JPH01115191A - Semiconductor laser and manufacture thereof - Google Patents

Semiconductor laser and manufacture thereof

Info

Publication number
JPH01115191A
JPH01115191A JP27404787A JP27404787A JPH01115191A JP H01115191 A JPH01115191 A JP H01115191A JP 27404787 A JP27404787 A JP 27404787A JP 27404787 A JP27404787 A JP 27404787A JP H01115191 A JPH01115191 A JP H01115191A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
semiconductor layer
face
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27404787A
Other languages
Japanese (ja)
Inventor
Isao Hino
日野 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27404787A priority Critical patent/JPH01115191A/en
Publication of JPH01115191A publication Critical patent/JPH01115191A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain high reliability and high output by sequentially laminating a semiconductor layer and a dielectric layer from on top of a light radiating face in this order, increasing the energy gap of the semiconductor layer larger than that of an active layer, and substantially equalizing lattice constant to that of the active layer. CONSTITUTION:A semiconductor layer 4 having larger energy gap than that of an active layer 3 and lattice constant substantially equal to that of the layer 3, and a dielectric film 7 are sequentially formed in this order from on top of light irradiating face 11. In this case, the layer 4 is formed of group III-V compound containing aluminum, the layer 7 is formed of Al2O3, the layer 4 containing the aluminum is formed on a vapor atmosphere containing oxygen of 0.1-100ppm by a vapor growing method with organic metal as a starting material, and an Al2O3 film 7 is subsequently formed without exposing the layer 4 to the atmosphere. Thus, an optical absorption in an element end face region can be reduced, heat generation due to the optical absorption can be decreased, and output and reliability can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本願発明は、高信頼・高出力の半導体レーザ及びその製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a highly reliable and high output semiconductor laser and a method for manufacturing the same.

(従来の技術) 半導体レーザの活性層で発振した光は、素子の光出射面
から外部にとり出される。半導体レーザにおいては、レ
ーザ光出射面が臂開により形成され、レーザ発振光は、
その面からとり出される。
(Prior Art) Light oscillated in the active layer of a semiconductor laser is extracted to the outside from a light emitting surface of the device. In a semiconductor laser, the laser light emitting surface is formed by opening the arms, and the laser oscillation light is
It is taken from that aspect.

レーザ光出射面は、極めて高い光子密度となっているか
ら、光出射面の破壊や酸化により、素子の信頼性や動作
可能出力が制限されている。そこで従来、この光出射面
に5iot 、 MtOs 、 5isNt等の誘電体
膜を耐着せしめて出射面を保護し、信頼性や動作出力を
向上させるという構造が採用されてきた。従来の半導体
レーザの一例として、ジャーナル◆才ブ・アプライド・
フィジクス(、T、 Apl)1−Phys、 )第5
0巻、 5150ページ(1979年))に掲載された
構造を第3図に示す。本図は、AQGaAs系半導体レ
ーザをストライプ電極に平行な横側面から見た図である
。図の左右両端が襞間により形成したレーザ光出射面1
09である。この半導体レーザは、n−GaAs基板1
01の上にn  AQs、aGaa、J!3クラッドM
102.アンドープGaAs活性層103.p−AQ 
o 、 aGaa 、 aAsクラッド層104及びn
−GaAsキャップ層105の半導体層が順に積層され
てなる半導体多層構造を有し、p電極106とn電極1
07とから電流が注入される。レーザ光出射端面には5
i0z膜108が形成され、端面保護膜として働いてい
る。
Since the laser light emitting surface has an extremely high photon density, the reliability and operable output of the device are limited due to destruction or oxidation of the light emitting surface. Therefore, conventionally, a structure has been adopted in which a dielectric film such as 5iot, MtOs, 5isNt, etc. is adhered to the light emitting surface to protect the light emitting surface and improve reliability and operational output. As an example of a conventional semiconductor laser, the journal
Physics (, T, Apl) 1-Phys, ) 5th
Figure 3 shows the structure published in Vol. 0, page 5150 (1979). This figure is a view of an AQGaAs semiconductor laser seen from a side surface parallel to the stripe electrodes. Laser light emitting surface 1 formed by folds at both left and right ends of the figure
It is 09. This semiconductor laser has an n-GaAs substrate 1
n AQs, aGaa, J! on top of 01! 3 clad M
102. Undoped GaAs active layer 103. p-AQ
o, aGaa, aAs cladding layer 104 and n
-Has a semiconductor multilayer structure in which semiconductor layers of the GaAs cap layer 105 are laminated in order, and has a p electrode 106 and an n electrode 1
A current is injected from 07. 5 on the laser beam emitting end face
An i0z film 108 is formed and serves as an end face protection film.

