KR830001290B1 - Catalyst for Nucleochlorination of Alkylbenzene - Google Patents
Catalyst for Nucleochlorination of Alkylbenzene Download PDFInfo
- Publication number
- KR830001290B1 KR830001290B1 KR1019800002037A KR800002037A KR830001290B1 KR 830001290 B1 KR830001290 B1 KR 830001290B1 KR 1019800002037 A KR1019800002037 A KR 1019800002037A KR 800002037 A KR800002037 A KR 800002037A KR 830001290 B1 KR830001290 B1 KR 830001290B1
- Authority
- KR
- South Korea
- Prior art keywords
- catalyst
- reaction
- group
- nucleochlorination
- alkylbenzene
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/90—Regeneration or reactivation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/584—Recycling of catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Catalysts (AREA)
Abstract
내용 없음.No content.
Description
본 발명은, 알킬벤젠의 p위에 대한 선택성이 뛰어난 핵염소화용 촉매에 관한 것이다.The present invention relates to a catalyst for nucleation excellent in selectivity to the p-position of alkylbenzene.
알킬벤젠의 핵염소화 화합물은, 의약, 농약을 비롯하여 각종 유기합성화학의 원료로서 유용한 것이나, 특히 p-클로로-알킬벤젠, 예를들면 p-클로로톨루엔의 수요량이 많다.Nucleochlorinated compounds of alkylbenzenes are useful as raw materials for various organic synthetic chemistries including medicines and pesticides, but in particular, the amount of p-chloro-alkylbenzenes such as p-chlorotoluene is high.
그러나, 종래, 일반적으로 행하여지고 있는 핵염소화 반응인 염화안티몬, 염화제2철, 염화알루미늄 등의 루이스산을 촉매로 해서 염소가스로 염소화하는 방법에 있어서는, o-클로로알킬벤젠이 주로 생성되고, 또한 m-클로로체, 다염소치환체등도 부생하고, 40%이상의 수율로 p-클로로알킬벤젠을 제조할 수는 없었다.However, in the conventional method of chlorination with chlorine gas using Lewis acids such as antimony chloride, ferric chloride, and aluminum chloride, which are generally performed chlorination reactions, o-chloroalkylbenzene is mainly produced. In addition, m-chloro and polychlorinated substituents are byproducts, and p-chloroalkyl benzene cannot be produced in a yield of 40% or more.
그래서, p-클로로알킬벤젠을 수율좋게 제조하기 위해서, 여러가지 촉매가 개발되었다.Thus, various catalysts have been developed for producing high yield of p-chloroalkylbenzene.
예를들면, 루이스산과 유황 또는 셀렌을 촉매로 해서 사용하는 방법에 있어서는 p-클로로체가 45∼52%의 수율로 얻어지고, 루이스산과 티안슬렌을 촉매로해서 사용하는 방법에 있어서는 p-클로로체가 55∼60%의 수율로 얻어졌다(일본국 특개소 52-19630).For example, in a method using Lewis acid and sulfur or selenium as a catalyst, p-chloro is obtained in a yield of 45 to 52%, and in the method using Lewis acid and thianslene as a catalyst, p-chloro is 55 Obtained with a yield of -60% (Japanese Patent Laid-Open No. 52-19630).
이루이스산과 티알슬렌을 촉매로서 사용하는 방법은, p-위에 대한 선택성은 매우 우수하다고 말할수 있으나, 이 티안슬렌화합물은, 수분이 존재하면 산화되어서 5, 5-디옥시티안슬렌류를 거쳐서, 디페닐황화물류가 되고 반복 사용하면 촉매활성이 저하되어 오는것 및 측쇄의 알킬기가 클로로화 한 것이 부생한다는 것등의 문제가 있었다.Iris acid and thialslen as catalysts can be said to have a very good selectivity to the p-phase, but this thianslen compound is oxidized in the presence of water and passes through 5, 5-dioxythianeslens, When diphenyl sulfides are used repeatedly, there are problems such as deterioration of catalytic activity and byproducts of chlorolation of side chain alkyl groups.
