JPS6242655B2 - - Google Patents

Info

Publication number
JPS6242655B2
JPS6242655B2 JP8168779A JP8168779A JPS6242655B2 JP S6242655 B2 JPS6242655 B2 JP S6242655B2 JP 8168779 A JP8168779 A JP 8168779A JP 8168779 A JP8168779 A JP 8168779A JP S6242655 B2 JPS6242655 B2 JP S6242655B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
group
lewis acid
antimony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8168779A
Other languages
Japanese (ja)
Other versions
JPS565139A (en
Inventor
Yoshiki Nakayama
Koji Yamanashi
Chihiro Yazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ihara Chemical Industry Co Ltd
Original Assignee
Ihara Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihara Chemical Industry Co Ltd filed Critical Ihara Chemical Industry Co Ltd
Priority to JP8168779A priority Critical patent/JPS565139A/en
Priority to US06/152,817 priority patent/US4289916A/en
Priority to NL8003404A priority patent/NL191313C/en
Priority to CA354,382A priority patent/CA1123861A/en
Priority to DE19803023437 priority patent/DE3023437A1/en
Priority to BE0/201150A priority patent/BE883975A/en
Priority to FR8014123A priority patent/FR2460281A1/en
Priority to IT8023087A priority patent/IT1131397B/en
Priority to CH4983/80A priority patent/CH648817A5/en
Priority to GB8021112A priority patent/GB2054571B/en
Priority to NO801934A priority patent/NO152897C/en
Publication of JPS565139A publication Critical patent/JPS565139A/en
Publication of JPS6242655B2 publication Critical patent/JPS6242655B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
    • C07C17/12Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms in the ring of aromatic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、アルキルベンゼンのp位に対する選
択性のすぐれた核塩素化用触媒に関するものであ
る。 アルキルベンゼンの核塩素化化合物は、医薬、
農薬をはじめ各種有機合成化学の原料として有用
であるが、特にp−クロロ−アルキルベンゼン、
例えばp−クロロトルエンの需要量が多い。 しかるに、従来、一般に行なわれている核塩素
化反応である塩化アンチモン、塩化第二鉄、塩化
アルミニウムなどのルイス酸を触媒として塩素ガ
スで塩素化する方法においては、o−クロロアル
キルベンゼンが主として生成し、さらにm−クロ
ロ体、多塩素置換体なども副生し、40%以上の収
率でp−クロロアルキルベンゼンを製造すること
はできなかつた。 そこで、p−クロロアルキルベンゼンを収率よ
く製造するために、種々の触媒が開発された。 例えば、ルイス酸と硫黄又はセレンを触媒とし
て用いる方法においてはp−クロロ体が45〜52%
の収率で得られ、ルイス酸とチアンスレンを触媒
として用いる方法においてはp−クロロ体が55〜
60%の収率で得られた(特開昭52−19630号公
報)。 このルイス酸とチアンスレンを触媒として用い
る方法は、p−位に対する選択性は非常にすぐれ
ているということができるが、このチアンスレン
化合物は、水分が存在すると酸化されて5・5−
ジオキシチアンスレン類を経て、ジフエニルスル
フイド類となり繰り返し使用すると触媒活性が低
下してくること及び側鎖のアルキル基がクロル化
したものが副生することなどの問題があつた。 本発明者らは、p−位に対する選択性にすぐ
れ、かつ、チアンスレン化合物がもつ問題点のな
い触媒を開発すべく鋭意研究を重ねた結果、ルイ
ス酸とフエノキサチン化合物を触媒として用いる
とp−位に対する選択性がすぐれているうえにフ
エノキサチン化合物は水分が存在して酸化されて
も10−オキシフエノキサチンで止り、繰り返し使
用しても触媒活性が低下せず、さらに側鎖アルキ
ル基の塩素化が起らないことを見いだし、この知
見に基づいて本発明をなすに至つた。 すなわち、本発明は、(A)ルイス酸及び(B)一般式 (式中のX1、X2、X3及びX4はそれぞれ同一又は相
異なる水素原子、電子吸引性基又は電子供与性基
を示す) で表わされるフエノキサチン化合物又はその混合
物からなるアルキルベンゼンの核塩素化用触媒を
提供するものである。 本発明において、ルイス酸は通常の意味のルイ
ス酸ばかりでなく、核塩素化反応中にルイス酸を
形成するか、あるいはルイス酸としての機能をな
す金属又は化合物などを含むものであつて、例え
ばアンチモン、鉄、スズ、鉛、アルミニウム、モ
リブデン、テルルなどの金属、これらのハロゲン
化物、酸化物、硫化物、カルボニル化合物などが
あげられ、特に好ましい例としては、三塩化アン
チモン、五塩化アンチモン、塩化アルミニウム、
三フツ化アンチモン、塩化第一鉄、塩化第二鉄、
オキシ塩化アンチモン、三酸化アンチモン、四酸
化アンチモン、五酸アンチモン、四塩化テルル、
酸化第二鉄、硫化鉛、硫化第一鉄、二硫化鉄、モ
リブデンヘキサカルボニル、鉄ペンタカルボニル
などがあげられる。 また、一般式()で表わされるフエノキサチ