第3図の例では保護膜108は、5illとなっている
が、Mhos 、 St、am膜の場合も同様の構図を
とって使われている。また、このような保護膜は、他の
半導体発光素子GaInPAs系レーザやAQGaIn
P系可視光レーザに対しても同様に用いられている。
In the example shown in FIG. 3, the protective film 108 is 5ill, but Mhos, St, and am films can also be used in a similar configuration. In addition, such a protective film can be used for other semiconductor light emitting devices such as GaInPAs lasers and AQGaIn
It is similarly used for P-based visible light lasers.

(発明が解決しようとする問題点) 前述の従来法では、保護膜としてつけた誘電体膜と半導
体の物理的性質が著しく異なるから、両者の界面状態は
必ずしもよくない、また、熱膨張係数も異な゛るから、
高出力動作時の温度上昇の際端面に歪みがはいり、それ
が劣化の原因となる。
(Problems to be Solved by the Invention) In the conventional method described above, since the physical properties of the dielectric film applied as a protective film and the semiconductor are significantly different, the interface state between the two is not necessarily good, and the coefficient of thermal expansion is also poor. Because they are different,
When the temperature rises during high-output operation, distortion occurs on the end face, which causes deterioration.

このため、高出力動作で長寿命化を達成することが困難
であった。また、光出射面を、素子と同一の格子定数を
もつ半導体膜で保護する構造も考えられるが、素子に影
舌を与えずに高抵抗の半導体膜を得ることが困難であっ
た。また、このような半導体膜は素子を構成している半
導体膜と屈折率に差をつけにくいから、端面反射率の制
御が難しい、従来法は、以上述べたような欠点を有して
いる。
For this reason, it has been difficult to achieve long life with high output operation. A structure in which the light exit surface is protected with a semiconductor film having the same lattice constant as the element is also considered, but it has been difficult to obtain a high-resistance semiconductor film without shadowing the element. Further, since it is difficult to differentiate the refractive index of such a semiconductor film from that of the semiconductor film constituting the element, the conventional method has the drawbacks as described above, in which it is difficult to control the end face reflectance.

そこで、本願発明の目的は、結晶成長の性質や材料の性
質を利用して上述の欠点を除き、高信頼・高性能の半導
体レーザおよびその製造方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a highly reliable and high-performance semiconductor laser and its manufacturing method, which eliminates the above-mentioned drawbacks by utilizing the properties of crystal growth and the properties of materials.

(問題点を解決するための手段) 本願の第1の発明の半導体レーザが要旨とするところは
、光出射面上に、活性層よりも大きなエネルギギャップ
をもち活性層とほぼ格子定数の等しい半導体層と、誘電
体膜をこの順に形成したことである。半導体層を蔵を含
む■−v化合物、或いは誘電体膜をAQ t Osとす
ると、■−v化合物半導体より成る半導体レーザに本願
の第1の発明を適用してその効果が著しい。また、Al
を含む■−■化合物半導体層を、有機金属を原料とした
気相成長法(MOVPE法)により酸素をO,lppm
から1100ppの範囲で含む気相雰囲気中で形成し、
この半導体層を大気に曝すことなく、ひき続きAQ 、
o。
(Means for Solving the Problems) The gist of the semiconductor laser of the first invention of the present application is to provide a semiconductor laser on the light emitting surface with a larger energy gap than the active layer and with substantially the same lattice constant as the active layer. The layer and the dielectric film were formed in this order. When the semiconductor layer is made of a 1-v compound containing carbon dioxide, or the dielectric film is AQ t Os, the first invention of the present application can be applied to a semiconductor laser made of a 1-v compound semiconductor, and the effect is remarkable. Also, Al
The ■-■ compound semiconductor layer containing
Formed in a gas phase atmosphere containing in the range of from to 1100 pp,
Without exposing this semiconductor layer to the atmosphere, AQ,
o.

