油圧が射出保圧の目標値以
上である(p≧1)り時、比較器56より信号出力(O
N)され、そのとき記憶器61は信号線66からのパー
ティング面変位人力δを記憶し、その値δ、を信号線7
6に出力し、81からリセット信号が入力されない間は
δ、の値を保持する。なお、80と81からのリセット
信号は、射出成形の毎サイクルスタート時(型閉開始時
)に入力される。また、信号線42からはパーティング
面変位δが常時出力される。
Similarly, 71 is a signal line which outputs a signal (O
N), at that time, the memory 61 stores the parting surface displacement manual force δ from the signal line 66, and transmits the value δ, to the signal line 7.
6, and holds the value of δ while no reset signal is input from 81. Note that the reset signals from 80 and 81 are input at the start of every cycle of injection molding (at the start of mold closing). Further, the parting surface displacement δ is always outputted from the signal line 42.

他方、第5図において、19は第1図に示すものと同じ
位置センサで、軸受箱17と一体となって前後進するス
クリュ14の位置を検出する。82は増幅器で、その出
力Xはスクリュ位置であり、信号線83を通じてマイク
ロコンピュータ88へ信号入力される。また、同マイク
ロコンピュータ88には、信号線84から射出中はON
信号が、その他の動作中はOFF信号が入力され、別な
信号線85からはスクリュ回転による可塑化中はON信
号が、その他の動作中はOFF信号が入力される。信号
線86へは、第6図のフローチャートに従い可塑化の計
量完了時にON信号が、その他の動作中はOFF信号が
出力される。
On the other hand, in FIG. 5, numeral 19 is the same position sensor as shown in FIG. 1, and detects the position of the screw 14, which moves back and forth integrally with the bearing box 17. Reference numeral 82 denotes an amplifier, whose output X is the screw position, and the signal is inputted to the microcomputer 88 through a signal line 83. The microcomputer 88 also has a signal line 84 that is ON during injection.
During other operations, an OFF signal is input, and from another signal line 85, an ON signal is input during plasticization by screw rotation, and an OFF signal is input during other operations. According to the flowchart in FIG. 6, an ON signal is output to the signal line 86 when the plasticization measurement is completed, and an OFF signal is output during other operations.

第6図において、xoは最前進スクリュ位置の目標値で
、最初に一定値aを与えておく。XFは可塑化時の最後
退スクリュ位置、すなわち計量位置の目標値で、最初に
成形機仕様としてのスクリュストローク最大値または任
意の値をbとして与えておく。同図のフローに示すよう
に、毎回の射出の最前進スクリュ位置をX、とし、△X
=Xo−x、を計算し、X、+△Xを新たなx、とする
In FIG. 6, xo is the target value for the most advanced screw position, and is initially given a constant value a. XF is the target value of the most retracted screw position during plasticization, that is, the metering position, and first, the maximum screw stroke value as the molding machine specifications or an arbitrary value is given as b. As shown in the flowchart of the same figure, let the most advanced screw position of each injection be X, and △X
=Xo−x, and set X and +ΔX as new x.