ン化合物において、X1、X2、X3及びX4は水素原
子、電子吸引性基又は電子供与性基であつて、こ
れらはおのおの同一であつても相異なつていても
よい。ここで、電子吸引性基としては、塩素原
子、臭素原子、フツ素原子のようなハロゲン原
子、アセチル基のようなアルカノイル基、ベンゾ
イル基のようなアロイル基、ニトロ基、スルホニ
ル基、シアノ基、トリフルオロメチル基などをあ
げることができ、電子供与性基としては、アルキ
ル基、アルコキシ基などをあげることができる。
このようなフエノキサチン化合物は単独で用いて
も混合して用いてもよい。このフエノキサチン化
合物としては、ハロゲンの置換度2.0以上のもの
が特に好適であるが、それよりも置換度が低いも
のであつても、ハロゲン化反応に用いられている
間にハロゲンにより核置換が進行し、最終的に置
換度2.0以上になるので十分に使用可能である。 本発明において、ルイス酸とフエノキサチン化
合物はモル比で0.1〜10:1、好ましくは0.25〜
4:1の割合で用いられる。 本発明の触媒を用いてアルキルベンゼンの核温
素化を行うには、ルイス酸とフエノキサチン化合
物の総量でアルキルベンゼンの量の0.001〜5.0重
量%、好ましくは0.01〜1.0重量%の割合で触媒
を存在させ、反応混合物の沸点以下の温度で塩素
ガスを導入する。温度があまり高い場合には多塩
素化物の生成量が多くなり、p−クロロ体の収率
が減り好ましくない。一方、マイナス数10℃以下
の低温でも反応は進行し、p−クロロ体の選択率
は高くなるが、反応速度が遅くなり経済的でない
ので、通常は0〜80℃の温度で、工業的には20〜
70℃の温度で行うのが適切である。塩素ガスの圧
力は、常圧、加圧、減圧いずれでもよいが、通常
は常圧下で反応させる。 本発明の触媒を用いて核塩素化されるアルキル
ベンゼンとしては、各種の直鎖及び分岐鎖アルキ
ルでモノ置換されたベンゼンをあげることができ
るが、特にアルキル基の炭素数が1〜4のものが
好ましい。 本発明の触媒を用いれば、アルキルベンゼンの
o−位の塩素化を抑制してp−位に効率よく塩素
化することができ、かつm−クロロ体及び多塩素
化物の生成はきわめて少ない。また、本発明の触
媒は繰り返し使用しても活性の低下がなく耐久性
にすぐれ、トルエンなどのアルキルベンゼンのp
−クロロ体を工業的に製造するのに適しており、
その工業的価値は高いものである。 次に実施例により本発明をさらに詳細に説明す
る。 実施例 1 かきまぜ機、温度計、ガス吹込み管、還流コン
デンサーを付した1−四つ口フラスコ中に、ク
メン480g、三塩化アンチモン2g及びフエノキ
サチン2gをとり、かきまぜながら、ウオーター
バスで約50℃に加温し、温度が一定になつた後、
塩素ガスを300ml/minの速度で導入し、ウオー
ターバスで反応温度を50〜55℃に保持する。塩素
ガスを5時間導入して反応を停止し、反応液をガ
スクロマトグラフ法で分析した結果、生成モノク
ロロクメンの組成は、2−クロロクメン/4−ク
ロロクメン比(o/p)=0.57であつた。 実施例 2 クメンの代りに、エチルベンゼン424gを用い
た以外は、実施例1と同じ条件で反応を行つた。
ガスクロマトグラフ法で分析した結果、反応液組
成は、2−クロロエチルベンゼン/4−クロロエ
チルベンゼン比(o/p)=0.68であつた。 実施例 3 クメンの代りにトルエンを用い、触媒の種類及
び添加量を変えること以外は実施例1と全く同様
の条件下でハロゲン化を行つた。 このようにして得られた生成物中の2−クロロ
トルエン/4−クロロトルエン比(o/p)を第
1表に示す。
The present invention relates to a catalyst for nuclear chlorination that has excellent selectivity for the p-position of alkylbenzene. Nuclear chlorinated compounds of alkylbenzenes are used in pharmaceuticals,
It is useful as a raw material for various organic synthetic chemicals including agricultural chemicals, but in particular p-chloro-alkylbenzene,
For example, there is a large demand for p-chlorotoluene. However, in the conventional nuclear chlorination reaction, in which chlorine is chlorinated with chlorine gas using a Lewis acid such as antimony chloride, ferric chloride, or aluminum chloride as a catalyst, o-chloroalkylbenzene is mainly produced. Furthermore, m-chloro derivatives, polychlorinated derivatives, etc. were also produced as by-products, making it impossible to produce p-chloroalkylbenzene with a yield of 40% or higher. Therefore, various catalysts have been developed to produce p-chloroalkylbenzene in good yield. For example, in a method using Lewis acid and sulfur or selenium as a catalyst, p-chloro form accounts for 45-52%.
In the method using a Lewis acid and thianthrene as a catalyst, the p-chloro form is obtained with a yield of 55 to
It was obtained with a yield of 60% (Japanese Unexamined Patent Publication No. 19630/1983). This method using a Lewis acid and thianthrene as a catalyst can be said to have very good selectivity toward the p-position, but this thianthrene compound is oxidized in the presence of water, resulting in 5.5-
