JPS6242768A - Method for irradiating electron beam - Google Patents

Method for irradiating electron beam

Info

Publication number
JPS6242768A
JPS6242768A JP18239685A JP18239685A JPS6242768A JP S6242768 A JPS6242768 A JP S6242768A JP 18239685 A JP18239685 A JP 18239685A JP 18239685 A JP18239685 A JP 18239685A JP S6242768 A JPS6242768 A JP S6242768A
Authority
JP
Japan
Prior art keywords
electron beam
inert gas
irradiated
film
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18239685A
Other languages
Japanese (ja)
Inventor
Takeshi Nakamura
健 中村
Takeshi Kaminan
上南 武司
Nobuyuki Motoyama
信之 本山
Sadao Fujii
藤井 貞雄
Yoshinori Sakamoto
坂本 良憲
Koji Nakai
康二 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISSHIN HAIBORUTEEJI KK
Dynic Corp
Original Assignee
NISSHIN HAIBORUTEEJI KK
Dynic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISSHIN HAIBORUTEEJI KK, Dynic Corp filed Critical NISSHIN HAIBORUTEEJI KK
Priority to JP18239685A priority Critical patent/JPS6242768A/en
Publication of JPS6242768A publication Critical patent/JPS6242768A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE:To reduce the consumption of inert gas by firstly irradiating a part of the absorbed dose necessary for a material to be irradiated in an inert gas atmosphere and then irradiating the balance absorbed dose in air. CONSTITUTION:With respect to a method for irradiating an electron beam on the material to be irradiated and curing a coated film, the inert gas is firstly supplied into an irradiation chamber 2 from a gas supply port 3 to form the inert gas atmosphere, then a film 5 is rewound from a rewinding device 11, a resin is coated on the surface by a coater 10, an electron beam E which is a part of the necessary absorbed dose is irradiated from an electron beam irradiating device 1 to precure the coated film and the penetration of oxygen into the coated film is made difficult. The film 5 is wound by a winding device 12, the pressure in the irradiation chamber 2 is made positive, air is charged, the film is again set on the rewinding device 11 and the balance dose is irradiated from the electron beam irradiating device 1. Consequently, the consumption of the inert gas can be remarkably reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、被照射物に電子線を照射して例えば塗膜の
硬化等を行う電子線照射方法に関し、特にその際の不活
性ガスの消費量低減方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electron beam irradiation method for irradiating an object with an electron beam to cure, for example, a coating film, and particularly relates to an electron beam irradiation method for curing a coating film, etc. Concerning consumption reduction methods.

〔従来の技術〕[Conventional technology]

被照射物に電子線を照射する場合、従来から窒素ガス等
の不活性ガス雰囲気中で照射する方法が採られている。
When an object to be irradiated is irradiated with an electron beam, a conventional method has been adopted in which the irradiation is performed in an atmosphere of an inert gas such as nitrogen gas.

これを、以下においては電子線照射による塗膜の硬化(
ギュアリング)を例に説明する。
In the following, the hardening of the coating film by electron beam irradiation (
This will be explained using the case of Guaring as an example.

電子線照射による塗膜の硬化においては、塗膜はラジカ
ル重合により硬化するけれども、その際の照射雰囲気中
に酸素があると、ラジカルが酸素によって消費されて重
合ができなくなるという現象が生じる。そこで照射雰囲
気中の酸素濃度を下げる(例えば数百PPM以下にする
)ために、窒素ガス等の不活性ガスを照射室に充満させ
、不活性ガス雰囲気中で電子線照射を行っている。
When a coating film is cured by electron beam irradiation, the coating film is cured by radical polymerization, but if oxygen is present in the irradiation atmosphere at that time, a phenomenon occurs in which the radicals are consumed by oxygen and polymerization becomes impossible. Therefore, in order to lower the oxygen concentration in the irradiation atmosphere (for example, to several hundred ppm or less), the irradiation chamber is filled with an inert gas such as nitrogen gas, and electron beam irradiation is performed in the inert gas atmosphere.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