膜を形成する本願の第2の発明により、本願の第1の発
明の構造はつくり易くまた著しい効果を以て実現するこ
とができる。Alを含む■−■化合物半導体層としては
、半導体レーザの活性層よりもエネルギギャップが大き
く、格子定数が活性層とほぼ等しいという条件を満たし
ていれば何でもよく、AQGaAs 、 AQInP 
、 AQGaSb 、 A11)GaInP等がある。
The structure of the first invention of the present application can be easily manufactured and realized with remarkable effects by the second invention of the present application in which a film is formed. The ■-■ compound semiconductor layer containing Al may be any material as long as it satisfies the conditions that the energy gap is larger than that of the active layer of the semiconductor laser and the lattice constant is approximately equal to that of the active layer, such as AQGaAs or AQInP.
, AQGaSb, A11) GaInP, etc.

また、半導体層はAlを含む■−■化合物によらなくて
も、また誘電体膜はM、0.でなくても本願の第1の発
明は有効である。
Furthermore, the semiconductor layer does not need to be made of a ■-■ compound containing Al, and the dielectric film is made of M, 0. Even if this is not the case, the first invention of the present application is still effective.

(作用) 半導体レーザ素子端面に形成して端面を保護する膜ある
いは領域は、大きく3つの機能を果たす。それらは端面
附近のエネルギギャップを大きくし、この領域での光吸
収を減らし、光吸収による発熱による端面破壊を防ぐ(
機能1)、励起される半導体素子の端面を直接大気にさ
らさぬことにより、端面の化学変化を防ぐ(機能2)、
素子端面の反射率を制御して光出射端面内部の光子密度
を減らして端面破壊や劣化を防ぐ(機能3)の3つであ
る。従来構造では、これら3機能のうちのいくつかは満
足するものの、すべてを十分に満足しているものはなか
った。本願の第1の発明の構造をとることにより、まず
、半導体レーザの活性層よりも大きなエネルギギャップ
をもつ半導体層を素子端面に活性層に接して設けること
により、素子端面領域での光吸収を減らすことができ、
光吸収による発熱を減少することができる。
(Function) A film or region formed on the end face of a semiconductor laser element to protect the end face has three main functions. They increase the energy gap near the end face, reduce light absorption in this region, and prevent end face destruction due to heat generation due to light absorption (
Function 1) Prevents chemical changes on the end face by not directly exposing the end face of the excited semiconductor element to the atmosphere (Function 2)
There are three functions: controlling the reflectance of the element end face to reduce the photon density inside the light emitting end face to prevent end face destruction and deterioration (Function 3). Although conventional structures satisfy some of these three functions, none fully satisfies all of them. By adopting the structure of the first invention of the present application, first, a semiconductor layer having a larger energy gap than the active layer of the semiconductor laser is provided on the device end face in contact with the active layer, thereby reducing light absorption in the device end face region. can be reduced,
Heat generation due to light absorption can be reduced.

このとき、素子端面に設けた半導体層の格子定数が、活
性層のひいては半導体レーザを構成している半導体材料
の格子定数と異なっていると、素子端面に設けた半導体
層との界面に歪みが生じ、素子劣化の原因となる。この
点は、素子界面に設けた半導体層の格子定数を半導体レ
ーザの活性層にほぼ一致させることにより解決される0
以上述べた半導体層を端面に設けるだけでは、前述の機
能1は満足するが、機能29機能3に対しては十分な効
果をもたない、そこで、この半導体膜上に誘電体膜を一
定の厚さで形成することにより、機能2および機能3を
満たす、半導体端面を誘電体膜で覆うことにより、半導
体層の大気露出を防ぐことにより機能2が満たされる。
At this time, if the lattice constant of the semiconductor layer provided on the element end face is different from the lattice constant of the semiconductor material that constitutes the active layer and eventually the semiconductor laser, distortion will occur at the interface with the semiconductor layer provided on the element end face. This causes deterioration of the device. This point can be solved by making the lattice constant of the semiconductor layer provided at the device interface approximately match that of the active layer of the semiconductor laser.
Simply providing the semiconductor layer described above on the end face satisfies the aforementioned function 1, but does not have sufficient effect on function 29 and function 3. Function 2 and Function 3 are satisfied by forming the semiconductor layer thickly, and Function 2 is satisfied by covering the semiconductor end face with a dielectric film to prevent the semiconductor layer from being exposed to the atmosphere.