After converting into dioxythianthrenes, they turn into diphenyl sulfides, which causes problems such as a decrease in catalytic activity when used repeatedly and the production of chlorinated side chain alkyl groups as by-products. The present inventors have conducted intensive research to develop a catalyst that has excellent selectivity for the p-position and does not have the problems of thianthrene compounds. As a result, we have found that when a Lewis acid and a phenoxatine compound are used as a catalyst, the p-position In addition to its excellent selectivity to It was discovered that this does not occur, and based on this finding, the present invention was accomplished. That is, the present invention provides (A) a Lewis acid and (B) a general formula (In the formula, X 1 , X 2 , X 3 and X 4 each represent the same or different hydrogen atom, electron-withdrawing group or electron-donating group) The present invention provides a catalyst for chemical conversion. In the present invention, the Lewis acid includes not only a Lewis acid in the usual sense but also a metal or a compound that forms a Lewis acid during a nuclear chlorination reaction or functions as a Lewis acid, for example. Examples include metals such as antimony, iron, tin, lead, aluminum, molybdenum, and tellurium, and their halides, oxides, sulfides, and carbonyl compounds. Particularly preferred examples include antimony trichloride, antimony pentachloride, and antimony chloride. aluminum,
antimony trifluoride, ferrous chloride, ferric chloride,
Antimony oxychloride, antimony trioxide, antimony tetroxide, antimony pentate, tellurium tetrachloride,
Examples include ferric oxide, lead sulfide, ferrous sulfide, iron disulfide, molybdenum hexacarbonyl, and iron pentacarbonyl. Furthermore, in the phenoxatine compound represented by the general formula (), X 1 , X 2 , X 3 and They can be different. Here, the electron-withdrawing group includes a halogen atom such as a chlorine atom, a bromine atom, and a fluorine atom, an alkanoyl group such as an acetyl group, an aroyl group such as a benzoyl group, a nitro group, a sulfonyl group, a cyano group, Examples of the electron donating group include a trifluoromethyl group, and examples of the electron donating group include an alkyl group and an alkoxy group.
Such phenoxatin compounds may be used alone or in combination. As this phenoxatin compound, those having a degree of halogen substitution of 2.0 or more are particularly suitable, but even if the degree of substitution is lower than that, nuclear substitution will proceed due to the halogen while being used in the halogenation reaction. However, the final degree of substitution is 2.0 or higher, so it is fully usable. In the present invention, the Lewis acid and the phenoxatin compound have a molar ratio of 0.1 to 10:1, preferably 0.25 to 10:1.
