JPS6286785A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS6286785A
JPS6286785A JP22712285A JP22712285A JPS6286785A JP S6286785 A JPS6286785 A JP S6286785A JP 22712285 A JP22712285 A JP 22712285A JP 22712285 A JP22712285 A JP 22712285A JP S6286785 A JPS6286785 A JP S6286785A
Authority
JP
Japan
Prior art keywords
impurity element
semiconductor laser
layer
doped
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22712285A
Other languages
Japanese (ja)
Inventor
Takao Shibuya
隆夫 渋谷
Kunio Ito
国雄 伊藤
Yuichi Shimizu
裕一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22712285A priority Critical patent/JPS6286785A/en
Publication of JPS6286785A publication Critical patent/JPS6286785A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve reliability in high temperature operation by making clad layers contain impurity element which has a deep level not contributing to electrical conduction. CONSTITUTION:Impurity element which has a deep level not contributing to electrical conduction is contained in a clad layer. For instance, an N-type GaAs current blocking layer 2, the Zn doped P-type Al0.5Ga0.5As 1st clad layer 3, a nondoped Al0.1Ga0.9As active layer 4, the Te doped N-type Al0.5Ga0.5As 2nd clad layer 5 and a Te doped N-type GaAs contact layer 6 are formed on a P-type GaAs substrate 1. Impurity element Cu, which does not contribute to electrical conduction, is contained in the 1st and 2nd cladding layers 3 and 5 with concentration of 2X10<16>cm<-3>. With this constitution, multiplication of crystal defects growth in the semiconductor laser is suppressed by the impurity element and deterioration of the semiconductor laser can be avoided so that, even in the operation at high temperature, high reliability can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光フアイバ通信や、光ディスク、レーザプリ
ンタ等の光情報処理装置の光源に用いることができる半
導体レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor laser device that can be used as a light source for optical information processing devices such as optical fiber communications, optical disks, and laser printers.

従来の技術 近年、半導体レーザ装置は光フアイバ通信の光源、また
光デイスクメモリの記録・再生用光源として、そしてレ
ーザプリンタにと、光情報処理装置の心臓部をなすデバ
イスとして非常に重要となっている。
BACKGROUND OF THE INVENTION In recent years, semiconductor laser devices have become extremely important as light sources for optical fiber communications, for recording and reproducing optical disk memories, and as devices that form the heart of optical information processing equipment, such as laser printers. There is.

さて、このように様々な分野でその用途が次々と開拓さ
れている半導体レーザであるが、信頼性・高出力化・短
波長化等の性能向上の要求は益々厳しくなっている。
Now, as described above, semiconductor lasers are being used one after another in various fields, and demands for improved performance such as reliability, higher output, and shorter wavelength are becoming increasingly strict.

さて、中でも信頼性の向上は非常に重要である。Of these, improving reliability is extremely important.

半導体レーザの寿命は、通常高温加速寿命試験を行うこ
とによって予測される。いま、半導体レーザの寿命くτ
〉に、次式で示す依存性があるとする。
The life of a semiconductor laser is usually predicted by performing a high temperature accelerated life test. Now, the lifespan of semiconductor lasers is
> has the dependence shown by the following equation.

< r > = < r () > e x p (E
 a /k B T )kBはボルツ了ン定数、Tは絶
対温度、Eaは活性化エネルギーである。例えばダブリ
ュービージョイス アプライド フィツクス レタ〜ズ
28,11゜684〜686(1976)参照(W、 
B、 Joyae 。
< r > = < r () > e x p (E
a /kB T )kB is the Boltzian constant, T is the absolute temperature, and Ea is the activation energy. For example, see W.B.Joyce Applied Fixtures Letters 28, 11°684-686 (1976) (W.
B. Joyae.

et  al ;Appl、Phys、Lett 、2
8.11 、pp。
et al; Appl, Phys, Lett, 2
8.11, pp.

684〜686 (1976))。684-686 (1976)).

Tを変化させて種々の温度における寿命を測定すること
によって(1)式の活性化エネルギーEaが求メラレル
。アール エル ハートマン(R,I、。
By changing T and measuring the lifetime at various temperatures, the activation energy Ea of equation (1) can be determined by changing T. R.L. Hartman (R.I.).

Ha r tman )等によるとEa == 0.7
 eV の値が求められている。アール エル ハート
マン等アプライドフィツクス レターズ26,5,23
9〜242(1975)参照(R,L、Hartman
、 et an ;Appl、Phys、Lett。
According to Hartman et al., Ea == 0.7
The value of eV has been determined. R.L. Hartman et al. Applied Fixtures Letters 26, 5, 23
9-242 (1975) (R,L, Hartman
, et an; Appl, Phys, Lett.