次に前記実施例について作用を説明すると、第1図にお
いて、切換弁36は油圧流入源33からの圧力油を型締
めシリンダ1の型閉め側(図の左側)又は型開は側(図
の右側)へ切換えて供給する。即ち、ソレノイドaを励
磁させると、油圧流入源33からの圧力油は型締めシリ
ンダ1の左側へ流れ、型締めラム2、従ってそれに連結
している可動型盤4及び可動側金型6を右方へ動かし、
型閉め動作を行なう。逆にソレノイドbを励磁させると
、油圧流入源33からの圧力油は型締めシリンダ1の右
側へ流れ、型締めラム2、可動型盤4、可動側金型6を
左方へ動かし、型開は動作を行なう。またソレノイドa
、 bいずれも励磁されない中立位置では、型締め側、
型開は側双方の油ともタンクへ開放されている。
Next, to explain the operation of the above embodiment, in FIG. 1, the switching valve 36 directs the pressure oil from the hydraulic inflow source 33 to the mold closing side (left side in the figure) or the mold opening side (left side in the figure) of the mold clamping cylinder 1. right side) and supply it. That is, when the solenoid a is energized, the pressure oil from the hydraulic inflow source 33 flows to the left side of the mold clamping cylinder 1, causing the mold clamping ram 2, and therefore the movable mold platen 4 and the movable mold 6 connected thereto, to the right side. move towards
Perform mold closing action. Conversely, when solenoid b is energized, pressure oil from the hydraulic inflow source 33 flows to the right side of the mold clamping cylinder 1, moves the mold clamping ram 2, movable mold platen 4, and movable mold 6 to the left, and opens the mold. performs an action. Also, solenoid a
, b In the neutral position where neither is excited, the mold closing side,
When the mold is opened, both sides of the oil are opened to the tank.

前述のようにソレノイドaを励磁させて型閉め動作を行
なうと、金型が閉じた後、型締め圧はリリーフ弁35の
設定圧まで上昇して保持される。また、射出動作は型締
め圧が十分上昇してから行なわれる。
When the mold closing operation is performed by energizing the solenoid a as described above, after the mold is closed, the mold clamping pressure rises to the set pressure of the relief valve 35 and is maintained. Further, the injection operation is performed after the mold clamping pressure has increased sufficiently.

次に射出動作を説明すると、油圧流入源34からサーボ
弁38を経て圧力油を射出シリンダ15の図示の側へ送
ることにより、射出ラム16、軸受箱17を介してスク
リュ14を図の左側へ前進させ、同スクリュ14の先端
の溶融樹脂12を成形品キャビティ20へ射出する。な
お、リリーフ弁37は油圧が上がり過ぎた時、リリーフ
させる安全弁である。
Next, explaining the injection operation, by sending pressure oil from the hydraulic inflow source 34 through the servo valve 38 to the illustrated side of the injection cylinder 15, the screw 14 is moved to the left side of the figure via the injection ram 16 and bearing box 17. The screw is moved forward, and the molten resin 12 at the tip of the screw 14 is injected into the molded product cavity 20. Note that the relief valve 37 is a safety valve that provides relief when the oil pressure increases too much.

またパーティング面変位検出装置8は、第2図における
隙間δを検出するものである。即ち、第2図において、
変位センサ21は隙間δに比例した出力(電圧又は電流
)を、リード線21aを通して発生させる。さて第1図
において、パーティング面変位検出装置8により検出さ
れた変位(第2図の隙間δ)は、コントローラ30へ送
られ、コントローラ30では第3図の回路により第4図
に示すような射出制御を行なう。
Further, the parting surface displacement detecting device 8 detects the gap δ in FIG. 2. That is, in Figure 2,
The displacement sensor 21 generates an output (voltage or current) proportional to the gap δ through the lead wire 21a. Now, in FIG. 1, the displacement detected by the parting surface displacement detection device 8 (gap δ in FIG. 2) is sent to the controller 30, and the controller 30 uses the circuit shown in FIG. Performs injection control.

第4図において、型締油圧とパーティング面変位のグラ
フは時間軸が共通で、両グラフで同一アルファベット記
号にそれぞれ添字して1.2を付した点が同一時点を表
わす。同図でδDは各金型6,7が閉じた直後で、型締
力が作用しない状態のパーティング面変位である。また
型締昇圧区間aでは、パーティング面受圧力増加に伴う
金型の圧縮変形のため、第2図の隙間δで表わされるパ
ーティング面変位は減少し、最小値δ、に達する。
In FIG. 4, the graphs of mold clamping oil pressure and parting surface displacement have a common time axis, and in both graphs, the same alphabetical symbol with a suffix of 1.2 represents the same point in time. In the same figure, δD is the parting surface displacement immediately after each of the molds 6 and 7 is closed, and when no clamping force is applied. Further, in the mold clamping pressurization section a, the parting surface displacement represented by the gap δ in FIG. 2 decreases and reaches the minimum value δ, due to compressive deformation of the mold due to the increase in the parting surface bearing pressure.