A ratio of 4:1 is used. In order to carry out the core temperature hydrogenation of alkylbenzene using the catalyst of the present invention, the catalyst is present in a proportion of 0.001 to 5.0% by weight, preferably 0.01 to 1.0% by weight of the amount of alkylbenzene, based on the total amount of Lewis acid and phenoxatin compound, and the reaction is performed. Chlorine gas is introduced at a temperature below the boiling point of the mixture. If the temperature is too high, the amount of polychlorinated products produced increases and the yield of p-chloro compound decreases, which is not preferable. On the other hand, the reaction proceeds even at a low temperature of minus several tens of degrees Celsius or lower, and the selectivity for the p-chloro compound is high, but the reaction rate is slow and uneconomical, so it is usually carried out at a temperature of 0 to 80 degrees Celsius. is 20~
A temperature of 70°C is suitable. The pressure of the chlorine gas may be normal pressure, increased pressure, or reduced pressure, but the reaction is usually carried out under normal pressure. Examples of alkylbenzenes to be nuclear chlorinated using the catalyst of the present invention include benzenes monosubstituted with various straight-chain and branched-chain alkyls, especially those with an alkyl group having 1 to 4 carbon atoms. preferable. By using the catalyst of the present invention, it is possible to suppress the chlorination of the o-position of alkylbenzene and efficiently chlorinate the p-position, and the production of m-chloro and polychlorinated products is extremely small. In addition, the catalyst of the present invention does not lose its activity even after repeated use and has excellent durability, and is suitable for the production of alkylbenzenes such as toluene.
- Suitable for industrial production of chloroforms,
Its industrial value is high. Next, the present invention will be explained in more detail with reference to Examples. Example 1 480 g of cumene, 2 g of antimony trichloride, and 2 g of phenoxatin were placed in a 1-4 neck flask equipped with a stirrer, thermometer, gas blowing tube, and reflux condenser, and heated to about 50°C in a water bath while stirring. After heating to a constant temperature,
Chlorine gas is introduced at a rate of 300 ml/min, and the reaction temperature is maintained at 50-55°C with a water bath. The reaction was stopped by introducing chlorine gas for 5 hours, and the reaction solution was analyzed by gas chromatography. As a result, the composition of the monochlorocumene produced was 2-chlorocumene/4-chlorocumene ratio (o/p) = 0.57. Example 2 A reaction was carried out under the same conditions as in Example 1, except that 424 g of ethylbenzene was used instead of cumene.
As a result of analysis by gas chromatography, the composition of the reaction solution was 2-chloroethylbenzene/4-chloroethylbenzene ratio (o/p) = 0.68. Example 3 Halogenation was carried out under exactly the same conditions as in Example 1, except that toluene was used instead of cumene and the type and amount of catalyst added were changed. The 2-chlorotoluene/4-chlorotoluene ratio (o/p) in the product thus obtained is shown in Table 1.