본 발명자들은, p-위에 대한 선택성에 뛰어나고, 또한, 티안슬렌화합물이 지닌 문제점이 없는 촉매를 개발하기 위하여 예의 연구를 거듭한 결과, 루이스산과 페노크산틴 화합물을 촉매로해서 사용하면 p-위에 대한 선택성이 뛰어난 위에 페노크산틴 화합물은 수분이 존재해서 산화되어도 10-옥시페노크산틴으로 멈추게 되고, 반복사용하여도 촉매활성이 저하되지 않고, 또한 측쇄알킬기의 염소화가 일어나지 않는다는 것을 발견하여, 이것에 의해서 본 발명을 이루게 되었다.The present inventors have intensively studied to develop a catalyst having excellent selectivity to the p-phase and also having no problems with the thianslen compound. As a result, when the Lewis acid and phenoxanthine compound are used as catalysts, The phenoxanthin compound having excellent selectivity stops with 10-oxyphenoxanthin even when it is oxidized due to the presence of water, and it is found that the catalytic activity is not lowered even after repeated use, and chlorination of the branched alkyl group does not occur. The present invention has been achieved.
즉, 본 발명은,루이스산 및일반식That is, the present invention, Lewis and General formula
(식중의 X1, X2, X3및 X4는 각각 동일 또는 상이된 수소원자, 전자흡인성기 또는 전자 공여성기를 나타낸다)로 표시되는 페노크산틴 화합물 또는 그 혼합물로된알킬벤젠의 핵염소화 촉매를 제공하는 것이다.Nucleochlorination of alkylbenzenes with phenoxanthine compounds represented by (wherein X 1 , X 2 , X 3 and X 4 represent the same or different hydrogen atoms, electron withdrawing groups or electron donating groups, respectively) To provide a catalyst.
본 발명에 있어서, 루이스산은 통생의 의미인 루이스산 뿐만 아니라, 핵염소화 반응중에 루이스산을 형성하거나, 혹은 루이스산으로서의 기능을 다하는 금속 또는 화합물등을 포함하는 것으로서, 예를들면 안티몬, 철, 주석, 납, 알루미늄, 몰리브덴, 텔루르 등의 금속, 이들의 할로겐화물, 산화몰, 황화물, 카르보닐 화합물등을 들 수 있으며, 특히 바람직한 예로서는, 3염화안티몬, 5염화안티몬, 염화알루미늄, 3플루오르화안티몬, 염화제1철, 염화제2철, 옥시염화안티몬, 3산화안티몬, 4산화안티몬, 5산화안티몬, 4염화텔루르, 산화제2철, 황화연, 황화제1철, 2황화철, 몰리브덴헥사카르보닐, 철벤타카르보닐 등을 들 수 있다.In the present invention, Lewis acid includes not only Lewis acid, which means synergism, but also metals or compounds which form Lewis acid during nucleating reaction or function as Lewis acid, for example, antimony, iron, tin, and the like. And metals such as lead, aluminum, molybdenum, tellurium, halides, moles of oxides, sulfides, carbonyl compounds, and the like thereof, and particularly preferred examples thereof include antimony trichloride, antimony tetrachloride, aluminum chloride, and antimony trifluoride. Ferric chloride, ferric chloride, antimony oxychloride, antimony trioxide, antimony tetraoxide, antimony pentoxide, tellurium tetrachloride, ferric oxide, lead sulfide, ferrous sulfide, ferric sulfide, molybdenum hexacarbonyl, Iron ventacarbonyl etc. are mentioned.
또, 일반식(I)로 표시되는 페노크사틴 화합물에 있어서, X1, X2, X3및 X4는 수소원자, 전자흡인성기 또는 전자공여성기로서, 이들은 각각 동일한 것이나 상이한 것이어도 된다. 여기서, 전자흡인성기로서는, 염소원자, 브롬원자, 플루오르원자와 같은 할로겐원자, 아세틸기와 같은 알카노일기, 벤조일기와 같은 아로일기, 니트로기, 슬포닐기, 시아노기, 트리플루오르메틸기등을 들 수 있고, 전자공여성기로서는, 알킬기, 알콕시기등을 들 수 있다. 이와 같은 페노크사틴 화합물은 단독으로 사용하거나 혼합해서 사용해도 된다. 이페노크사틴화합물로서는, 할로겐의 치환도 2.0이상인 것이 특히 호적하나, 그것보다도 치환도가 낮은것 일지라도, 할로겐화 반응에 사용되고 있는 사이에 할로겐에 의해 핵치환이 진행하고, 최종적으로 치환도 2.0이상이 되므로 충분히 사용 가능하다.Moreover, in the phenoxatin compound represented by general formula (I), X <1> , X <2> , X <3> and X <4> are hydrogen atoms, an electron withdrawing group, or an electron donating group, These may be same or different, respectively. Here, examples of the electron withdrawing group include a chlorine atom, a bromine atom, a halogen atom such as a fluorine atom, an alkanoyl group such as an acetyl group, an aroyl group such as a benzoyl group, a nitro group, a sulfonyl group, a cyano group, and a trifluoromethyl group. As an electron donating group, an alkyl group, an alkoxy group, etc. are mentioned. Such phenoxatin compounds may be used alone or in combination. As the phenoxanthine compound, a halogen having a degree of substitution of 2.0 or more is particularly suitable, but even if the degree of substitution is lower than that, the nuclear substitution proceeds with halogen while being used for the halogenation reaction, and finally the degree of substitution becomes 2.0 or more. It is enough to use.
