JPS6242410B2 - - Google Patents

Info

Publication number
JPS6242410B2
JPS6242410B2 JP56009864A JP986481A JPS6242410B2 JP S6242410 B2 JPS6242410 B2 JP S6242410B2 JP 56009864 A JP56009864 A JP 56009864A JP 986481 A JP986481 A JP 986481A JP S6242410 B2 JPS6242410 B2 JP S6242410B2
Authority
JP
Japan
Prior art keywords
circuit
gain
current
amplifier circuit
transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56009864A
Other languages
Japanese (ja)
Other versions
JPS57124910A (en
Inventor
Tsutomu Kamoto
Masayuki Ishikawa
Kunyasu Kawarada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP56009864A priority Critical patent/JPS57124910A/en
Publication of JPS57124910A publication Critical patent/JPS57124910A/en
Publication of JPS6242410B2 publication Critical patent/JPS6242410B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G1/00Details of arrangements for controlling amplification
    • H03G1/0005Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal
    • H03G1/0017Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier
    • H03G1/0023Circuits characterised by the type of controlling devices operated by a controlling current or voltage signal the device being at least one of the amplifying solid state elements of the amplifier in emitter-coupled or cascode amplifiers

Landscapes

  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Networks Using Active Elements (AREA)

Description

【発明の詳細な説明】 この発明は例えば通信システムにおいて、デシ
ベルで表わす線路損失が√(f=周波数)に比
例する特性を有する線路損失を補償する等化増幅
回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an equalizing amplifier circuit for compensating for line loss in a communication system, for example, where the line loss expressed in decibels is proportional to √(f=frequency).

線路損失は一般に第1図に示すように周波数f
の平方根に比例し、かつ線路の長さが長くなる
程、同一周波数での損失が大きくなる。第1図で
パラメータは線路の長さを示し、l1>l2>l3であ
る。このように線路長が長くなるに従つて、低周
波域での損失が増加すると共に高周波域に至るス
ロープの傾斜が増加する。このような線路損失を
等化するため、従来においては第2図に示す構成
で実現していた。すなわち増幅器11の入力側を
抵抗器12を通じて入力端子13に接続し、また
増幅器11の入力側を抵抗器14を通じ、更に可
変抵抗器15を通じて接地し、抵抗器14と並列
にコンデンサ16を接続し、増幅器11の出力側
に接続された出力端子17から等化出力を得る。
このように増幅器11の前段に周波数特性のみを
補償するCR回路網を設け、可変抵抗器15とし
てダイオードを用い、等化出力尖頭値検出回路の
出力により、そのダイオードのバイアス電圧を制
御し、その交流抵抗r1(抵抗器15の抵抗値)を
変え、周波数特性を補償する回路の伝達関数にお
ける零点を変化させ、√近似特性を実現してい
た。
Line loss generally varies with frequency f as shown in Figure 1.
The loss at the same frequency increases as the length of the line increases. In FIG. 1, the parameters indicate the length of the line, l 1 > l 2 > l 3 . In this manner, as the line length increases, the loss in the low frequency range increases and the inclination of the slope leading to the high frequency range increases. In order to equalize such line loss, conventionally, a configuration shown in FIG. 2 has been used. That is, the input side of the amplifier 11 is connected to the input terminal 13 through the resistor 12, the input side of the amplifier 11 is grounded through the resistor 14 and further through the variable resistor 15, and the capacitor 16 is connected in parallel with the resistor 14. , an equalized output is obtained from an output terminal 17 connected to the output side of the amplifier 11.
In this way, a CR circuit network that compensates only the frequency characteristics is provided before the amplifier 11, a diode is used as the variable resistor 15, and the bias voltage of the diode is controlled by the output of the equalized output peak value detection circuit. By changing the AC resistance r 1 (the resistance value of the resistor 15) and changing the zero point in the transfer function of the circuit that compensates for the frequency characteristics, the √ approximation characteristics were realized.