26.5.pp、239〜242  (1975))通
常、活性化エネルギーの値はEa==0.7〜0.9e
V程度の値をとるといわれている。この高温加速試験の
結果から、室温における寿命を外挿法によって推定でき
ることになる。さて、(1)式かられかるように、半導
体レーザの動作温度が高くなると寿命は急激に短くなる
。半導体レーザは室温動作だけとは限らず、装置内に組
み込まれて使用される場合には40〜60℃になること
が多い。このことから、高温動作させたときの寿命の延
長は非常に重要な問題である。
26.5. pp, 239-242 (1975)) Usually, the value of activation energy is Ea==0.7-0.9e
It is said to take a value of about V. From the results of this high temperature accelerated test, the lifespan at room temperature can be estimated by extrapolation. Now, as can be seen from equation (1), as the operating temperature of a semiconductor laser increases, its lifetime rapidly shortens. Semiconductor lasers do not necessarily operate only at room temperature, but often operate at temperatures of 40 to 60° C. when incorporated into devices. For this reason, extending the life when operating at high temperatures is a very important issue.

ここでは埋め込みストライプ構造レーザ(以下BTRS
レーザと略する)を−例として述べる。
Here, a buried stripe structure laser (hereinafter referred to as BTRS)
(abbreviated as "laser") will be described as an example.

第3図はBTRSレーザの構造を示したものである。1
はp型G a A s基板、2は電流ブロッキング層(
n型GaAs ) 、3は第1クラッド層(Zn ドー
プp型An。、5Ga、6As)、 4は活性層(ノン
ドープAI!、。、1Gao、9As) 、sは第2ク
ラッド層(Te ドープn型A A 。、6G a o
、6A s層)、6はコンタクト層(To ドープn型
GaAs)である。第4図はBTRSレーザの高温加速
寿命試験の結果を示す特性図である。これは窒素ガス雰
囲気中で行い、光出力4.0mWの一定光出力駆動で働
かせている。また端面にはAI!、2o3の保護膜をコ
ーティングしである。60’C,80℃では5000時
間後でも劣化は見られなかったが、110’Cでは約5
00時間で劣化してしまう。
FIG. 3 shows the structure of a BTRS laser. 1
is a p-type GaAs substrate, 2 is a current blocking layer (
n-type GaAs), 3 is the first cladding layer (Zn-doped p-type An., 5Ga, 6As), 4 is the active layer (non-doped AI!,., 1Gao, 9As), s is the second cladding layer (Te-doped n Type AA., 6G ao
, 6A s layer), and 6 is a contact layer (To doped n-type GaAs). FIG. 4 is a characteristic diagram showing the results of a high temperature accelerated life test of a BTRS laser. This was carried out in a nitrogen gas atmosphere, and was driven with a constant optical output of 4.0 mW. Also, AI on the edge! , 2o3 protective film is coated. No deterioration was observed even after 5,000 hours at 60'C and 80°C, but at 110'C, about 5% deterioration was observed.
It will deteriorate in 00 hours.

発明が解決しようとする問題点 半導体レーザの劣化の原因としては、 1)端面酸化 2)内部における結晶欠陥の増殖 があげられる。1に関しては、端面に保護膜をコーティ
ングすることによって解決される。上記のような構成の
半導体レーザ装置では、劣化の原因2によって劣化が進
み、110′Cの高温加速寿命試験では約SOO時間で
劣化してしまい、高温動作の信頼性が低いという欠点を
有していた。
Problems to be Solved by the Invention The causes of deterioration of semiconductor lasers include: 1) Edge oxidation 2) Multiplication of internal crystal defects. 1 can be solved by coating the end face with a protective film. In a semiconductor laser device having the above configuration, deterioration progresses due to cause 2 of deterioration, and in a high temperature accelerated life test at 110'C, deterioration occurs in approximately SOO time, and the reliability of high temperature operation is low. was.

本発明は上記欠点に鑑み、高温動作において信頼性の高
い半導体レーザ装置を提供するものである。
In view of the above drawbacks, the present invention provides a semiconductor laser device that is highly reliable in high temperature operation.

問題点を解決するための手段 上記問題点を解決するために、本発明の半導体レーザ装
置は、クラッド層に電気伝導に寄与させるためにドープ
した不純物以外の深い準位の不純物元素を5 X 10
16cm−’以下台ませることから構成される。
Means for Solving the Problems In order to solve the above problems, the semiconductor laser device of the present invention includes a deep level impurity element other than the impurity doped in order to contribute to electrical conduction in the cladding layer.
It consists of a stand of 16 cm-' or less.