본 발명에 있어서, 루이스산과 페노크사틴 화합물은 몰비로 0.1∼10 :1, 바람직하게는 0.25∼4 :1의 비율로 사용된다.In the present invention, the Lewis acid and the phenoxatin compound are used in a molar ratio of 0.1 to 10: 1, preferably 0.25 to 4: 1.
본 발명의 촉매를 사용해서 알킬벤젠의 핵염소화를 행하려면, 루이스산과 페노크사틴 화합물의 총량으로 알킬벤젠의 양의 0.001∼5.0중량%, 바람직하게는 0.01∼1.0중량%의 비율로 촉매를 존재시켜, 반응혼합물의 비점 이하의 온도로 염소가스를 도입한다. 온도가 너무 높은 경우에는 다염소화물의 생성량이 많아져서, p-클로로체의 수율이 감소되어 좋지않다. 한편, 영하수 10℃이하의 저온으로도 반응은 행할 수 있고, p-클로로체의 선택율은 높아지나, 반응속도가 늦어져 경제적인 아니므로, 통상은 0∼80℃의 온도로, 공업적으로는 20∼70℃의 온도로 행하는 것이 적절하다 염소가스의 압력은, 상압, 가압, 감압 어느것이나 되지만, 통상은 상압하에서 반응시킨다.Nucleochlorination of alkylbenzenes using the catalyst of the present invention comprises the presence of a catalyst at a rate of 0.001 to 5.0% by weight, preferably 0.01 to 1.0% by weight, of the amount of alkylbenzene in the total amount of the Lewis acid and the phenoxatin compound. Chlorine gas is introduced at a temperature below the boiling point of the reaction mixture. If the temperature is too high, the amount of polychloride produced is large, and the yield of p-chloro is reduced, which is not good. On the other hand, the reaction can be carried out even at a low temperature of 10 ° C or lower, and the selectivity of p-chloro is increased, but the reaction rate is slow and economical. Therefore, it is usually industrially at a temperature of 0 to 80 ° C. Is appropriately performed at a temperature of 20 to 70 ° C. The pressure of the chlorine gas may be any of normal pressure, pressure, and reduced pressure, but is usually reacted under normal pressure.
본 발명의 촉매를 사용해서 핵염소화되는 알킬벤젠으로서는, 각종의 직쇄 및 분기쇄 알킬로 모노치환된 벤젠을 들 수 있으나, 특히 알킬기의 탄소수가 1∼4의 것이 바람직하다.Examples of the alkylbenzenes nucleated using the catalyst of the present invention include benzene monosubstituted with various linear and branched alkyls, but particularly preferably those having 1 to 4 carbon atoms in the alkyl group.
본 발명의 촉매를 사용하면, 알킬벤젠의 o-위의 염소화를 억제해서 p-위에 효율좋게 염소화할 수 있고, 또한 m-클로로체 및 다염소화물의 생성은 극히 적다. 또, 본 발명의 촉매는 반복 사용해도 활성이 저하가 없고 내구성에 뛰어나고, 톨루엔 등의 알킬벤젠의 p-클로로체를 공업적으로 제조하는데에 알맞고, 그 공업적 가치는 높은 것이다.When the catalyst of the present invention is used, chlorination of the alkylbenzene on the o-position can be suppressed and chlorinated efficiently on the p-position, and the formation of m-chloro and polychloride is extremely low. Moreover, even if it uses repeatedly, the catalyst of this invention is excellent in durability, excellent in durability, and suitable for industrially manufacturing p-chloro body of alkylbenzenes, such as toluene, and its industrial value is high.
다음에 실시예에 의해 본 발명은 더욱 상세히 설명한다.Next, the present invention will be described in more detail with reference to the following Examples.