この回路において、抵抗器12,14の各抵抗
抗値をR1、R2、コンデンサ16の容量をC1、入
力端子13の入力電圧をVi、増幅器11の入力
側の電圧をV0とすると、この回路の伝達関数は
次式のようになる。
In this circuit, let the resistance values of the resistors 12 and 14 be R 1 and R 2 , the capacitance of the capacitor 16 be C 1 , the input voltage of the input terminal 13 be Vi, and the voltage on the input side of the amplifier 11 be V 0 , the transfer function of this circuit is as follows.

しかしSは複素周波数で S=σ+jω(ωは角周波数、σは実数) 零点は S=−r+R/CR であり、極は S=−1/CR となる。この極は増幅回路の帰還ループに設けら
れた固定零により打消され、零点のみを可変とす
ることができ、等化回路の利得周波数特性を折れ
線で近似すると、第3図に示すように折れ点周波
数fz以下で一定利得、fz以上で周波数fの増加
と共に利得が20dB/デイゲイト(6dB/オクター
ブ)で増加する折れ線で近似できる特性が得ら
れ、r1を制御することにより、折れ点fzと、一
定利得の大きさが変化する。このように第2図に
示す回路は零点に制御のみで近似特性を得るた
め、低周波数域における利得が増加するに従い、
高周波域に至るスロープの傾斜を増加させること
ができず、線路長の異なる種々の線路に対して広
い周波数範囲にわたつて良好な等化特性を得るこ
とは難かしかつた。
However, S is a complex frequency, S=σ+jω (ω is an angular frequency, σ is a real number), the zero point is S=-r 1 +R 2 /CR 2 r 1 , and the pole is S=-1/CR 2 . This pole is canceled by the fixed zero provided in the feedback loop of the amplifier circuit, and only the zero point can be made variable.If the gain frequency characteristic of the equalization circuit is approximated by a polygonal line, the polygonal line will appear as shown in Figure 3. A characteristic can be obtained that can be approximated by a polygonal line in which the gain is constant below the frequency f z and the gain increases by 20 dB/day gate (6 dB/octave) as the frequency f increases above f z.By controlling r 1 , the bending point f z , the magnitude of the constant gain changes. In this way, the circuit shown in Figure 2 obtains approximate characteristics only by controlling the zero point, so as the gain in the low frequency range increases,
It is not possible to increase the inclination of the slope reaching the high frequency range, and it is difficult to obtain good equalization characteristics over a wide frequency range for various lines with different line lengths.

従来の等化増幅回路として第4図に示すように
ベース端子を入力とするトランジスタ18のコレ
クタと電源端子19との間にコレクタ抵抗器21
を接続し、トランジスタ18のエミツタとアース
間にエミツタ抵抗器22を接続し、エミツタ抵抗
器22と並列に可変容量ダイオード23を接続
し、そのダイオード23を端子24の制御電圧に
より制御して極の位置を移動させるものもあつ
た。この回路において、実現すべき利得の周波数
特性を大きく変化させる場合は、可変極の変化幅
を広くする必要があり、そのためには可変容量ダ
イオード23の制御電圧の変化幅を大きくする必
要があり、集積回路内でそのように大幅に変化す
る制御電圧を発生することは困難がある。
As shown in FIG. 4, a conventional equalization amplifier circuit includes a collector resistor 21 between the collector of a transistor 18 whose base terminal is input and a power supply terminal 19.
An emitter resistor 22 is connected between the emitter of the transistor 18 and the ground, a variable capacitance diode 23 is connected in parallel with the emitter resistor 22, and the diode 23 is controlled by the control voltage of the terminal 24 to Some moved their positions. In this circuit, if the frequency characteristics of the gain to be achieved are to be greatly changed, it is necessary to widen the variation range of the variable pole, and for that purpose, it is necessary to increase the variation range of the control voltage of the variable capacitance diode 23. It is difficult to generate such widely varying control voltages within an integrated circuit.