誘電体膜厚・誘電体屈折率を制御することにより、端面
反射率を制御でき、機能3が満たされる。
By controlling the dielectric film thickness and dielectric refractive index, the end face reflectance can be controlled, and Function 3 is satisfied.

前述した素子端面に設ける半導体膜は、電気抵抗の高い
ことが要求される。つまり、膜の抵抗が低いと、漏れ電
流のために素子の効率が悪くなる。AQを含む■−■化
合物をその半導体膜として利用することには、次の利点
がある。第1に、Alを含む化合物は、形成の際に酸素
を添加すると容易に高抵抗となる。第2にGaのみ又は
AQとGaを両方含むII−V化合物ではGaとAlを
置き換えることにより、格子定数を殆ど変えずにバンド
ギャップを大きくすることができる。このため、素子端
面に設ける半導体膜としてAlを含むIII−v化合物
を用いると本願の第1の発明の効果は著しい。
The semiconductor film provided on the end face of the element described above is required to have high electrical resistance. In other words, when the resistance of the film is low, the efficiency of the device decreases due to leakage current. Utilizing the ■-■ compound containing AQ as the semiconductor film has the following advantages. First, compounds containing Al easily become high in resistance when oxygen is added during formation. Second, in a II-V compound containing only Ga or both AQ and Ga, by replacing Ga and Al, the band gap can be increased with almost no change in the lattice constant. Therefore, if a III-v compound containing Al is used as the semiconductor film provided on the end face of the device, the effect of the first invention of the present application is remarkable.

さらに統いで設ける誘電体膜をM、0.とすると、前述
のAlを含む■−■化合物を形成したのち、試料を大気
中にとり出すことなく同一の装置で、ひき続き形成する
ことが容易である。このため誘電体膜としてAQ*Os
を用いると、前述の効果に加えて、製作の容易さおよび
さらなる信頼性の向上という効果が生ずる。
Further, a dielectric film of M, 0. Then, after forming the above-mentioned Al-containing compound 1--2, it is easy to continue forming the compound in the same apparatus without taking out the sample into the atmosphere. Therefore, AQ*Os is used as a dielectric film.
In addition to the above-mentioned effects, the use of the above-described method has the advantage of ease of manufacture and further improvement in reliability.

Alを含む■−■化合物層を形成する方法としては、有
機金属を用いた気相成長法(MOVPE法)が、優れた
方法の一つである。本方法による場合、通常の高純度雰
囲気で成長させると、アンドープの場合でも絶縁性をも
たせることは難しい、一方、成長雰囲気に酸素を混入す
るとAlを含むI[−4化合物層は高抵抗となるが、酸
素を多量に含むと結晶は劣化し、表面粗れを生ずるから
光出射面保護には適さない、ところが、成長中の酸素の
濃度を0. lppmから1100ppの範囲に制御し
ながら、Alを含む■−v化合物を成長させると、結晶
品質を保ちつつ高抵抗の結晶が得られる。そこで、Al
を含む■−■化合物半導体層を、MOVPE法により、
酸素@ 0.1ppmから1100ppの範囲で含む気
相雰囲気中で形成すると、活性層よりも大きなエネルギ
ギャップをもち活性層とほぼ格子定数の等しい半導体層
として理想的なものができる。
As a method for forming a ■-■ compound layer containing Al, a vapor phase epitaxy method (MOVPE method) using an organic metal is one of the excellent methods. When using this method, if grown in a normal high-purity atmosphere, it is difficult to provide insulation even when undoped. On the other hand, if oxygen is mixed into the growth atmosphere, the I[-4 compound layer containing Al will have high resistance. However, if a large amount of oxygen is included, the crystal will deteriorate and cause surface roughness, making it unsuitable for protecting the light exit surface. However, if the oxygen concentration during growth is reduced to 0. When a ■-v compound containing Al is grown while controlling it within the range of 1 ppm to 1100 ppm, a high-resistance crystal can be obtained while maintaining crystal quality. Therefore, Al
A ■−■ compound semiconductor layer containing
When formed in a gaseous atmosphere containing oxygen in the range of 0.1 ppm to 1100 ppm, an ideal semiconductor layer having a larger energy gap than the active layer and approximately the same lattice constant as the active layer can be obtained.