[실시예 1]Example 1
교반기, 온도계, 가스취입관, 환류콘덴서를 붙인 1l-4구플라스크 속에, 큐멘 480g, 3 염화안티몬 2g 및 페노크사틴 2g을 넣고, 교반하면서, 수조에서 약 50℃로 가온하고, 온도가 일정하게 된 후, 염소가스를 300ml/분의 속도로 도입하고, 수조에서 반응온도를 50∼55℃로 유지한다. 염소가스를 5시간 도입해서 반응을 정지하고, 반응액을 가스크로마토그래프로 분석한 결과, 생성 모노클로로큐멘의 조성은, 2-클로로큐멘/4-클로로큐멘비(o/p)=0.57이였다.Into a 1-four-necked flask equipped with a stirrer, a thermometer, a gas inlet pipe, and a reflux condenser, 480 g of cumene, 2 g of antimony trichloride, and 2 g of phenoxanthine were added, and the mixture was warmed to about 50 ° C. in a water bath while the temperature was kept constant. After that, chlorine gas is introduced at a rate of 300 ml / min, and the reaction temperature is maintained at 50 to 55 캜 in a water bath. The reaction was stopped by introducing chlorine gas for 5 hours, and the reaction solution was analyzed by gas chromatography. As a result, the composition of the produced monochloro cumene was 2-chloro cumene / 4-chloro cumene ratio (o / p) = 0.57.
[실시예 2]Example 2
큐멘대신에, 에틸벤질 424g을 사용한 이외는, 실시예 1과 같은 조건으로 반응을 행하였다. 가스크로마토그래프법으로 분석한 결과, 반응액조성은, 2-클로로 에틸벤젠/4-클로로에틸벤젠비(o/p)=0.68이었다.The reaction was carried out under the same conditions as in Example 1 except that 424 g of ethyl benzyl was used instead of cumene. As a result of analysis by the gas chromatograph method, the reaction liquid composition was 2-chloroethylbenzene / 4-chloroethylbenzene ratio (o / p) = 0.68.
[실시예 3]Example 3
큐멘 대신에 톨루엔을 사용하고 촉매의 종류 및 첨가량을 바꾸는 것 이외는 실시예 1과 똑같은 조건하에서 할로겐화를 행하였다.Halogenation was carried out under the same conditions as in Example 1 except for using toluene instead of cumene and changing the type and amount of catalyst.
이와 같이해서 얻어진 생성물중의 2-클로로톨루엔/4-클로로톨루엔비(o/p)를 제1표에 나타낸다.The 2-chlorotoluene / 4-chlorotoluene ratio (o / p) in the product thus obtained is shown in a 1st table | surface.
[제 1 표][Table 1]
*반응온도 10∼15℃Reaction temperature 10-15 ℃
**반응온도 30∼35℃** reaction temperature 30 ~ 35 ℃
***반응온도 40∼45℃*** reaction temperature 40 ~ 45 ℃
[실시예 4]Example 4
촉매의 반복효과를 명백하게 하기 위해서 3염화안티몬 0.10g, 2, 3, 7, 8-테트라클로로페노 키사린을 0.135g사용한 이외는, 실시예 1과 똑같은 조건으로 반응을 행하였다. 이 반응종료후, 증류에 의해 톨루엔의 핵염소화물을 단리(單釐)한 뒤, 다시 잔류물에 톨루엔을 가하여, 촉매를 반복사용 하였다. 그 결과를 제2표에 표시한다.The reaction was carried out under the same conditions as in Example 1 except that 0.135 g of antimony trichloride, 0.135 g of 2, 3, 7, 8-tetrachloropheno chisarin was used to clarify the repeating effect of the catalyst. After the completion of the reaction, the toluene nucleochloride was isolated by distillation, and then toluene was added to the residue again, and the catalyst was repeatedly used. The results are shown in the second table.
이 표에서 알 수 있는 바와 같이, 촉매의 반복사용 6회째도 반응은 정상적으로 진행하고, o/p 비도 0.86∼0.87이며, 핵염소화물은 확인되지 않았다. 또한 6회의 반복 종료후의 잔류물중의 2, 3, 7, 8-테트라클로로페노 키사틴을 가스크로마토그래프법으로 분석하면, 2, 3, 7, 8-테트라클로로페노 키사틴과 10-옥시-2, 3, 7, 8-테트라클로로페노 키사틴의 혼합물로, 그 중 52%가, 2, 3, 7, 8-테트타클로로페노 키사틴이었다. 또 그들의 합계는, 최초에 첨가하였다. 2, 3, 7, 8-테트라클로로페노 키사틴에 상당하는 양이었다.As can be seen from this table, the reaction proceeded normally even at the sixth time of repeated use of the catalyst, the o / p ratio was 0.86 to 0.87, and no nucleated chloride was identified. In addition, 2, 3, 7, 8-tetrachloropheno chisatin in the residue after 6 repetitions was analyzed by gas chromatograph, and 2, 3, 7, 8-tetrachloropheno chisatin and 10-oxy- A mixture of 2, 3, 7, 8-tetrachloropheno chisatin, 52% of which was 2, 3, 7, 8-tettachloropheno chisatin. In addition, these totals were added initially. It was an amount equivalent to 2, 3, 7, 8-tetrachloropheno chisatin.