この発明はこれらの欠点を除去するため、集積
回路として構成すれば少ない外付け素子で√特
性を良好に近似でき、つまり少ない部品点数で良
好な特性を得ることができ、しかも集積回路内で
扱い得る数100mVの制御電圧の可変幅で、広い
範囲にわたり特性を変化できるようにしようとす
るものである。
In order to eliminate these drawbacks, this invention makes it possible to approximate the √ characteristic well with a small number of external elements by configuring it as an integrated circuit.In other words, it is possible to obtain good characteristics with a small number of parts. The aim is to make it possible to change the characteristics over a wide range by varying the control voltage of several hundred mV.

この発明によれば入力信号が供給される差動増
幅回路を構成し、その差動増幅回路の一対の差動
トランジスタのエミツタ交流抵抗及びそのエミツ
タ間に接続されたコンデンサにより√特性を
得、その差動増幅回路の全体の電流を電流切替回
路の一方の切替電流で制御して、回路の極を移動
させこれにより高周波域での利得を制御する。
According to the present invention, a differential amplifier circuit to which an input signal is supplied is constructed, and a √ characteristic is obtained by the emitter AC resistance of a pair of differential transistors of the differential amplifier circuit and a capacitor connected between the emitters. The overall current of the differential amplifier circuit is controlled by one switching current of the current switching circuit to move the pole of the circuit and thereby control the gain in the high frequency range.

第5図はこの発明の一実施例を示し、トランジ
スタ31,32により差動増幅回路を形成する。
すなわち、トランジスタ31,32のコレクタと
電源端子19との間に抵抗器33,34を接続
し、エミツタは抵抗器35,36を通じて互いに
接続すると共にコンデンサ37を通じて互いに接
続する。抵抗器35,36の接続点にトランジス
タ38のコレクタを接続し、トランジスタ38と
トランジスタ39とのエミツタを定電流源41を
通じて接地して電流切替回路を形成し、トランジ
スタ39のコレクタは電源端子19に接続する。
トランジスタ31,32のベースが一対の入力端
子42,43とされ、コレクタが一対の出力端子
44,45、トランジスタ39のベースが利得制
御電圧端子46、トランジスタ38のベースが基
準電圧端子47とそれぞれされる。
FIG. 5 shows an embodiment of the present invention, in which transistors 31 and 32 form a differential amplifier circuit.
That is, resistors 33 and 34 are connected between the collectors of transistors 31 and 32 and power supply terminal 19, and their emitters are connected to each other through resistors 35 and 36 and to each other through a capacitor 37. The collector of the transistor 38 is connected to the connection point between the resistors 35 and 36, the emitters of the transistor 38 and the transistor 39 are grounded through a constant current source 41 to form a current switching circuit, and the collector of the transistor 39 is connected to the power supply terminal 19. Connecting.
The bases of the transistors 31 and 32 serve as a pair of input terminals 42 and 43, the collectors serve as a pair of output terminals 44 and 45, the base of the transistor 39 serves as a gain control voltage terminal 46, and the base of the transistor 38 serves as a reference voltage terminal 47, respectively. Ru.

第5図の回路の差動増幅回路のトランジスタ3
1側の一半部を取出すと第6図に示すようにな
る。トランジスタ31の等価回路より、この第6
図の回路を第7図に示すように書ける。入力端子
42の入力電圧Viはトランジスタ31のベース
エミツタ接合動作抵抗51と抵抗35との直列回
路の両端間に印加され、そのベースエミツタ接合
動作抵抗51の両端電圧vに、トランジスタ31
の相互コンダクタンスgmとの積gmvの電流源5
2が抵抗器35と直列に接続され、その両端にコ
レクタ抵抗器33が接続される。コレクタ抵抗器
33、エミツタ抵抗器35、ベースエミツタ接合
動作抵抗51の各抵抗値をRL、RE、rπとし、
コンデンサ37′の容量はコンデンサ37の容量
の2倍で2C2、出力端子44の出力電圧をV0、抵
抗器35、コンデンサ37′の並列インピーダン
スをRE′とすると、第7図より次式が成立つ。
Transistor 3 of the differential amplifier circuit in the circuit shown in Figure 5
When one half of the first side is removed, it becomes as shown in FIG. 6. From the equivalent circuit of transistor 31, this sixth
The circuit shown in the figure can be written as shown in Figure 7. The input voltage Vi of the input terminal 42 is applied across the series circuit of the base-emitter junction operating resistor 51 of the transistor 31 and the resistor 35, and the voltage V across the base-emitter junction operating resistor 51 is applied to the transistor 31.
A current source 5 whose product gmv is the transconductance gm of
2 is connected in series with a resistor 35, and a collector resistor 33 is connected to both ends thereof. Let the respective resistance values of the collector resistor 33, the emitter resistor 35, and the base-emitter junction operating resistance 51 be R L , R E , and rπ,
Assuming that the capacitance of the capacitor 37' is twice that of the capacitor 37, 2C 2 , the output voltage of the output terminal 44 is V 0 , and the parallel impedance of the resistor 35 and capacitor 37' is R E ', the following equation is obtained from FIG. holds true.