作  用 この構成によって、不純物元素が半導体レーザ装置内部
の結晶欠陥の増殖を押えて半導体レーザ装置の劣化を防
ぐことになり、高温での動作においても高い信頼性を得
ることかできる。
Function: With this configuration, the impurity element suppresses the growth of crystal defects inside the semiconductor laser device, thereby preventing deterioration of the semiconductor laser device, and high reliability can be obtained even in operation at high temperatures.

実施例 以下、本発明の一実施例について、図面を参照しながら
説明する。第3図の半導体レーザの構造図は本発明の一
実施例における半導体レーザ装置の構造と同様であるの
で同図を参照して説明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings. The structural diagram of a semiconductor laser shown in FIG. 3 is similar to the structure of a semiconductor laser device according to an embodiment of the present invention, so the description will be made with reference to the same figure.

p型G a A s基板1上に液相エピタキシャル法に
より各層を形成した。第1クラッド層3はp型入1゜s
 G a o 、s A 8層であるが、この第1クラ
ッド層3に電気伝導には寄与しない不純物元素Cuを濃
度2 x 10−16cm−’だけ結晶中へ含ませた。
Each layer was formed on a p-type GaAs substrate 1 by a liquid phase epitaxial method. The first cladding layer 3 contains p-type for 1°s
The first cladding layer 3 contains an impurity element Cu, which does not contribute to electrical conduction, at a concentration of 2 x 10-16 cm-' in the crystal.

Cuを第1クラッド層3へこれだけの濃度まで入れる方
法としては、次の方法をとった。第1クラッド層成長用
溶液はGa 1yに対して八2を2.6m9と、Znを
e 、oIR9とA8供給用ノア −y、 GaAs+
 0.57とを8oo′Cまで加熱することにより、A
1とZnとA8をGa溶液中へ溶は込ませて準備した。
The following method was used to introduce Cu into the first cladding layer 3 to this concentration. The solution for growing the first cladding layer was 2.6m9 of 82 for Ga1y, e of Zn, oIR9 and Noah-y for supplying A8, and GaAs+.
By heating 0.57 and 8oo'C, A
1, Zn, and A8 were dissolved in a Ga solution.

この時に使用したGaには、あらかじめCuを100 
ppm含ませておいた。Ga IICAII (!: 
ZnとAs とCuを溶かし込んだ第1クラッド層溶液
を800’Cから過飽和度を6℃だけつけて第1クラッ
ド層成長へ使用することにより、第1クラッド層にはC
uが2×1016crn−3含まれた。同様にして第2
クラッド層5にもCuを2 X 1016cm−’含ま
せた。このようにしてCuを第1クラッド層と第2クラ
ッド層に2x1o16crn−3含ませた半導体レーザ
装置の高温加速寿命試験を行った。その、結果を第1図
に示す。これも第4図の試験と同一条件で行った。すな
わち、試験は窒素ガス雰囲気中で行い、光出力4rnW
の一定光出力駆動で行っている。また端面にはA12o
3の保護膜をコーティングしである。この結果、60°
C980°C,110°Cいずれの場合にも6000時
間で劣化は見られなかった。
The Ga used at this time had 100% Cu added in advance.
ppm was included. Ga IICA II (!:
By using the first cladding layer solution in which Zn, As, and Cu are dissolved at a supersaturation level of 6°C from 800'C to grow the first cladding layer, the first cladding layer contains C.
2×10 16 crn-3 u were included. Similarly, the second
The cladding layer 5 also contained 2 x 1016 cm-' of Cu. In this manner, a high temperature accelerated life test was conducted on a semiconductor laser device in which 2×1016 crn-3 of Cu was contained in the first cladding layer and the second cladding layer. The results are shown in FIG. This was also conducted under the same conditions as the test shown in FIG. That is, the test was conducted in a nitrogen gas atmosphere, and the optical output was 4rnW.
This is done using a constant optical output drive. Also, the end face is A12o
It is coated with a protective film of No. 3. As a result, 60°
No deterioration was observed after 6000 hours at either 980°C or 110°C.

さて、クラッド層中のCuの濃度は5×10cIn以下
であれば上記と同様の結果が得られた。これを第2図に
示す。また、実施例では不純物元素としてCuをあげた
が、これに限定されず、Fe、Caでも同様の結果が得
られた。また、実施例では不純物元素をGaK含ませた
ものを使用したが、八2またはドルバントあるいはソー
スGaAsに含ませたものを使用してもより。
Now, if the concentration of Cu in the cladding layer was 5×10 cIn or less, the same results as above were obtained. This is shown in FIG. Further, in the examples, Cu was used as an impurity element, but the impurity element is not limited to this, and similar results were obtained with Fe and Ca. Further, in the embodiment, an impurity element containing GaK was used, but it is also possible to use an impurity element containing GaK, dolbant, or source GaAs.