電子線による塗膜の硬化に際しては、塗膜の樹脂の種類
等によって違いはあるけれども、通常IM rad〜十
数M rad程度の線量(吸収線量)の電子線を照射す
る必要がある。従来はこの&’[を一度にまたは複数回
に分けて照射しているけれども、いずれも不活性ガス雰
囲気中で照射しており、その際の不活性ガス量としては
、通常数十Nm3/hr程度も必要であり、そのため大
量の不活性ガスを消費するという問題があった。
When curing a coating film with an electron beam, it is usually necessary to irradiate the electron beam at a dose (absorbed dose) of about IM rad to a dozen or more M rad, although this varies depending on the type of resin in the coating film. Conventionally, this &'[ is irradiated at once or in multiple steps, but in both cases the irradiation is done in an inert gas atmosphere, and the amount of inert gas at that time is usually several tens of Nm3/hr. The problem is that a large amount of inert gas is consumed.

そこでこの発明は、不活性ガスの消費量を低減させるこ
とができる電子線照射方法を提供することを目的とする
Therefore, an object of the present invention is to provide an electron beam irradiation method that can reduce the amount of inert gas consumed.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の電子線照射方法は、まず被照射物の所要吸収
線量の一部にあたる線量を不活性ガス雰囲気中で一度に
または複数回に分けて照射し、次いで残りの8a量を空
気中で一度にまたは複数回に分けて照射することを特徴
とする。
The electron beam irradiation method of this invention first irradiates a part of the required absorbed dose of the object to be irradiated at once or in multiple doses in an inert gas atmosphere, and then irradiates the remaining 8a amount once in air. It is characterized by being irradiated in two or more times.

〔作用〕[Effect]

初めの不活性ガス雰囲気中での電子線照射によって、酸
素が被照射物中に浸透しに(くなる。従って残りの線量
を空気中で照射しても支障はな(、しかもそれによって
不活性ガスの消費量が低減される。
The initial electron beam irradiation in an inert gas atmosphere causes oxygen to penetrate into the irradiated object.Therefore, there is no problem even if the remaining dose is irradiated in air (and it also causes the inert gas to be irradiated). Gas consumption is reduced.

〔実施例〕〔Example〕

第1図は、この発明に係る電子線照射方法を実施する装
置の一例を示す概略図である。この装置は、フィルム5
を巻き出す巻出し装置11、当該フィルム5の表面に塗
膜を塗るコータ10.ローラ7等を有していてフィルム
5を搬送するコンベアライン6、フィルム5を巻き取る
巻取り装置12、コンヘアライン6の途中に設けられて
いてガス供給口3から例えば窒素ガス等の不活性ガスが
供給される照射室2および塗膜の塗られたフィルム(被
照射物)5に電子線Eを照射する電子線照射装置1等か
ら成る。なお8はX線しゃへい板である。
FIG. 1 is a schematic diagram showing an example of an apparatus for implementing the electron beam irradiation method according to the present invention. This device uses film 5
an unwinding device 11 for unwinding the film, and a coater 10 for applying a coating film to the surface of the film 5. A conveyor line 6 that has rollers 7 and the like and conveys the film 5, a winding device 12 that winds up the film 5, and an inert gas such as nitrogen gas that is provided in the middle of the conveyor line 6 and is supplied with an inert gas such as nitrogen gas from a gas supply port 3. It consists of an irradiation chamber 2 in which the electron beam is supplied, an electron beam irradiation device 1 that irradiates the coated film (irradiation object) 5 with an electron beam E, and the like. Note that 8 is an X-ray shielding plate.

電子線照射に際しては、まず不活性ガス雰囲気中で所要
吸収線量の一部にあたる線量だけを照射する。即ち、照
射室2内にガス供給口3から不活性ガスを供給してそこ
を不活性ガス雰囲気にする。
During electron beam irradiation, first, only a portion of the required absorbed dose is irradiated in an inert gas atmosphere. That is, an inert gas is supplied into the irradiation chamber 2 from the gas supply port 3 to create an inert gas atmosphere therein.