r2=1/gmはトランジスタ31のエミツタ交流抵 抗である。 r 2 =1/gm is the emitter AC resistance of the transistor 31.

となる。(3)式を(2)式に代入すると、 第5図は差動増幅回路を構成しているから、第
6図に示した回路の2倍の利得が得られる。よつ
て第5図に示した回路の入出力の伝達関数は、 で与えられる。(5)式より、この実施例の回路は 固定零点S=−1/2C (6) 可変極S=−R+r/2C・r (7) をもつ。
becomes. Substituting equation (3) into equation (2), we get Since FIG. 5 constitutes a differential amplifier circuit, a gain twice as high as that of the circuit shown in FIG. 6 can be obtained. Therefore, the input/output transfer function of the circuit shown in Figure 5 is is given by From equation (5), the circuit of this embodiment has a fixed zero point S=-1/2C 2 R E (6) and a variable pole S=-R E +r 2 /2C 2 R E ·r 2 (7).

この第6図の回路の低周波数領域での利得は、
コンデンサ37′のインピーダンスが著しく高く
なるから、(2)式でRE′=REとなり、 V/Vi=R/r+R (8) となる。端子46の制御電圧Vcと、端子47の
基準電圧Vrとの電位関係を変化させると、第8
図の曲線53に示すようにエミツタ交流抵抗r2
変化し、これに伴つて極の位置が移動し、曲線5
4に示すように対応する折れ点の周波数が移動す
る。零点の位置は一定であり、線55で示すよう
にこれと対応する折れ点の周波数は一定である。
ただしRE=500Ω、C2=50p、I=1mAの場合で
ある。Iは電流源41の定電流値である。Vcが
Vrより高電位の場合はVc−Vr>0、VcがVrより
低電位の場合はVc−Vr<0である。一般に零点
S=−a0(しかしa0>0)をもつ伝達関数の利得
周波数特性は周波数軸を対数目盛にすると、第9
図に点線で示すように、周波数fと共に利得が増
加し、ω(=2πf)=a0における利得は、ω=
0における利得より3dB増加し、ω>>a0になる
と、スロープの傾斜は20dB/デイケイド(6dB/
オクターブ)となる。従つてこの特性を直線で近
似すると、同図の実線で示すように、ω=a0に折
れ点をもつ折れ線で近似できる。極S=−b0(し
かしb0>0)をもつ伝達関数の利得周波数特性に
ついても第10図に示すように、第9図の場合と
同様に折れ線で近似できる。しかし折れ点はω=
b0であり、スロープの傾斜は負である。
The gain in the low frequency region of the circuit shown in Figure 6 is:
Since the impedance of the capacitor 37' becomes significantly high, R E '=R E in equation (2), and V 0 /Vi=R L /r 2 +R E (8). When the potential relationship between the control voltage Vc of the terminal 46 and the reference voltage Vr of the terminal 47 is changed, the eighth
As shown in curve 53 in the figure, the emitter AC resistance r 2 changes, and the pole position moves accordingly.
As shown in 4, the frequency of the corresponding bending point moves. The position of the zero point is constant, and the frequency of the corresponding bending point is constant, as shown by line 55.
However, this is the case when R E =500Ω, C 2 =50p, and I=1mA. I is a constant current value of the current source 41. Vc is
When the potential is higher than Vr, Vc-Vr>0, and when Vc is lower than Vr, Vc-Vr<0. In general, the gain frequency characteristic of a transfer function with zero point S = -a 0 (but a 0 > 0) is the 9th gain frequency characteristic when the frequency axis is on a logarithmic scale.
As shown by the dotted line in the figure, the gain increases with frequency f, and the gain at ω (=2πf) = a 0 is ω =
When the gain increases by 3 dB from the gain at 0 and ω >> a 0 , the slope becomes 20 dB/decade (6 dB/decade).
octave). Therefore, if this characteristic is approximated by a straight line, it can be approximated by a broken line having a breaking point at ω=a 0 , as shown by the solid line in the figure. The gain frequency characteristic of a transfer function having a pole S=-b 0 (but b 0 >0) can also be approximated by a polygonal line, as shown in FIG. 10, as in the case of FIG. However, the breaking point is ω=
b 0 and the slope slope is negative.