[제 2 표][Table 2]
[비교예][Comparative Example]
2, 3, 7, 8-테트라클로로페노키사틴 대신에, 2, 3, 7, 8-테트라클로로티안슬렌 0.142g을 사용하는 이외는, 실시예 4와 같은 조건으로 염소화반응을 행하였다. 이 결과를 제3표에 표시한다.The chlorination reaction was carried out under the same conditions as in Example 4, except that 0.142 g of 2, 3, 7, 8-tetrachlorothiaxylene was used instead of 2, 3, 7, 8-tetrachlorophenochisatin. The results are shown in Table 3.
[제 3 표][Table 3]
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019800002037A KR830001290B1 (en) | 1980-05-24 | 1980-05-24 | Catalyst for Nucleochlorination of Alkylbenzene |
KR1019830001581A KR840001030B1 (en) | 1980-05-24 | 1983-04-14 | Preparation of para chloro alkybenzene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019800002037A KR830001290B1 (en) | 1980-05-24 | 1980-05-24 | Catalyst for Nucleochlorination of Alkylbenzene |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019830001581A Division KR840001030B1 (en) | 1980-05-24 | 1983-04-14 | Preparation of para chloro alkybenzene |
Publications (2)
Publication Number | Publication Date |
---|---|
KR830002662A KR830002662A (en) | 1983-05-30 |
KR830001290B1 true KR830001290B1 (en) | 1983-07-06 |
Family
ID=19216587
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019800002037A KR830001290B1 (en) | 1980-05-24 | 1980-05-24 | Catalyst for Nucleochlorination of Alkylbenzene |
KR1019830001581A KR840001030B1 (en) | 1980-05-24 | 1983-04-14 | Preparation of para chloro alkybenzene |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019830001581A KR840001030B1 (en) | 1980-05-24 | 1983-04-14 | Preparation of para chloro alkybenzene |
Country Status (1)
Country | Link |
---|---|
KR (2) | KR830001290B1 (en) |
-
1980
- 1980-05-24 KR KR1019800002037A patent/KR830001290B1/en active
-
1983
- 1983-04-14 KR KR1019830001581A patent/KR840001030B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR840001030B1 (en) | 1984-07-26 |
KR840004661A (en) | 1984-10-22 |
KR830002662A (en) | 1983-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0248931B1 (en) | Process for producing p-chlorobenzenes | |
EP0118851B1 (en) | Process for producing a chlorohalobenzene | |
US4289916A (en) | Process for producing p-chloroalkylbenzene | |
Kovacic et al. | Chlorination of Aromatic Compounds by Antimony Pentachloride1, 2 | |
EP0112722B1 (en) | Process for preparation of nuclear halides of monoalkylbenzenes | |
EP0154236B1 (en) | Process for producing a halobenzene | |
JPS6029364B2 (en) | Direct chlorination method of alkylbenzene | |
US4031142A (en) | Process for the directed chlorination of alkylbenzenes | |
KR830001290B1 (en) | Catalyst for Nucleochlorination of Alkylbenzene | |
US4031146A (en) | Process for the production of 2,5-dichlorotoluene | |
CA1109081A (en) | Process for directed chlorination of alkylbenzenes | |
US7012166B2 (en) | Catalyst composition and method for chlorinating aromatic compounds | |
JPS6242655B2 (en) | ||
US4031145A (en) | Process for the production of 3,4-dichlorotoluene | |
US4691066A (en) | Process of preparing metachlorobenzotrifluoride | |
JPS60125251A (en) | Catalyst for halogenating nucleus of alkylbenzene | |
JPS6242656B2 (en) | ||
US4568770A (en) | Process for the conversion of a terminal carbon-carbon double bond of an olefinic hydrocarbon to carbonyl groups | |
CA2497318C (en) | Method for producing p-dichlorobenzene | |
JPS649297B2 (en) | ||
EP0063384B1 (en) | Process for the nuclear chlorination of toluene | |
US5315049A (en) | Process for the nuclear chlorination of aromatic hydrocarbons | |
JPH0335296B2 (en) | ||
JP2742275B2 (en) | Method for producing p-chlorohalogenobenzene | |
KR880000200B1 (en) | Process for the preparation of p-chlorobenzene |