そして巻出し装置11からフィルム5を巻き出してコー
タ10においてその表面に樹脂(塗膜)を塗り、照射室
2において不活性ガス雰囲気中で、当該フィルム5に対
して所要吸収線量の一部にあたる線量の電子線Eを電子
線照射装置lから照射して塗膜を予備硬化(プレキュア
)させる。これによって、酸素が塗膜中に浸透しににく
(なる。
Then, the film 5 is unwound from the unwinding device 11, a resin (coating film) is applied to the surface of the film in the coater 10, and the film is exposed to a part of the required absorbed dose for the film 5 in an inert gas atmosphere in the irradiation chamber 2. A dose of electron beam E is irradiated from an electron beam irradiation device 1 to precure the coating film. This makes it difficult for oxygen to penetrate into the coating film.

そして当該フィルム5を巻取り装置12で巻ぎ取る。な
お上記の場合、照射室2内を正圧にして、コンベアライ
ン6の搬出入口から不活性ガスが少しずつ外部へ漏れ出
るようにすることによりて、外部から照射室2内に空気
が流入するのを防ぐようにするのが好ましい。
Then, the film 5 is wound up by the winding device 12. In the above case, air flows into the irradiation chamber 2 from the outside by creating a positive pressure inside the irradiation chamber 2 and allowing the inert gas to leak out little by little from the inlet/outlet of the conveyor line 6. It is preferable to prevent

次に、空気中で残りの線量を照射する。即ち、この例で
は巻取り装置12で巻き取ったフィルム5を再び巻出し
装置11にセットし、コータ10を通さないでコンベア
ライン6に供給し、照射室2において残りの線量の電子
線Eを電子線照射装置1から照射し、そして巻取り装置
12で巻き取る。その際、照射室2にガス供給口3から
不活性ガスを供給することはせず、照射室2内の雰囲気
を空気のままとする。これは、前回の照射で酸素が塗膜
中に浸透しにくくされているからであり、その後空気中
において照射しても塗膜の硬化に同等支障はない。しか
もこの方法によれば不活性ガスの消費量が大幅に低減さ
れる。
The remaining dose is then delivered in air. That is, in this example, the film 5 wound up by the winding device 12 is set again in the unwinding device 11, is supplied to the conveyor line 6 without passing through the coater 10, and the remaining dose of the electron beam E is emitted in the irradiation chamber 2. The electron beam is irradiated by an electron beam irradiation device 1, and then wound up by a winding device 12. At this time, no inert gas is supplied to the irradiation chamber 2 from the gas supply port 3, and the atmosphere inside the irradiation chamber 2 is left as air. This is because the previous irradiation has made it difficult for oxygen to penetrate into the coating film, and subsequent irradiation in the air will not cause the same problem in curing the coating film. Furthermore, this method significantly reduces the amount of inert gas consumed.