この発明回路では固定零点〔(6)式〕に対し、可
変極〔(7)式〕は実軸上で(r2+RE)/r2倍だけ
常に高い位置に存在する。従つて基本的には第1
1図に示すように、零点と対応する折れ点以下で
一定利得、零点と対応する折れ点より極と対応す
る折れ点までは周波数と共に利得が増加し、極と
対応する折れ点以上で一定の折れ線近似特性をも
つ利得周波数特性になる。
In the circuit of this invention, the variable pole [formula (7)] is always located at a position higher than the fixed zero point [formula (6)] by a factor of (r 2 +R E )/r 2 on the real axis. Therefore, basically the first
As shown in Figure 1, the gain is constant below the breaking point corresponding to the zero point, increases with frequency from the breaking point corresponding to the zero point to the breaking point corresponding to the pole, and is constant above the breaking point corresponding to the pole. The gain frequency characteristic has a polygonal line approximation characteristic.

基準電圧Vrと制御電圧Vcとの関係を変化させ
ることにより、エミツタ交流抵抗r2を変化させて
第12図に示すように特性を制御することができ
る。こゝでRL=1KΩ、RE=500Ω、C2
50pF、I=1mAである。このようにVc−Vrを制
御することにより、線路損失に応じた周波数特性
を近似させることができる。この制御を自動的に
行うには出力端子44,45の出力のピーク値を
検出し、その出力により端子46の制御電圧Vc
を制御して前記出力のピーク値が一定になるよう
にする。
By changing the relationship between the reference voltage Vr and the control voltage Vc, the emitter AC resistance r 2 can be changed to control the characteristics as shown in FIG. 12. Here, R L = 1KΩ, R E = 500Ω, C 2 =
50pF, I=1mA. By controlling Vc-Vr in this way, it is possible to approximate the frequency characteristics according to the line loss. To perform this control automatically, the peak values of the outputs of the output terminals 44 and 45 are detected, and the control voltage Vc of the terminal 46 is determined based on the output.
is controlled so that the peak value of the output is constant.

このようにこの発明では伝達関数に零点及び極
をもち、その極の位置と低周波域の利得とをエミ
ツタ交流抵抗r2を可変させて共に変化させるよう
にしているため、r2を小さくするに従つて低周波
域の利得を増加させると共に高周波域に至るスロ
ープの傾斜を増加させることができ、線路長の異
なる種々の線路の等化に対応できる特性が得ら
れ、第2図に示した従来のものよりも近似特性を
よくすることができる。しかも半導体集積回路と
して構成し、これにコンデンサ37など僅かの素
子を外付けすることにより、少ない部品点数で構
成することができる。しかも電流切替回路の電流
分配を制御することにより利得を制御するため、
その制御電圧Vcの変化範囲が比較的小さくても
大幅に利得を制御することができる。
In this way, in this invention, the transfer function has a zero point and a pole, and the position of the pole and the gain in the low frequency range are changed together by varying the emitter AC resistance r 2 , so that r 2 can be reduced. Accordingly, it is possible to increase the gain in the low frequency range and increase the inclination of the slope leading to the high frequency range, resulting in characteristics that can be applied to equalization of various lines with different line lengths, as shown in Figure 2. Approximation characteristics can be improved better than conventional ones. Furthermore, by constructing the circuit as a semiconductor integrated circuit and externally attaching a few elements such as the capacitor 37, it is possible to construct the circuit with a reduced number of parts. Moreover, since the gain is controlled by controlling the current distribution of the current switching circuit,
Even if the variation range of the control voltage Vc is relatively small, the gain can be significantly controlled.