続いて射出充填区間fにおいて、成形品キャビティ20
の樹脂圧力が金型を開く向きに作用するため、前記圧縮
変形が減少し、従ってパーティング面変位が増え始め、
変位δ。に達する0点で射出保圧区間りへ切換わる。区
間りでは、パーティング面変位がδ、(一定値)を保つ
よう第1図のサーボ弁38で射出シリンダ16に作用す
る油圧を制御する。
Subsequently, in the injection filling section f, the molded product cavity 20
Since the resin pressure acts in the direction of opening the mold, the compressive deformation decreases and the parting surface displacement begins to increase.
displacement δ. At the 0 point, which is reached, the process switches to the injection and holding pressure section. In the section, the hydraulic pressure acting on the injection cylinder 16 is controlled by the servo valve 38 in FIG. 1 so that the parting surface displacement is maintained at δ (a constant value).

前記のδ。とδ、が初期変位δゎより小さい場合は、パ
ーティング面が開いていないから、パリは発生しない。
The above δ. If and δ are smaller than the initial displacement δゎ, the parting surface is not open and no paris occurs.

逆にδ。またはδSがδDより大きくなると、パーティ
ング面が開くので、キャビティ20内の溶融樹脂がパー
ティング面に流れ出てパリとなるおそれがある。従って
、δ0〈δ。でかつδ、〈δ、となるように設定しなけ
ればならない。
On the contrary, δ. Alternatively, if δS becomes larger than δD, the parting surface will open, and there is a risk that the molten resin in the cavity 20 will flow out onto the parting surface and become flaky. Therefore, δ0<δ. It must be set so that δ and <δ.

第3図の回路により、第4図の射出保圧切換の型締油圧
pcと、射出保圧区間の目標値としての型締油圧p、が
設定され、型締昇圧区間aにおいて型締油圧pが1)c
とp、にそれぞれ到達した時(点C,,C2と点St、
S2がそれぞれ対応)、その時のパーティング面変位が
それぞれδ。とδ、として記憶される。
By the circuit shown in FIG. 3, the mold clamping oil pressure pc for injection holding pressure switching shown in FIG. 1) c
and p, respectively (point C,, C2 and point St,
S2 corresponds to each), and the parting surface displacement at that time is δ, respectively. and δ.

次に射出充填区間fにおいて、パーティング面変位δが
δ。に到達した時(点Cが対応)、射出保圧区間りに切
換わる。射出保圧区間りにおいては、前述のようにパー
ティング面変位δがδ、(一定値)を保つよう射出油圧
回路により制御する。
Next, in the injection filling section f, the parting surface displacement δ is δ. When it reaches (corresponds to point C), it switches to the injection holding pressure section. During the injection pressure holding period, the injection hydraulic circuit controls the parting surface displacement δ to maintain it at δ (constant value) as described above.

すなわち、δゎと63を設定する代りにpcとp、を設
定し、pcからδ、を、psからδ。
That is, instead of setting δゎ and 63, set pc and p, and δ from pc and δ from ps.

をそれぞれ自動的に求めるようにしたものである。are automatically calculated.

最大型締油圧p□は、図示しない設定器で設定されて値
が分っているので、必ずQ<p、、<pE、かつO<p
s 〈1)Eとなるようにp、とp、を設定できる。従
って、δE〈δ、〈δDで、かつδ、〈δ、くδ。とな
る。δ。、δ。
The maximum mold clamping pressure p□ is set with a setting device (not shown) and the value is known, so it is sure that Q<p, , <pE, and O<p
p and p can be set so that s<1)E. Therefore, δE〈δ,〈δD, and δ,〈δ,kuδ. becomes. δ. , δ.

は共にδ、より小さいので、パーティング面は開かずパ
リが発生しない。
are both smaller than δ, so the parting surface does not open and no paris occurs.