第2図は、この発明に係る電子線照射方法を実施する装
置の他の例を示す概略図である。第1図との相違点を説
明すると、この装置においては、コンヘアライン6の途
中に2つの照射室2a、2bおよび2台の電子線照射装
置1a、1bを設けており、照射室2a側にのみガス供
給口3から不活性ガスを供給するようにしている。即ち
樹脂が塗られたフィルム5には、まず、照射室2aにお
いて不活性ガス雰囲気中で所要吸収線量の一部にあたる
線量の電子線Eが電子線照射装置1aから照射され、次
いで、照射室2bにおいて空気中で残りの′ifA量の
電子線Eが電子線照射装置1bから照射される。そして
当該フィルム5は巻取り装置12に巻き取られて製品と
なる。なお13は、照射室2aと2bとを仕切る仕切り
板であるが、コンベアライン6を仕切り板13の部分で
左右に分離しても良い。また、この実施例では、照射室
2bに照射室2a側から不活性ガスが流入するが、この
場合前記照射室2bは、その雰囲気を例えば酸素濃度5
00ppm以下に管理する必要はなく、したがって、照
射室2bに不活性ガス供給口を設置する必要はない。
FIG. 2 is a schematic diagram showing another example of an apparatus for implementing the electron beam irradiation method according to the present invention. To explain the difference from FIG. 1, in this device, two irradiation chambers 2a, 2b and two electron beam irradiation devices 1a, 1b are provided in the middle of the conhair line 6, and the irradiation chamber 2a side is provided with two irradiation chambers 2a, 2b and two electron beam irradiation devices 1a, 1b. Only the inert gas is supplied from the gas supply port 3. That is, the film 5 coated with resin is first irradiated with an electron beam E in an inert gas atmosphere in the irradiation chamber 2a from the electron beam irradiation device 1a at a dose corresponding to a part of the required absorbed dose, and then in the irradiation chamber 2b. The remaining amount of electron beam E is irradiated in air from the electron beam irradiation device 1b. The film 5 is then wound up by a winding device 12 to become a product. Note that 13 is a partition plate that partitions the irradiation chambers 2a and 2b, but the conveyor line 6 may be separated into left and right sides at the partition plate 13. Further, in this embodiment, an inert gas flows into the irradiation chamber 2b from the irradiation chamber 2a side, but in this case, the irradiation chamber 2b has an atmosphere with an oxygen concentration of 5.
There is no need to control the amount to 00 ppm or less, and therefore there is no need to install an inert gas supply port in the irradiation chamber 2b.

上記装置においては、第1図の装置と違って)ィルム5
を巻出し装置11に再セットすることなく、連続して上
述のようないわゆる分割照射を行うことができる。従っ
て生産性が非常に良い。
In the above apparatus, unlike the apparatus shown in FIG.
The so-called divided irradiation described above can be performed continuously without resetting the irradiation device to the unwinding device 11. Therefore, productivity is very good.

次にこの発明のより具体的な実施例と従来方法による比
較例とを表に示す。表は、所要吸収線量を2回に分けて
照射した時の例で、ウレタンアクリレート系樹脂の塗膜
に電子線照射して完全に硬化された塗膜を作るのに、■
3Mradを一度に窒素雰囲気中で照射したとき(比較
例1)、■1゜5Mradずつ2回に分けて窒素雰囲気
中で照射したとき(比較例2)、および■初めの1.5
Mradは窒素雰囲気中で、2回目の1.5Mradは
空気中で照射したとき(実施例)の、硬化された塗膜の
特性を示す。
Next, more specific examples of the present invention and comparative examples based on conventional methods are shown in the table. The table shows an example when the required absorbed dose is irradiated in two steps.
When 3 Mrad was irradiated at once in a nitrogen atmosphere (Comparative Example 1), ■ When irradiated in a nitrogen atmosphere in two 1° 5 Mrad doses (Comparative Example 2), and ■ The first 1.5
Mrad indicates the characteristics of the cured coating film when irradiated in a nitrogen atmosphere and 1.5 Mrad for the second time in air (Example).

(以下余白) 表から分かるように、分割照射をした方が引張り強度が
高く、強靭な膜が得られた(比較例2、実施例)。特に
実施例においても、1回目に窒素雰囲気中で照射してプ
レキュアすることによって酸素が塗膜中に浸透しにくく
されているので、2回目を空気中で照射しても良好な硬
化が行われた。
(The following is a margin.) As can be seen from the table, the tensile strength was higher and a tougher film was obtained by split irradiation (Comparative Example 2, Example). In particular, in the examples, the first irradiation is carried out in a nitrogen atmosphere to pre-cure, making it difficult for oxygen to penetrate into the coating film, so even if the second irradiation is carried out in air, good curing is achieved. Ta.