さらに線路損失特性に対する補償の近似度を良
くするためにはこの実施例回路を多段に接続し、
固定零点、可変極を複数設けることにより容易に
可能となる。
Furthermore, in order to improve the approximation of compensation for line loss characteristics, this example circuit is connected in multiple stages,
This becomes possible easily by providing a plurality of fixed zero points and variable poles.

第13図はこの発明の第2の実施例を示し、第
5図に示した第1の実施例に対して、トランジス
タ31,32に対しそれぞれコレクタ、ベースを
共通とするトランジスタ56,57を付加し、ト
ランジスタ56,57のエミツタを抵抗器58,
59を通じて互いに接続し、抵抗器58,59の
接続点をトランジスタ39のコレクタに接続す
る。こゝでトランジスタ38,39で形成する電
流切替回路の電流配分比をxとし、定電流源41
の電流値Iのうち、x・I(但し0≦x≦1)が
トランジスタ38を流れると、トランジスタ39
には(1−x)・Iが流れる。第2の実施例の構
成によれば利得制御信号入力Vcと基準電圧Vrと
に電位関係でxが変化しても、信号入力V1,V2
がバランスした状態では、トランジスタ38の電
流が変化すると、その変化分に応じてトランジス
タ56,57を流れる電流が変化し、トランジス
タ31,32にx・I/2、トランジスタ56,
57に(1−x)・I/2の各電流が流れ、抵抗
器33,34には端子46,47の電位Vc,Vr
の関係によらずI/2が流れる。従つて第1の実
施例で述べたような原理でトランジスタ31,3
2で形成する差動増幅回路の利得が変化し、出力
振幅が変化しても、その出力信号の振幅の中心レ
ベルは常に一定値に保持される。また第1の実施
例においてはトランジスタ38を流れる電流が減
少して、エミツタ交流抵抗r2が大きくなると、(8)
式から理解されるように低周波領域での利得が減
少し過ぎるおそれがある。しかし第2の実施例で
はトランジスタ56,57の利得により低周波領
域での最低利得の低下を押えることができる。第
13図において、追加したトランジスタ56,5
7の各エミツタに接続される抵抗器の抵抗値をR
E′、エミツタ交流抵抗をr2′(=1/gn′)とす
れば、この回路の電圧利得AVを低周波域におい
て 2R/r+R>AV>2R/r′+R′(9) の範囲に設定でき、低周波域での利得設定の自由
度が増し、等化偏差を小さくすることができる(9)
式のr2、r2′は で与えられる。ここでkはボルツマン定数、Tは
絶体温度、qは電子の電荷である。
FIG. 13 shows a second embodiment of the present invention, in which transistors 56 and 57 are added to the first embodiment shown in FIG. The emitters of transistors 56 and 57 are connected to resistors 58 and 57, respectively.
59, and the connection point of resistors 58 and 59 is connected to the collector of transistor 39. Here, the current distribution ratio of the current switching circuit formed by the transistors 38 and 39 is set to x, and the constant current source 41
When x·I (0≦x≦1) of the current value I flows through the transistor 38, the transistor 39
(1-x)·I flows. According to the configuration of the second embodiment, even if x changes due to the potential relationship between the gain control signal input Vc and the reference voltage Vr, the signal inputs V 1 and V 2
In a balanced state, when the current in the transistor 38 changes, the current flowing through the transistors 56 and 57 changes according to the change, and the current flowing through the transistors 31 and 32 is
Currents (1-x) and I/2 flow through the resistors 33 and 34, and the potentials Vc and Vr of the terminals 46 and 47 flow through the resistors 33 and 34, respectively.
I/2 flows regardless of the relationship. Therefore, based on the principle described in the first embodiment, the transistors 31, 3
Even if the gain of the differential amplifier circuit formed by 2 changes and the output amplitude changes, the center level of the amplitude of the output signal is always maintained at a constant value. Further, in the first embodiment, when the current flowing through the transistor 38 decreases and the emitter AC resistance r 2 increases, (8)
As understood from the equation, there is a risk that the gain in the low frequency region will decrease too much. However, in the second embodiment, the decrease in the minimum gain in the low frequency region can be suppressed by the gains of the transistors 56 and 57. In FIG. 13, the added transistors 56, 5
The resistance value of the resistor connected to each emitter of 7 is R.
E ', and the emitter AC resistance is r 2 ' (=1/g n '), the voltage gain A V of this circuit in the low frequency range is 2R L /r 2 +R E > A V > 2R L /r 2 ′+R E ′(9), which increases the degree of freedom in gain setting in the low frequency range and reduces equalization deviation(9)
r 2 and r 2 ′ in the equation are is given by Here, k is Boltzmann's constant, T is the absolute temperature, and q is the charge of the electron.