他方、第5図、第6図に示す計量補正回路において、毎
ショットのたびにスクリュ最前進位置の目標値x0と実
際値X、の差へXを演算し、△Xだけスクリュ可塑化の
計量位置Xrを補正するので、スクリュ最前進位置は目
標値x0に近づき、スクリュ可塑化の計量が適正化され
る。
On the other hand, in the measurement correction circuit shown in Figs. 5 and 6, the difference between the target value x0 and the actual value Since the position Xr is corrected, the screw most advanced position approaches the target value x0, and the screw plasticization metering is optimized.

(発明の効果) 以上、詳細に説明した如く本発明によれば、射出時にパ
ーティング面が開かないようにパーティング面変位を制
御するのでパリが発生せず、他方毎ショットのたびにス
クリュ最前進位置の目標値と実際値との差を補正するよ
うスクリュ可塑化の計量位置を変更するので、作業者が
何らスクリュ可塑化の計量位置を設定しなくても、パリ
を出すことなく安全・確実に計量を適正化できる。すな
わち、面倒なスクリュ可塑化の計量位置の設定・調整作
業が不要になる。
(Effects of the Invention) As described above in detail, according to the present invention, the displacement of the parting surface is controlled so that the parting surface does not open during injection, so no paris occurs, and on the other hand, the screw is adjusted at every shot. Since the measuring position of the screw plasticizer is changed to compensate for the difference between the target value and the actual value of the forward position, the operator does not have to set the measuring position of the screw plasticizer at all, and it is possible to safely and without causing damage. Weighing can be reliably optimized. That is, the troublesome work of setting and adjusting the measuring position for screw plasticization becomes unnecessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す射出成形機とその制御回
路の概要図、第2図は第1図のA部拡大図、第3図は本
発明に適用されるコントローラのパーティング面変位制
御の主要回路図、第4図は型締油圧とパーティング面変
位の経時的な変化を示すグラフ、第5図は本発明のコン
トローラのスクリュ計量位置補正の制御回路図、第6図
はスクリュ計量位置補正のフローチャート、第7図は従
来の射出成形機とその制御回路の概要図である。 図の主要部分の説明 6、’l−−・金型 8−・−パーティング面変位検出装置 14−・・スクリュ 19− スクリュ位置センサ
Fig. 1 is a schematic diagram of an injection molding machine and its control circuit showing an embodiment of the present invention, Fig. 2 is an enlarged view of part A in Fig. 1, and Fig. 3 is a parting surface of a controller applied to the present invention. The main circuit diagram for displacement control, Fig. 4 is a graph showing changes over time in mold clamping oil pressure and parting surface displacement, Fig. 5 is a control circuit diagram for screw metering position correction of the controller of the present invention, and Fig. 6 is a graph showing changes over time in mold clamping oil pressure and parting surface displacement. FIG. 7 is a flowchart of screw metering position correction, and is a schematic diagram of a conventional injection molding machine and its control circuit. Explanation of main parts of the figure 6, 'l--Mold 8--Parting surface displacement detection device 14--Screw 19- Screw position sensor

Claims (1)

【特許請求の範囲】[Claims] 金型のパーティング面に設けられ型閉時のパーティング
面変位を検出する検出手段と、同検出手段により検出さ
れた値と目標値を比較して射出時における金型パーティ
ング面変位を目標値制御する制御手段を有するとともに
、スクリュのストローク位置検出手段と、同検出手段に
より検出される射出時の最前進スクリュ位置が一定目標
値とずれた分だけスクリュ計量位置を補正する補正手段
とを有することを特徴とする射出制御装置。
A detection means is provided on the parting surface of the mold to detect the displacement of the parting surface when the mold is closed, and a value detected by the detection means is compared with a target value to target the displacement of the mold parting surface during injection. It has a control means for value control, a screw stroke position detection means, and a correction means for correcting the screw metering position by the amount that the most advanced screw position at the time of injection detected by the detection means deviates from a constant target value. An injection control device comprising:
JP24856686A 1986-10-20 1986-10-20 Injection controller Expired - Fee Related JPH0615190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24856686A JPH0615190B2 (en) 1986-10-20 1986-10-20 Injection controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24856686A JPH0615190B2 (en) 1986-10-20 1986-10-20 Injection controller