しかも実施例においては、比較例2に比べて1時間あた
り約50m3の窒素ガスが節約できた。即ち、上記実施
例のように分けて電子線照射することにより、不活性ガ
スの消費量を節約することができるだけでなく、塗膜の
樹脂によっては一度に不活性ガス雰囲気中で照射するよ
り優れた特性の塗膜が得られることが分かった。
Moreover, in the example, compared to comparative example 2, about 50 m3 of nitrogen gas could be saved per hour. In other words, by irradiating the electron beam in parts as in the above example, not only can the consumption of inert gas be saved, but depending on the resin of the coating film, it may be better to irradiate the electron beam at once in an inert gas atmosphere. It was found that a coating film with similar characteristics could be obtained.

最後に、上記においては不活性ガス雰囲気中における照
射と空気中における照射とをそれぞれ1回ずつ行う場合
を例に説明したけれども、それぞれを、あるいはいずれ
かを複数回に分けて照射しても良い。また上記において
は塗膜の硬化を例に説明したけれども、この発明はそれ
以外に、不活性ガス雰囲気中での電子線照射による被照
射物の加工、例えば各種プラスチックスの改質、ゴムの
架橋等に広く適用できることは勿論である。またその場
合の被照射物の形状は、上記のようなフィルム状のもの
に限らず、例えば板状等の他の形状のものでも良い。
Finally, although the above explanation is based on the case where irradiation is performed once in an inert gas atmosphere and once in air, each or either of them may be irradiated multiple times. . Furthermore, although the above description has been made using the example of curing a paint film, this invention is also applicable to other applications, such as processing of objects to be irradiated by electron beam irradiation in an inert gas atmosphere, such as modification of various plastics, cross-linking of rubber, etc. Of course, it can be widely applied to In addition, the shape of the object to be irradiated in this case is not limited to the film shape as described above, but may be other shapes such as a plate shape.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、不活性ガスの消費量を
低減させることができる。
As described above, according to the present invention, the amount of inert gas consumed can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に係る電子線照射方法を実権する装
置の一例を示す概略図である。第2図は、この発明に係
る電子線照射方法を実施する装置の池の例を示す概略図
である。 1、la、  1b−−−電子線照射装置、2.2a。
FIG. 1 is a schematic diagram showing an example of an apparatus for implementing the electron beam irradiation method according to the present invention. FIG. 2 is a schematic diagram showing an example of an apparatus for carrying out the electron beam irradiation method according to the present invention. 1, la, 1b---Electron beam irradiation device, 2.2a.

Claims (1)

【特許請求の範囲】[Claims] (1)被照射物に電子線を照射するにあたり、まず被照
射物の所要吸収線量の一部にあたる線量を不活性ガス雰
囲気中で一度にまたは複数回に分けて照射し、次いで残
りの線量を空気中で一度にまたは複数回に分けて照射す
ることを特徴とする電子線照射方法。
(1) When irradiating an irradiated object with an electron beam, first irradiate a portion of the required absorbed dose of the irradiated object at once or in multiple doses in an inert gas atmosphere, and then irradiate the remaining dose. An electron beam irradiation method characterized by irradiation in air at once or in multiple steps.
JP18239685A 1985-08-20 1985-08-20 Method for irradiating electron beam Pending JPS6242768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18239685A JPS6242768A (en) 1985-08-20 1985-08-20 Method for irradiating electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18239685A JPS6242768A (en) 1985-08-20 1985-08-20 Method for irradiating electron beam

Publications (1)

Publication Number Publication Date
JPS6242768A true JPS6242768A (en) 1987-02-24

Family

ID=16117579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18239685A Pending JPS6242768A (en) 1985-08-20 1985-08-20 Method for irradiating electron beam

Country Status (1)

Country Link
JP (1) JPS6242768A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193848A (en) * 1988-01-29 1989-08-03 Konica Corp Device for forming protective layer of id card
JPH01193849A (en) * 1988-01-29 1989-08-03 Konica Corp Ultraviolet irradiation mechanism and device for forming protective layer of id card having said ultraviolet irradiation mechanism
JP2006119097A (en) * 2004-10-25 2006-05-11 Matsushita Electric Works Ltd Electron beam irradiation equipment and ion generator
JP2009512543A (en) * 2005-10-20 2009-03-26 シュトゥルム マシーネンバウ ゲーエムベーハー Plant and method for radiation curing of workpiece coatings under protective gas
JP4819803B2 (en) * 2004-06-24 2011-11-24 ビーエーエスエフ ソシエタス・ヨーロピア Apparatus and method for curing with high energy radiation under an inert gas atmosphere