以上説明したように、この発明によれば差動増
幅回路を形成する2つのトランジスタのエミツタ
を直結する容量と、エミツタ抵抗により√特性
を実現し、差動増幅回路の回路電流を制御するこ
とにより、線路長に応じた利得を得るようにして
いるため、回路的に簡単であり、素子数も少ない
利点があり、かつ小さい制御信号で大幅に特性を
制御できる。またこの回路を多段接続することに
より、より精度の高い√近似特性が容易に実現
できる。更に第2の実施例では出力信号の振幅の
中心レベルが常に一定であるため、波形歪も小さ
く、直流結合のための設計が容易となり集積回路
内で扱い易い。√特性補償用の容量を短絡する
ことにより、光フアイバーケーブルのように、√
特性の線路損失を有しない線路に対しても適用
可能である。
As explained above, according to the present invention, the capacitance that directly connects the emitters of two transistors forming the differential amplifier circuit and the emitter resistor realize the √ characteristic, and by controlling the circuit current of the differential amplifier circuit. Since the gain is obtained according to the line length, the circuit is simple and has the advantage of having a small number of elements, and the characteristics can be significantly controlled with a small control signal. Furthermore, by connecting this circuit in multiple stages, more accurate √ approximation characteristics can be easily realized. Furthermore, in the second embodiment, since the center level of the amplitude of the output signal is always constant, waveform distortion is small, and design for DC coupling is easy, making it easy to handle within an integrated circuit. √ By shorting the capacitance for characteristic compensation, like optical fiber cable, √
It is also applicable to lines that do not have a characteristic line loss.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は周波数軸を対数表示したときの√特
性を有する線路損失特性の模式図、第2図は従来
の等化増幅回路を示す接続図、第3図はその等化
特性図、第4図は従来の他の等化増幅回路を示す
接続図、第5図はこの発明による等化増幅回路の
一例を示す接続図、第6図はその一部を示す図、
第7図は第6図の回路の等価回路図、第8図は制
御電圧Vcに対するエミツタ交流抵抗r2の変化、
極と対応する折れ点周波数の移動状態を示す図、
第9図は実軸上に零点ある一般的特性を示す図、
第10図は実軸上に極がある一般的特性を示す
図、第11図はこの発明による等化増幅回路の特
性例を示す図、第12図はその具体例を示す図、
第13図はこの発明の等化増幅回路の他の実施例
を示す接続図である。
Figure 1 is a schematic diagram of line loss characteristics with √ characteristics when the frequency axis is expressed logarithmically, Figure 2 is a connection diagram showing a conventional equalization amplifier circuit, Figure 3 is its equalization characteristic diagram, and Figure 4 FIG. 5 is a connection diagram showing another conventional equalization amplifier circuit, FIG. 5 is a connection diagram showing an example of the equalization amplifier circuit according to the present invention, and FIG. 6 is a diagram showing a part thereof.
Fig. 7 is an equivalent circuit diagram of the circuit shown in Fig. 6, and Fig. 8 shows the change in emitter AC resistance r2 with respect to the control voltage Vc.
A diagram showing the movement state of the poles and the corresponding bending point frequencies,
Figure 9 is a diagram showing general characteristics with zero points on the real axis,
FIG. 10 is a diagram showing general characteristics with a pole on the real axis, FIG. 11 is a diagram showing an example of the characteristics of the equalizing amplifier circuit according to the present invention, and FIG. 12 is a diagram showing a specific example thereof.
FIG. 13 is a connection diagram showing another embodiment of the equalization amplifier circuit of the present invention.