【表】【table】

【表】 実施例 4 触媒の繰返しの効果を明らかにするため三塩化
アンチモン0.10g、2・3・7・8−テトラクロ
ロフエノキサチンを0.135g用いた以外は、実施
例1と全く同様の条件で反応を行つた。この反応
終了後、蒸留によりトルエンの核塩素化物を単離
したのち、さらに残留物にトルエンを加え、触媒
を繰り返し使用した。その結果を第2表に示す。 この表からわかるように、触媒の繰返し使用6
回目も反応は正常に進み、o/p比も0.88〜0.87
であり、枝塩素化物は認められなかつた。さらに
6回の繰返し終了の残留物中の2・3・7・8−
テトラクロロフエノキサチンをガスクロマトグラ
フ法で分析すると、2・3・7・8−テトラクロ
ロフエノキサチンと10−オキシ2・3・7・8−
テトラクロロフエノキサチンの混合物で、そのう
ち52%が、2・3・7・8−テトラクロロフエノ
キサチンであつた。またそれらの合計は、最初に
添加した、2・3・7・8−テトラクロロフエノ
キサチンに相当する量であつた。
[Table] Example 4 The conditions were exactly the same as in Example 1, except that 0.10 g of antimony trichloride and 0.135 g of 2,3,7,8-tetrachlorophenoxatin were used to clarify the effect of repeated use of the catalyst. I did the reaction. After the completion of this reaction, the nuclear chloride of toluene was isolated by distillation, toluene was further added to the residue, and the catalyst was repeatedly used. The results are shown in Table 2. As can be seen from this table, repeated use of catalyst6
The reaction proceeded normally for the second time, and the O/P ratio was 0.88 to 0.87.
No branch chlorinated products were observed. 2, 3, 7, 8- in the residue after 6 more repetitions
When tetrachlorophenoxatin was analyzed by gas chromatography, it was found to be 2,3,7,8-tetrachlorophenoxatin and 10-oxy2,3,7,8-
It was a mixture of tetrachlorophenoxatin, of which 52% was 2,3,7,8-tetrachlorophenoxatin. Further, the total amount was equivalent to the amount of 2,3,7,8-tetrachlorophenoxatin that was added initially.

【表】 比較例 2・3・7・8−テトラクロロフエノキサチン
の代りに、2・3・7・8−テトラクロロチアン
スレン0.142gを用いる以外は、実施例4と同じ
条件で塩素化反応を行つた。この結果を第3表に
示す。
[Table] Comparative Example Chlorination reaction was carried out under the same conditions as in Example 4, except that 0.142 g of 2,3,7,8-tetrachlorothianethrene was used instead of 2,3,7,8-tetrachlorophenoxatin. I went there. The results are shown in Table 3.

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A)ルイス酸及び(B)一般式 (式中のX1、X2、X3及びX4はそれぞれ同一又は相
異なる水素原子、電子吸引性基又は電子供与性基
を示す) で表わされるフエノキサチン化合物又はその混合
物からなるアルキルベンゼンの核塩素化用触媒。
[Claims] 1 (A) Lewis acid and (B) general formula (In the formula, X 1 , X 2 , X 3 and X 4 each represent the same or different hydrogen atom, electron-withdrawing group or electron-donating group) catalyst for chemical conversion.
JP8168779A 1979-06-28 1979-06-28 Chlorination catalyst for alkylbenzene nucleus Granted JPS565139A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP8168779A JPS565139A (en) 1979-06-28 1979-06-28 Chlorination catalyst for alkylbenzene nucleus
US06/152,817 US4289916A (en) 1979-06-28 1980-05-23 Process for producing p-chloroalkylbenzene
NL8003404A NL191313C (en) 1979-06-28 1980-06-12 Process for the preparation of p-chloroalkylbenzene.
CA354,382A CA1123861A (en) 1979-06-28 1980-06-19 Process for producing p-chloroalkylbenzene
DE19803023437 DE3023437A1 (en) 1979-06-28 1980-06-23 METHOD FOR PRODUCING P-CHLORALKYLBENZENE
BE0/201150A BE883975A (en) 1979-06-28 1980-06-24 PROCESS FOR THE PRODUCTION OF P-CHLOROALKYLBENZENE BY CHLORINATION OF AN ALKYLBENZENE
FR8014123A FR2460281A1 (en) 1979-06-28 1980-06-25 PROCESS FOR THE PRODUCTION OF β-CHLOROALKYLBENZENE BY CHLORINATION OF ALKYLBENZENE
IT8023087A IT1131397B (en) 1979-06-28 1980-06-26 PROCEDURE FOR THE PRODUCTION OF P-CHLOROALKYLBENZENE
CH4983/80A CH648817A5 (en) 1979-06-28 1980-06-27 METHOD FOR PRODUCING P-CHLORALKYLBENZENE.
GB8021112A GB2054571B (en) 1979-06-28 1980-06-27 Process for producing p-chloroalkylbenzene
NO801934A NO152897C (en) 1979-06-28 1980-06-27 PROCEDURE FOR PREPARING CIRCULATED ALKYL BENZEN.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8168779A JPS565139A (en) 1979-06-28 1979-06-28 Chlorination catalyst for alkylbenzene nucleus