Publications (2)

Publication Number Publication Date
JPS63102917A true JPS63102917A (en) 1988-05-07
JPH0615190B2 JPH0615190B2 (en) 1994-03-02

Family

ID=17180047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24856686A Expired - Fee Related JPH0615190B2 (en) 1986-10-20 1986-10-20 Injection controller

Country Status (1)

Country Link
JP (1) JPH0615190B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844391A (en) * 1996-03-26 1998-12-01 Sumitomo Heavy Industries, Ltd. Device for controlling the clamping force of a motor-driven injection molding machine
EP0884157A1 (en) * 1997-06-09 1998-12-16 Sumitomo Heavy Industries, Ltd. Mold clamping control device for motor-driven injection molding machine
WO2017111594A1 (en) * 2015-12-23 2017-06-29 Besi Netherlands B.V. Press, actuator set and method for encapsulating electronic components with at least two individual controllable actuators

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5844391A (en) * 1996-03-26 1998-12-01 Sumitomo Heavy Industries, Ltd. Device for controlling the clamping force of a motor-driven injection molding machine
EP0884157A1 (en) * 1997-06-09 1998-12-16 Sumitomo Heavy Industries, Ltd. Mold clamping control device for motor-driven injection molding machine
WO2017111594A1 (en) * 2015-12-23 2017-06-29 Besi Netherlands B.V. Press, actuator set and method for encapsulating electronic components with at least two individual controllable actuators
NL2016011B1 (en) * 2015-12-23 2017-07-03 Besi Netherlands Bv Press, actuator set and method for encapsulating electronic components with at least two individual controllable actuators.
KR20180098545A (en) * 2015-12-23 2018-09-04 베시 네덜란드 비.브이. A press, an actuator set, and a method for sealing an electronic component using at least two separate controllable actuators
US11217463B2 (en) 2015-12-23 2022-01-04 Besi Netherlands B.V. Press, actuator set and method for encapsulating electronic components with at least two individual controllable actuators
US11842909B2 (en) 2015-12-23 2023-12-12 Besi Netherlands B.V. Press, actuator set and method for encapsulating electronic components with at least two individual controllable actuators

Also Published As

Publication number Publication date
JPH0615190B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
EP0422224B1 (en) Nozzle touch device for injection molding machine
JP4087860B2 (en) Control method of injection molding machine
JPS63102917A (en) Injection controlling apparatus
JPH0522563B2 (en)
JP2769648B2 (en) Injection molding machine
JPH0622831B2 (en) Injection compression molding method
JPH053813B2 (en)
JP3525210B2 (en) Injection control method for injection molding machine
JPH0534135B2 (en)
JP3808989B2 (en) Control method of servo mechanism at the start of pressure holding process
JPH10156902A (en) Injection molding machine, resin injection pressure controlling method, and resin injecting method
JPH0628254Y2 (en) Injection molding equipment
JPH089189B2 (en) Method and apparatus for controlling injection process of injection molding machine
JPH04263917A (en) Measuring method of back-flow rate in injection molding machine
JPH0563289B2 (en)
JPH0152170B2 (en)
JPH03234610A (en) Injection molding machine connected to expert system
JPH0366140B2 (en)
JPH054893B2 (en)
JP3197961B2 (en) Hydraulic control of injection molding machine
JP4086171B2 (en) Screw for injection molding machine and positioning method thereof
JP3233608B2 (en) Injection molding machine
JP3193141B2 (en) Injection molding method and injection molding equipment
JP2557210Y2 (en) Injection molding equipment
JP2828801B2 (en) Injection molding machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees