JPS6242591A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS6242591A
JPS6242591A JP18205285A JP18205285A JPS6242591A JP S6242591 A JPS6242591 A JP S6242591A JP 18205285 A JP18205285 A JP 18205285A JP 18205285 A JP18205285 A JP 18205285A JP S6242591 A JPS6242591 A JP S6242591A
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
active layer
type
constitution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18205285A
Other languages
Japanese (ja)
Inventor
Takao Shibuya
隆夫 渋谷
Kunio Ito
国雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18205285A priority Critical patent/JPS6242591A/en
Publication of JPS6242591A publication Critical patent/JPS6242591A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To suppress multiplication of crystal defects and avoid deterioration of a laser and at the same time improve reliability in the high temperature operation by a method wherein not only an impurity which contributes to electric conduction but also an impurity which does not contribute to electric conduction is contained in an active layer which composes a semiconductor laser device. CONSTITUTION:An N-type GaAs blocing layer 2, the first P-type Al0.5Ga0.5As cladding layer 3, a nondoped Al0.1Ga0.9As active layer 4 and the second N-type Al0.5Ga0.5As cladding layer 5 are made to grow on a P-type GaAs substrate 1 by liquid phase epitaxial growth and the whole surface is covered with an N-type GaAs contact layer 6 to compose a semiconductor laser. In this constitution, although the active layer 4 is the nondoped Al0.1Ga0.9As layer, Cu, which has no contribution to electric conduction, is contained in the layer 4 with the concentration of 2X10<-16>/cm<3>. This non-contributing element may be Fe, Ca or the like other than Cu. With this constitution, internal multiplication of crystal defects are minimized and the reliability, especially in high temperature operation, can be improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光フアイバ通信や、光ディスク、レーザプリ
ンタ等の光情報処理装置の光源に用いることができる半
導体レーザ装置に関するものである0 従来の技術 近年、半導体レーザ装置は光フアイバ通信の光源、また
光デイスクメモリの記録・再生用光源として、そしてレ
ーザプリンタにと、光情報処理装置の心臓部をなすデバ
イスとして非常に重要となっている。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor laser device that can be used as a light source for optical information processing devices such as optical fiber communications, optical disks, and laser printers. 2. Description of the Related Art Semiconductor laser devices have become very important as light sources for optical fiber communications, for recording and reproducing optical disk memories, and as devices that form the heart of optical information processing equipment, such as laser printers.

さて、このように様々な分野でその用途が次々と開拓さ
れている半導体レーザで、l−、、Rが、信頼性・高出
力化・短波長化等の性能向上の要求は益々厳しくなって
いる。
Now, with semiconductor lasers whose applications are being developed one after another in a variety of fields, the demands for improved performance such as reliability, higher output, and shorter wavelengths for l-, , and R are becoming increasingly strict. There is.

さて、中でも信頼性の向上は非常に重要である。Of these, improving reliability is extremely important.

半導体レーザの寿命は、通常高温加速寿命試験を行うこ
とによって予測される。いま、半導体レーザ寿命〈τ〉
に、次式で示す依存性があるとする。
The life of a semiconductor laser is usually predicted by performing a high temperature accelerated life test. Now, the semiconductor laser life 〈τ〉
Assume that there is a dependence as shown in the following equation.

<r>=<r。>exp(Ea/kBT)  −−−−
−−(*)kBはボルツマン定数、Tは絶対温度、Ea
は活性化エネルギーであ4ダブル、ビー、ジヲイス等ア
プライドフィジックスレター28.11,684〜68
6頁(1976)参照(W、 B 、 Ioyce 。
<r>=<r. >exp(Ea/kBT) -----
--(*)kB is Boltzmann's constant, T is absolute temperature, Ea
is activation energy, 4 double, Bee, Jiwois, etc.Applied Physics Letter 28.11,684-68
See p. 6 (1976) (W, B, Ioyce.

st art ;Appl 、Phys、Lett、、
 28 、11 。
start; Appl, Phys, Lett,...
28, 11.

pp、’884〜686(1976))。pp, '884-686 (1976)).

Tを変化させて種々の温度における寿命を測定すること
によって(1)式の活性化エネルギーEaが求められる
By varying T and measuring the lifetime at various temperatures, the activation energy Ea of equation (1) can be determined.

R、L −Ha r tman  らによるとEa= 
0.7 eV  O値が求められている。アール、エル
、ハートマン等アプライドフィジックスレター26.5
,239〜242頁(1975)参照(R、L 、Ha
 r tmanet、afi、 ;Appl、Phys
、Lett 、、 26 、5 、 op。
R, L - According to Hartman et al., Ea=
A value of 0.7 eV O is determined. R, L, Hartman, etc. Applied Physics Letter 26.5
, pp. 239-242 (1975) (R, L, Ha
r tmanet, afi, ;Appl, Phys
, Lett, 26, 5, op.

239〜242(1975))。239-242 (1975)).

通常、活性化エネルギーの値はEa=0.7〜0.98
V程度の値をとるといわれている。この高温加速試験の
結果から、室温における寿命を外挿法によって推定でき
ることになる。
Usually, the activation energy value is Ea = 0.7 to 0.98
It is said to take a value of about V. From the results of this high temperature accelerated test, the lifespan at room temperature can be estimated by extrapolation.

さて、(1)式かられかるように、半導体レーザの動作
温度が高くなると寿命は急激に短くなる。半導体レーザ
は室温動作だけとは限らず、装置内に組み込まれて使用
される場合には40〜60°Cになることが多い。この
ことから、高温動作させたときの寿命の延長は非常に重
要な問題である。
Now, as can be seen from equation (1), as the operating temperature of a semiconductor laser increases, its lifetime rapidly shortens. Semiconductor lasers do not only operate at room temperature, but often operate at temperatures of 40 to 60° C. when incorporated into devices. For this reason, extending the life when operating at high temperatures is a very important issue.

ここでは埋め込みストライプ構造レーザ(以下BTRS
レーザと略記>f、−例として述べる。第2図はBTR
Sレーザの構造を示したものである。
Here, a buried stripe structure laser (hereinafter referred to as BTRS)
Abbreviated as laser>f, - described as an example. Figure 2 is BTR
This figure shows the structure of an S laser.

1はP型GaAs基板、2は電流ブロッキング層(n型
GaAs入 3は第1クラッド層(Zn ドープP型A
fio、5Gao、sA8 )、4は活性層(ノンドー
プAIto 、 1Gao 、9、is)、5は第2ク
ラッド層(Te ドープn型AX。、 5Ga0.6A
s層)、6はコンタクト層(Te  ドープn型GaA
s)である。第3図はこのBTRSレーザの高温加速寿
命試験の結果である0これは窒素ガス雰囲気中で行い、
光出力4.0 mWの一定光出力駆動で働かせている。
1 is a P-type GaAs substrate, 2 is a current blocking layer (contains n-type GaAs), 3 is a first cladding layer (Zn-doped P-type A
fio, 5Gao, sA8), 4 is the active layer (non-doped AIto, 1Gao, 9, is), 5 is the second cladding layer (Te doped n-type AX., 5Ga0.6A)
s layer), 6 is a contact layer (Te doped n-type GaA
s). Figure 3 shows the results of a high temperature accelerated life test of this BTRS laser. This was done in a nitrogen gas atmosphere.
It is operated by constant optical output drive with an optical output of 4.0 mW.

また端面には八λ203 の保護膜をコーティングしで
ある。60’c、so″Cでは5000時間後でも劣化
は見られなかったが、110″Cでは約500時間で劣
化してしまう。
Moreover, the end face is coated with a protective film of 8λ203. No deterioration was observed even after 5000 hours at 60'C, so''C, but deterioration occurred after about 500 hours at 110''C.

発明が解決しようとする問題点 半導体レーザの劣化の原因としては、 (1)端面酸化 営)内部における結晶欠陥の増殖 があげら扛る。(1)に関しては、端面に保護膜をコー
ティングすることによって解決される。上記のような構
成の半導体レーザ装置では、劣化は、劣化の原因(2)
によって進み、110°Cの高温加速寿命試験では約S
OO時間で劣化してしまう。このように従来の半導体レ
ーザ装置は高温動作の信頼性が低いという欠点を有して
いた。
Problems to be Solved by the Invention The causes of deterioration of semiconductor lasers include (1) end face oxidation) proliferation of internal crystal defects. Regarding (1), it can be solved by coating the end face with a protective film. In a semiconductor laser device with the above configuration, deterioration is caused by (2)
In a high temperature accelerated life test at 110°C, approximately S
It deteriorates in OO time. As described above, conventional semiconductor laser devices have the disadvantage of low reliability in high temperature operation.

本発明は上記欠点に鑑み、高温動作において信頼性の高
い半導体レーザ装置を提供するものである0 問題点を解決するための手段 上記問題点を解決するために、本発明の半導体レーザ装
置は、活性層に電気伝導に寄与させるためにドープした
不純物以外の不純物元素を含ませることから構成される
In view of the above drawbacks, the present invention provides a semiconductor laser device that is highly reliable in high temperature operation. Means for Solving the Problems In order to solve the above problems, the semiconductor laser device of the present invention has the following features: It is constructed by including an impurity element other than the doped impurity in the active layer in order to contribute to electrical conduction.

作  用 この構成によって、不純物元素が半導体レーザ装置内部
の結晶欠陥の増殖を押えて半導体レーザ装置の劣化を防
ぐことになり、高温での動作においても高い信頼性を得
ることができる。
Function: With this configuration, the impurity element suppresses the growth of crystal defects inside the semiconductor laser device, thereby preventing deterioration of the semiconductor laser device, and high reliability can be obtained even in operation at high temperatures.

実施例 以下、本発明の一実施例について、図面を参照しながら
説明する。本発明の一実施例における半導体レーザ装置
は従来例で示した第2図と同様の構造であるので第2図
を用いて説明する。P型GaAt5基板1上に液相エピ
タキシャル法により各層を形成した。活性層4はノンド
ブAflo 、 1Gao 、sAs層であるが、この
活性層4に電気伝導には寄与しない不純物元素Cuを濃
度2 X 10”−16crn−’だけ結晶中へ含ませ
た。Cuを活性層4へこれだけの濃度まで入れる方法と
しては、次の方法をとった。活性層成長用溶液はGa1
gに対してA2を0.3qと、As供給用のソースGa
As 0 、5 、S+とを800°Cまで加熱するこ
とにより、A℃とAsをGa溶液中へ溶は込ませて準備
した。この時に使用したGaには、あらかじめCuを1
00 ppmを含ませておいた。Ga1CAj2とAs
 とCuを溶かし込んだ活性層成長溶液’Iso○°C
から過飽和度を6°Cだけつけて活性層成長へ使用する
ことにより、活性層4にはCuが2X10z  己まれ
た。このようにしてCuを活性層4に2×1016cr
n”−3含ませた半導体レーザ装置の高温加速寿命試験
を行った。その結果を第1図に示す。これも第3図の試
験と同一条件で行った。すなわち、試験は窒素ガス雰囲
気中で行い、光出力4 mWの一定光出力駆動で行って
いる。また端面にはA2203の保護膜をコーティング
しである。この結果、60’C,80’C,110″G
いずれの場合にも5000時間でも劣化は見られなかっ
た。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. A semiconductor laser device according to an embodiment of the present invention has a structure similar to that shown in FIG. 2 for the conventional example, so it will be explained using FIG. 2. Each layer was formed on a P-type GaAt5 substrate 1 by liquid phase epitaxial method. The active layer 4 is a non-doped Aflo, 1Gao, and sAs layer, and the impurity element Cu, which does not contribute to electrical conduction, is included in the crystal at a concentration of 2 x 10"-16crn-'. The following method was used to introduce this concentration into layer 4.The active layer growth solution was Ga1.
A2 is 0.3q for g, and the source Ga for As supply is
A Ga solution was prepared by heating As 0 , 5 , and S+ to 800°C to dissolve A°C and As into a Ga solution. The Ga used at this time had 1 portion of Cu added in advance.
00 ppm was included. Ga1CAj2 and As
An active layer growth solution containing Cu and Iso○°C
By increasing the supersaturation degree by 6°C and using it for active layer growth, the active layer 4 contained 2×10z Cu. In this way, 2×1016 cr of Cu was applied to the active layer 4.
A high temperature accelerated life test was conducted on a semiconductor laser device containing n''-3. The results are shown in Figure 1. This was also conducted under the same conditions as the test in Figure 3. That is, the test was conducted in a nitrogen gas atmosphere. It was performed with a constant optical output drive of 4 mW.The end face was coated with a protective film of A2203.As a result, 60'C, 80'C, 110''G
In either case, no deterioration was observed even after 5000 hours.

さて、活性層中のCuの濃度は5X10m以下であれば
上記と同様の結果が得られた。また、実施例では不純物
元素としてCu ′f:あげたが、これに限定されず、
Fe、Caでも同様の結果が得られた。また、実施例で
は不純物元素をGaに含ませたものを使用したが、A℃
またはソースGaAsに含ませたものを使用してもよい
Now, if the concentration of Cu in the active layer was 5×10 m or less, the same results as above were obtained. In addition, in the examples, Cu'f: was listed as an impurity element, but it is not limited to this,
Similar results were obtained with Fe and Ca. In addition, although Ga containing an impurity element was used in the example,
Alternatively, a material contained in the source GaAs may be used.

発明の効果 以上のように本発明は、活性層に電気伝導には寄与しな
い不純物元素を含ませることにより、高温での動作でも
信頼性が向上し、その実用的効果は大なるものがある。
Effects of the Invention As described above, the present invention improves reliability even at high temperatures by including an impurity element that does not contribute to electrical conduction in the active layer, and has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

1・・・・・P型GaAs基板、2−・・・・・電流ブ
ロッキング層、3−・・・第1クラッド層、4・・・・
活性層、5・・・・・・第2クラッド層、6・・・・・
・コンタクト層。
1... P-type GaAs substrate, 2-... current blocking layer, 3-... first cladding layer, 4...
Active layer, 5...Second cladding layer, 6...
・Contact layer.

Claims (1)

【特許請求の範囲】[Claims] 活性層内に電気伝導に寄与しない不純物元素を含むこと
を特徴とする半導体レーザ装置。
A semiconductor laser device characterized in that an active layer contains an impurity element that does not contribute to electrical conduction.
JP18205285A 1985-08-20 1985-08-20 Semiconductor laser device Pending JPS6242591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18205285A JPS6242591A (en) 1985-08-20 1985-08-20 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18205285A JPS6242591A (en) 1985-08-20 1985-08-20 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6242591A true JPS6242591A (en) 1987-02-24

Family

ID=16111495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18205285A Pending JPS6242591A (en) 1985-08-20 1985-08-20 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6242591A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926432A (en) * 1988-08-18 1990-05-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926432A (en) * 1988-08-18 1990-05-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device

Similar Documents

Publication Publication Date Title
Shen et al. 1500‐h continuous cw operation of double‐heterostructure GaInAsP/InP lasers
JPS5856990B2 (en) Heterostructure optical device, method for manufacturing the same, and apparatus for manufacturing the same
JPH0491484A (en) Manufacture of semiconductor laser device
JPS6242591A (en) Semiconductor laser device
JPS61290790A (en) Manufacture of light-emitting element
Nelson et al. Self‐sustained pulsations and negative‐resistance behavior in InGaAsP (λ= 1.3 μm) double‐heterostructure lasers
JPS6286785A (en) Semiconductor laser
JPH04116993A (en) Semiconductor laser and manufacture of the same
JP4249920B2 (en) End face window type semiconductor laser device and manufacturing method thereof
Boyne et al. DISPERSION CHARACTERISTICS OF THE 1.15‐μ He‐Ne LASER LINE
JPH0149030B2 (en)
JPH04111487A (en) Manufacture of semiconductor layer
JPH01227485A (en) Semiconductor laser device
JP3699842B2 (en) Compound semiconductor light emitting device
JP3708213B2 (en) Semiconductor light emitting device and manufacturing method thereof
JPH01115191A (en) Semiconductor laser and manufacture thereof
JPH06104522A (en) Fabrication of semiconductor laser element
JPS6062179A (en) Semiconductor laser
JPH02260682A (en) Visible ray semiconductor laser device
JPH0750453A (en) Visible light semiconductor laser device and its manufacture
JP2828617B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH0750452A (en) Visible light semiconductor laser device and its manufacture
Smith III-V molecular beam epitaxy structures for electronic and optoelectronic applications
JPH04269886A (en) Manufacture of semiconductor laser
JPH04206585A (en) Semiconductor laser and manufacture thereof