発明の効果 以上のように本発明は、クラッド層に電気伝導には寄与
しない不純物元素を含ませるととKより、高温での動作
でも信頼性が向上し、その実用的効、果は大なるものが
ある。
Effects of the Invention As described above, in the present invention, when the cladding layer contains an impurity element that does not contribute to electrical conduction, reliability is improved even at high temperatures, and its practical effects and effects are great. There is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における高温加速寿命試験の
結果を示す特性図、第2図は不純物濃度を変化させた際
の高温加速寿命試験の結果を示す特性図、第3図はBT
RSレーザの構造図、第4図は従来の高温加速寿命試験
の結果を示す特性図である。 1・・・・・・p型GaAs基板、2・・・・・・電流
ブロッキング層、3・・・・・・第1クラッド層、4・
・・・・・活性層、6・・・・・・第2クラッド層、6
・・・・・・コンタクト層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 動作片間(−) 第2図 ム壜漠((nt−り 第3図 第4図 動イγ埒開(−9
Fig. 1 is a characteristic diagram showing the results of a high temperature accelerated life test in an embodiment of the present invention, Fig. 2 is a characteristic diagram showing the results of a high temperature accelerated life test when the impurity concentration is changed, and Fig. 3 is a characteristic diagram showing the results of a high temperature accelerated life test in an example of the present invention.
FIG. 4, which is a structural diagram of the RS laser, is a characteristic diagram showing the results of a conventional high temperature accelerated life test. DESCRIPTION OF SYMBOLS 1... p-type GaAs substrate, 2... current blocking layer, 3... first cladding layer, 4...
...Active layer, 6...Second cladding layer, 6
...Contact layer. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure movement interval (-) Figure 2 Figure 4 movement (-9

Claims (1)

【特許請求の範囲】[Claims] クラッド層内に電気伝導に寄与しない深い準位の不純物
元素を含むことを特徴とする半導体レーザ装置。
A semiconductor laser device characterized in that a cladding layer contains a deep level impurity element that does not contribute to electrical conduction.
JP22712285A 1985-10-11 1985-10-11 Semiconductor laser Pending JPS6286785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22712285A JPS6286785A (en) 1985-10-11 1985-10-11 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22712285A JPS6286785A (en) 1985-10-11 1985-10-11 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6286785A true JPS6286785A (en) 1987-04-21

Family

ID=16855821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22712285A Pending JPS6286785A (en) 1985-10-11 1985-10-11 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6286785A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2301934B (en) * 1995-06-05 2000-01-19 Hewlett Packard Co Minority carrier semiconductor devices with improved stability

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2301934B (en) * 1995-06-05 2000-01-19 Hewlett Packard Co Minority carrier semiconductor devices with improved stability

Similar Documents

Publication Publication Date Title
Shen et al. 1500‐h continuous cw operation of double‐heterostructure GaInAsP/InP lasers
Hartman et al. Reliability of DH GaAs lasers at elevated temperatures
JPS5856990B2 (en) Heterostructure optical device, method for manufacturing the same, and apparatus for manufacturing the same
JPS5963781A (en) Light emitting structure
JP2544378B2 (en) Optical semiconductor device
JPH0491484A (en) Manufacture of semiconductor laser device
US5268328A (en) Method of fabricating a semiconductor laser
JPS6286785A (en) Semiconductor laser
JPH04116993A (en) Semiconductor laser and manufacture of the same
JPS6242591A (en) Semiconductor laser device
JP3501676B2 (en) Method for manufacturing semiconductor laser device
Boyne et al. DISPERSION CHARACTERISTICS OF THE 1.15‐μ He‐Ne LASER LINE
JPS6414986A (en) Semiconductor laser
JP4249920B2 (en) End face window type semiconductor laser device and manufacturing method thereof
Oe et al. GaInAsP/InP planar stripe lasers prepared by using sputtered SiO2 film as a Zn‐diffusion mask
JPH0511677B2 (en)
JPH06164057A (en) Emiconductor laser and its manufacture
JP3193087B2 (en) AlGaInP semiconductor light emitting device
JP3164041B2 (en) Manufacturing method of semiconductor laser
Cheng et al. Substrate temperature dependence of the minority carrier lifetime in (AlGa) As/GaAs MQWs grown with As2 and As4
JPH06268324A (en) Fabrication of semiconductor device
JPS60247985A (en) Distributed feedback type semiconductor laser
JPS63285991A (en) Semiconductor laser
JP2880788B2 (en) Surface emitting semiconductor laser and method of manufacturing the same
JPS62134986A (en) Manufacture of semiconductor laser