Publications (2)

Publication Number Publication Date
JPS565139A JPS565139A (en) 1981-01-20
JPS6242655B2 true JPS6242655B2 (en) 1987-09-09

Family

ID=13753260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8168779A Granted JPS565139A (en) 1979-06-28 1979-06-28 Chlorination catalyst for alkylbenzene nucleus

Country Status (2)

Country Link
JP (1) JPS565139A (en)
BE (1) BE883975A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4444983A (en) * 1981-04-21 1984-04-24 Hodogaya Chemical Co., Ltd. Process for the nuclear chlorination of toluene
JPS57175132A (en) * 1981-04-21 1982-10-28 Hodogaya Chem Co Ltd Nuclear chlorinating method of toluene
JPS57175133A (en) * 1981-04-21 1982-10-28 Hodogaya Chem Co Ltd Nulear chlorinating method of toluene

Also Published As

Publication number Publication date
BE883975A (en) 1980-12-24
JPS565139A (en) 1981-01-20

Similar Documents

Publication Publication Date Title
US4289916A (en) Process for producing p-chloroalkylbenzene
EP0118851B1 (en) Process for producing a chlorohalobenzene
EP0112722B1 (en) Process for preparation of nuclear halides of monoalkylbenzenes
US4031147A (en) Process for directed chlorination of alkylbenzenes
US4031142A (en) Process for the directed chlorination of alkylbenzenes
US4190609A (en) Process for the directed chlorination of xylenes
US4250122A (en) Process and catalyst mixture for the para-directed chlorination of alkylbenzenes
JPS6242655B2 (en)
GB1576363A (en) Process for directed chlorination of alkylbenzenes
US4031146A (en) Process for the production of 2,5-dichlorotoluene
GB1576572A (en) Para-directed chlorination of alkylbenzenes
JPS60125251A (en) Catalyst for halogenating nucleus of alkylbenzene
JPS6242656B2 (en)
KR830001290B1 (en) Catalyst for Nucleochlorination of Alkylbenzene
US4691066A (en) Process of preparing metachlorobenzotrifluoride
US4013730A (en) Process for the preparation of monochlorotoluene
JPS649297B2 (en)
EP0063384B1 (en) Process for the nuclear chlorination of toluene
US2140550A (en) Chlorination of benzene
JPS60178829A (en) Production of fluorine-containing aromatic compound derivative
Uemura et al. Carboxylation of some aromatic hydrocarbons with thallium (III) chloride tetrahydrate in carbon tetrachloride
JP2742275B2 (en) Method for producing p-chlorohalogenobenzene
KR880000200B1 (en) Process for the preparation of p-chlorobenzene
US3758619A (en) Hydrocarbon conversions in the presence of onium compounds
US3813448A (en) Nuclear chlorination of alkyl substituted aromatic compounds