また、Alを含む■−v化合物半導体層を形成したのち
、そのままひき続いてM!08を形成すると、半導体と
誘電体膜の界面が汚染されることなく劣化原因を除くこ
とができる。
Further, after forming a ■-v compound semiconductor layer containing Al, M! By forming 08, the cause of deterioration can be eliminated without contaminating the interface between the semiconductor and the dielectric film.

(実施例) 次に本願発明の実施例を示す、第1図に本願の第1の発
明の実施例である半導体レーザの模式的斜視図を示すa
 600nm帯で発振するAQGaInP系可視光半導
体レーザを例として示す、第2図には、第1図の半導体
レーザを製造する本願の第2の発明の一実施例を工程図
で模式的に示す0両図面中同−箇所を指すものには、同
一番号が附しである。
(Example) Next, an example of the present invention will be shown. Fig. 1 shows a schematic perspective view of a semiconductor laser which is an example of the first invention of the present application.
An example of an AQGaInP visible light semiconductor laser that oscillates in the 600 nm band is shown in FIG. Components pointing to the same locations in both drawings are given the same numbers.

第2図(a)、(b)は素子製作用ウェーハの断面図、
第2図(c)は第2図(b)のウェーハを上から見た平
面図である* n  GaAs基板1上にn  (AQ
o、aGa*、s)a、1Ino、iPクラッド層2゜
アンドープGas 、 5Ina 、 sP活性層3 
、 p −(AQ、、。
FIGS. 2(a) and 2(b) are cross-sectional views of a wafer for manufacturing elements;
FIG. 2(c) is a plan view of the wafer shown in FIG. 2(b) seen from above.
o, aGa*, s) a, 1Ino, iP cladding layer 2° undoped Gas, 5Ina, sP active layer 3
, p - (AQ, .

Gas、a ) o、sIn*、aPクラッドFa 4
 、 p−GaAsキャップ層5を順次形成する(第2
図(a))。成長法は、MOVPE法や分子ビームエピ
タキシャル法CMBE法)によればよい6次に、反応性
イオンビームエツチング法等により、レーザ共振器面1
1形成のための溝12を形成する。その後MOVPE法
によりAQo、5Ins、gP層6を形成する。このと
き、トリメチルアルミニウム(TMAQ)、トリメチル
インジウム(TMIn ) 、’ Pt(sおよびキャ
リアガスとして用いる水素から成る混合原料ガスに、酸
素を0.lppmから1100ppの範囲で添加する。
Gas, a) o, sIn*, aP clad Fa 4
, p-GaAs cap layer 5 is sequentially formed (second
Figure (a)). The growth method may be MOVPE method or molecular beam epitaxial method (CMBE method).
A groove 12 for forming a groove 12 is formed. Thereafter, AQo, 5Ins, and gP layers 6 are formed by MOVPE. At this time, oxygen is added in a range of 0.1 ppm to 1100 ppm to a mixed raw material gas consisting of trimethylaluminum (TMAQ), trimethylindium (TMIn), 'Pt(s) and hydrogen used as a carrier gas.