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722277A (en) * 1980-07-17 1982-02-05 Dainippon Printing Co Ltd Method and device for producing hologram
JPS5864166A (en) * 1981-10-12 1983-04-16 Nippon Parkerizing Co Ltd Formation of coating film
JPS5959270A (en) * 1982-09-29 1984-04-05 ア−ムストロング・ワ−ルド・インダストリ−ス・インコ−ポレ−テツド Precise control of surface texture of ultraviolet ray curab-le substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722277A (en) * 1980-07-17 1982-02-05 Dainippon Printing Co Ltd Method and device for producing hologram
JPS5864166A (en) * 1981-10-12 1983-04-16 Nippon Parkerizing Co Ltd Formation of coating film
JPS5959270A (en) * 1982-09-29 1984-04-05 ア−ムストロング・ワ−ルド・インダストリ−ス・インコ−ポレ−テツド Precise control of surface texture of ultraviolet ray curab-le substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193848A (en) * 1988-01-29 1989-08-03 Konica Corp Device for forming protective layer of id card
JPH01193849A (en) * 1988-01-29 1989-08-03 Konica Corp Ultraviolet irradiation mechanism and device for forming protective layer of id card having said ultraviolet irradiation mechanism
JP4819803B2 (en) * 2004-06-24 2011-11-24 ビーエーエスエフ ソシエタス・ヨーロピア Apparatus and method for curing with high energy radiation under an inert gas atmosphere
JP2006119097A (en) * 2004-10-25 2006-05-11 Matsushita Electric Works Ltd Electron beam irradiation equipment and ion generator
JP2009512543A (en) * 2005-10-20 2009-03-26 シュトゥルム マシーネンバウ ゲーエムベーハー Plant and method for radiation curing of workpiece coatings under protective gas

Similar Documents

Publication Publication Date Title
US4143468A (en) Inert atmosphere chamber
US4119743A (en) Method for manufacture of laminates which are useful as packaging materials
US3850675A (en) Use of ultraviolet light to cure uncured surface layer resulting from air inhibition in preceding high energy ionizing radiation curing process
US3111424A (en) Process of coating irradiated polymer substrates
US4536271A (en) Method of plasma treating a polymer film to change its properties
EP0036557B1 (en) Method and apparatus for the cross-linking of synthetic lacquers applied to substrates
JP2016135885A (en) Cross linking membrane surfaces
JPS6242768A (en) Method for irradiating electron beam
EP0121942B1 (en) Method of forming multilayer coated film
JP2013523997A5 (en)
US3770490A (en) Method of making and coating with high solids cured acrylic syrups
EP0147061B1 (en) Process for curing radiation curable coating media
PT578957E (en) PROCESS FOR THE APPLICATION OF A DECORATIVE LAYER IN A SUPPORTING MATERIAL
GB1519493A (en) Process and apparatus for the curing of coatings on sensitive substrates by electron irradiation
US6527897B1 (en) Method and device for producing segmented contact adhesive layers and for applying the same on a substrate
JPS5651345A (en) Formation of cured rubber film
US8048522B2 (en) Pressure-sensitive adhesive materials and sealing materials with a three-dimensional structure, as well as processes for their production
JPS5898303A (en) Curing of photocurable resin composition
JP3298178B2 (en) Manufacturing method of laminate
JPH03203643A (en) Decorative material and preparation thereof
JP4419042B2 (en) Active energy ray irradiation device
JPH0776330B2 (en) Adhesive tape or sheet manufacturing method
SU887024A1 (en) Apparatus for polymerizing paint coatings
JP2002249345A (en) Method for manufacturing optical fiber
JPS60257875A (en) Painted material and its preparation