こうして成長中の気相雰囲気中の酸素濃度をQ、 lp
pmから1100ppとする。AQ e 、 gIns
 、 sPを形成した後、試料を大気に曝すことなく、
ひき続きM gosを形成する(第2図(b))、この
AQ tOs膜を形成するには、AQ * 、 11n
@ 、 aP膜を形成したものと同じ装置内で、TMA
Qと酸素を同様に流し、基板を400℃程度に加熱すれ
ばよい6次に、フォトリソグラフィ法により′rILi
注入用ストライブ窓8を、AQ x Os膜7と、AQ
 o 、 aIn−、−P層6にあける。エツチング液
は、AQ t Osに対してはHF緩衝液、AQs、g
Ins、aPに対しては稀塩酸を用いることにより選択
エツチングが行える。その後、pttOを蒸着により附
着して再びフォトリソグラフィ法により、第2図(c)
に示すように選択的に残す、最後にn電極10を形成し
、個々のチップに分けることにより、第1図に示す構造
ができる。こうして得られた素子は、従来構造の半導体
レーザと較べて、高出力動作時での信頼性の優れたもの
となった。実施例では、絶縁膜でストライブ注入領域を
形成したストライブレーザを示したが、半導体レーザ素
子端面を光出射端とする半導体レーザであれば、本願の
発明は如何なる構造に対しても適用できる。また、Al
を含む■−v化合物として、AQs、gIns、iPを
示したが、(AQxGas−x) o、1Ins、sP
(0< x〈1)でもよい。また、Ga、 、 5In
e 、 aPよりもエネルギギャップの大きなAQ、G
a、−、Asでも同様の効果が得られる。また、本実施
例ではAQGaAs系系を用いて説明したが、本願発明
はAQGaAs系、 AQGaSb系など他の材料に対
しても適用できる。効果の大きさ、製作のしやすさの点
から、光出射面に附着せしめる半導体層としてAlを含
む■−v化合化合物覚誘電体膜も■0.を用いて説明し
たが、本願の第1の発明には他の材料を用いても、当該
発明の効果は得られる。
In this way, the oxygen concentration in the gas phase atmosphere during growth is Q, lp
From pm to 1100pp. AQ e, gIns
, without exposing the sample to the atmosphere after forming the sP.
Subsequently, M gos is formed (FIG. 2(b)). To form this AQ tOs film, AQ*, 11n
@, TMA in the same apparatus in which the aP film was formed.
Q and oxygen should be passed in the same way, and the substrate should be heated to about 400°C.
The injection stripe window 8 is formed by forming an AQ x Os film 7 and an AQ
o, aIn-, -P layer 6. Etching solutions include HF buffer for AQ t Os, AQs, g
Selective etching can be performed for Ins and aP by using dilute hydrochloric acid. After that, pttO is deposited by vapor deposition and again by photolithography, as shown in Fig. 2(c).
The structure shown in FIG. 1 is obtained by forming the n-electrode 10 selectively as shown in FIG. The device thus obtained has superior reliability during high-output operation compared to semiconductor lasers of conventional structure. In the embodiment, a stripe laser in which a stripe injection region is formed with an insulating film is shown, but the invention of the present application can be applied to any structure as long as it is a semiconductor laser whose light emitting end is the end face of a semiconductor laser element. . Also, Al
AQs, gIns, iP are shown as ■-v compounds containing (AQxGas-x) o, 1Ins, sP
(0<x<1). Also, Ga, , 5In
AQ, G with larger energy gap than e, aP
A similar effect can be obtained with a, -, and As. Furthermore, although this embodiment has been described using AQGaAs-based materials, the present invention can also be applied to other materials such as AQGaAs-based and AQGaSb-based materials. From the viewpoint of the magnitude of the effect and the ease of production, a ■-v compound storage dielectric film containing Al as a semiconductor layer attached to the light emitting surface is also used.■0. Although the first invention of the present application has been explained using other materials, the effects of the invention can be obtained even if other materials are used.

(発明の効果) 以上に述べたように、本願発明により、端面での光吸収
による発熱の減少、端面の光子密度の減少、端面の大気
からの保護が同時にかつ製作容易な方法で実現できる。
(Effects of the Invention) As described above, according to the present invention, it is possible to reduce heat generation due to light absorption at the end face, reduce photon density at the end face, and protect the end face from the atmosphere at the same time and in an easy-to-manufacture method.

また、附着する端面保護膜は高品質なものができるので
、この事も併せて本願発明により、従来よりも高信頼・
高出力の半導体レーザを実現することができる。
In addition, the attached end face protection film can be made of high quality, which also makes the present invention more reliable and more reliable than before.
A high-output semiconductor laser can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願の第1の発明の一実施例を示す模式的斜視
図、第2図は本願の第2の発明の一実施例により第1図
の半導体レーザを製作する方法を示す図、第3図は従来
の半導体レーザの模式的断面図である。 1 、101− n−GaAs基板、2−rl −(A
Q、 、 、Ga8.、)。5Ina 、 iPクラッ
ド層、3・・・アンドープGa* 、 aIn@ 、 
IP活性層、4・op  (AQs、4Gam、a)e
、5In1.、Pクラッド層、5 、105・・・p−
GaAsキ’rツブ層、6・・・高抵抗AQ、、sIn
、、sP層、7−u*os膜、8・・・電流注入ストラ
イブ領域、9 、106・= p を極、10゜107
・・・n電極、11 、109・・・レーザ光出射端面
、102”’ n  AQ a 、 aGas 、 i
As層、103・・−GaAs活性層、104−・・p
−AQ a 、 aGas 、 sAs層、108”・
SiOx保護膜。 第1図 、5p−GaAs (a) (b) 第2図
FIG. 1 is a schematic perspective view showing an embodiment of the first invention of the present application, FIG. 2 is a diagram showing a method for manufacturing the semiconductor laser of FIG. 1 according to an embodiment of the second invention of the present application, FIG. 3 is a schematic cross-sectional view of a conventional semiconductor laser. 1, 101-n-GaAs substrate, 2-rl-(A
Q, , , Ga8. ,). 5Ina, iP cladding layer, 3... undoped Ga*, aIn@,
IP active layer, 4-op (AQs, 4Gam, a)e
, 5In1. , P cladding layer, 5, 105...p-
GaAs key layer, 6...high resistance AQ, sIn
,, sP layer, 7-u*os film, 8... current injection stripe region, 9, 106... = p as pole, 10° 107
...n electrode, 11, 109...laser light emitting end face, 102"' n AQ a , aGas, i
As layer, 103...-GaAs active layer, 104-...p
-AQ a, aGas, sAs layer, 108”・
SiOx protective film. Figure 1, 5p-GaAs (a) (b) Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)光出射面上に半導体層と誘電体層とがこの順に積
層されており、前記半導体層はエネルギギャップが前記
活性層より大きく格子定数がその活性層にほぼ等しいこ
とを特徴とする半導体レーザ。
(1) A semiconductor characterized in that a semiconductor layer and a dielectric layer are laminated in this order on a light emitting surface, and the semiconductor layer has a larger energy gap than the active layer and a lattice constant approximately equal to that of the active layer. laser.
(2)前記半導体層がAlを含むIII−V化合物である
特許請求の範囲第1項記載の半導体レーザ。
(2) The semiconductor laser according to claim 1, wherein the semiconductor layer is a III-V compound containing Al.
(3)前記誘電体膜がAl_2O_3である特許請求の
範囲第2項記載の半導体レーザ。
(3) The semiconductor laser according to claim 2, wherein the dielectric film is Al_2O_3.
(4)光出射面上に半導体層と誘電体層とがこの順に積
層されており、前記半導体層はエネルギギャップが前記
活性層より大きく格子定数が活性層にほぼ等しい半導体
レーザの製造方法において、前記半導体層として、Al
を含むIII−V化合物半導体層を、有機金属を原料とし
た気相成長法により酸素と0.1ppmから100pp
mの範囲で含む気相雰囲気中で形成し、この半導体層を
大気に曝すことなく、ひきつづき前記誘電体層としてA
l_2O_3膜を形成することを特徴とする半導体レー
ザの製造方法。
(4) A method for manufacturing a semiconductor laser, wherein a semiconductor layer and a dielectric layer are laminated in this order on a light emitting surface, and the semiconductor layer has a larger energy gap than the active layer and a lattice constant substantially equal to that of the active layer, As the semiconductor layer, Al
A III-V compound semiconductor layer containing 0.1 ppm to 100 ppm of oxygen is formed by a vapor phase growth method using an organic metal as a raw material.
The dielectric layer is formed in a gaseous atmosphere containing A within the range of A, without exposing this semiconductor layer to the atmosphere.
A method for manufacturing a semiconductor laser, comprising forming an l_2O_3 film.
JP27404787A 1987-10-28 1987-10-28 Semiconductor laser and manufacture thereof Pending JPH01115191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27404787A JPH01115191A (en) 1987-10-28 1987-10-28 Semiconductor laser and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27404787A JPH01115191A (en) 1987-10-28 1987-10-28 Semiconductor laser and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01115191A true JPH01115191A (en) 1989-05-08

Family

ID=17536230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27404787A Pending JPH01115191A (en) 1987-10-28 1987-10-28 Semiconductor laser and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01115191A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280897A (en) * 1991-03-11 1992-10-06 Sumitomo Electric Ind Ltd Vapor-phase growing process for compound semiconductor
JPH0513878A (en) * 1990-10-19 1993-01-22 Sharp Corp Semiconductor laser element
JPH0897506A (en) * 1994-09-28 1996-04-12 Sharp Corp Manufacture of end face growth window type semiconductor laser element
JP2004363320A (en) * 2003-06-04 2004-12-24 Sharp Corp Oxide semiconductor light emitting element
JP2008211234A (en) * 1998-04-06 2008-09-11 Matsushita Electric Ind Co Ltd Nitride semiconductor laser apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513878A (en) * 1990-10-19 1993-01-22 Sharp Corp Semiconductor laser element
JPH04280897A (en) * 1991-03-11 1992-10-06 Sumitomo Electric Ind Ltd Vapor-phase growing process for compound semiconductor
JPH0897506A (en) * 1994-09-28 1996-04-12 Sharp Corp Manufacture of end face growth window type semiconductor laser element
JP2008211234A (en) * 1998-04-06 2008-09-11 Matsushita Electric Ind Co Ltd Nitride semiconductor laser apparatus
JP2008252138A (en) * 1998-04-06 2008-10-16 Matsushita Electric Ind Co Ltd Nitride semiconductor laser device
JP4598845B2 (en) * 1998-04-06 2010-12-15 パナソニック株式会社 Nitride semiconductor laser device
JP4598841B2 (en) * 1998-04-06 2010-12-15 パナソニック株式会社 Nitride semiconductor laser device
JP2004363320A (en) * 2003-06-04 2004-12-24 Sharp Corp Oxide semiconductor light emitting element

Similar Documents

Publication Publication Date Title
US4734385A (en) Semiconductor laser element suitable for production by a MO-CVD method
JP5491679B1 (en) Nitride semiconductor light emitting device
JPH11330605A (en) Semiconductor laser
JP3887174B2 (en) Semiconductor light emitting device
JP2008187044A (en) Semiconductor laser
JPH09326527A (en) Semiconductor laser device
JPH01115191A (en) Semiconductor laser and manufacture thereof
JP3432909B2 (en) Semiconductor laser
JP2000208814A (en) Semiconductor light-emitting element
JP4886634B2 (en) Quantum well structure, optical confinement quantum well structure, semiconductor laser, distributed feedback semiconductor laser, and method of manufacturing quantum well structure
US20090197363A1 (en) Method for manufacturing semiconductor optical device
JPH0511677B2 (en)
JP4917157B2 (en) Ridge type semiconductor laser and method for manufacturing ridge type semiconductor laser
JP2009212343A (en) Nitride semiconductor element, and method of manufacturing the same
JPH0389585A (en) Semiconductor laser and manufacture thereof
JPH09289358A (en) Netride semiconductor laser device and manufacturing method thereof
JP2006216752A (en) Manufacturing method for diffraction grating and semiconductor laser
JPH0646667B2 (en) Manufacturing method of AlGaInP semiconductor laser
JPH0897508A (en) Semiconductor laser
JPS63278395A (en) Double hetero type light emitting element
JP2002026458A (en) Semiconductor laser and method of manufacturing the same
JP2000058957A (en) Semiconductor laser device and manufacture thereof
JPH114042A (en) Semiconductor laser and manufacture thereof
JPH04240788A (en) Semiconductor laser
JPS61187388A (en) Manufacture of semiconductor laser