Claims (1)

【特許請求の範囲】 1 第1、第2のトランジスタのコレクタがそれ
ぞれ第1、第2の抵抗器に接続されると共に、一
対の出力端子に接続され、エミツタがコンデンサ
を通じて互いに接続されると共にそれぞれ第3、
第4の抵抗器を介して互いに接続され、ベースが
一対の入力端子に接続されて差動増幅回路が構成
され、 定電流源の定電流を分配する電流切替回路の一
方の切替電流路が上記第3、第4の抵抗器の接続
点に接続され、 上記電流切替回路に対する分配比を制御する制
御端子が設けられ、 その制御端子の制御信号により上記差動増幅回
路の電流が制御されて、回路の極の位置を移動さ
せると同時に低周波領域における利得を変化させ
ることにより、利得周波数特性において、低周波
領域の利得の増加に応じて、高周波領域に至るス
ロープの傾斜を増加することができるようにされ
た等化増幅回路。
[Claims] 1. The collectors of the first and second transistors are connected to the first and second resistors, respectively, and to a pair of output terminals, and the emitters of the first and second transistors are connected to each other through a capacitor. Third,
They are connected to each other via a fourth resistor, and their bases are connected to a pair of input terminals to form a differential amplifier circuit, and one switching current path of the current switching circuit that distributes the constant current of the constant current source is the above-mentioned one. A control terminal is provided that is connected to the connection point of the third and fourth resistors and controls the distribution ratio for the current switching circuit, and the current of the differential amplifier circuit is controlled by the control signal of the control terminal. By moving the pole position of the circuit and changing the gain in the low frequency region at the same time, it is possible to increase the slope leading to the high frequency region in the gain frequency characteristic as the gain in the low frequency region increases. An equalization amplifier circuit designed like this.
JP56009864A 1981-01-26 1981-01-26 Equalizing amplifying circuit Granted JPS57124910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56009864A JPS57124910A (en) 1981-01-26 1981-01-26 Equalizing amplifying circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56009864A JPS57124910A (en) 1981-01-26 1981-01-26 Equalizing amplifying circuit

Publications (2)

Publication Number Publication Date
JPS57124910A JPS57124910A (en) 1982-08-04
JPS6242410B2 true JPS6242410B2 (en) 1987-09-08

Family

ID=11732001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56009864A Granted JPS57124910A (en) 1981-01-26 1981-01-26 Equalizing amplifying circuit

Country Status (1)

Country Link
JP (1) JPS57124910A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223241A (en) * 1975-08-15 1977-02-22 Fujitsu Ltd Frequency compensation system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5223241A (en) * 1975-08-15 1977-02-22 Fujitsu Ltd Frequency compensation system

Also Published As

Publication number Publication date
JPS57124910A (en) 1982-08-04

Similar Documents

Publication Publication Date Title
JPS6155806B2 (en)
US5394112A (en) Differential transconductor with reduced temperature dependence
US4379268A (en) Differential amplifier circuit
US5192884A (en) Active filter having reduced capacitor area but maintaining filter characteristics
JPH0642184B2 (en) Current stabilization circuit
US4956615A (en) Input circuit for high-frequency amplifiers
JPH08237054A (en) Gain variable circuit
US5028884A (en) Leapfrog filter having adjustable center frequency and quality factor
US4500932A (en) Signal processing circuit
US4242650A (en) Active variable equalizer
US4157512A (en) Electronic circuitry having transistor feedbacks and lead networks compensation
JPS6242410B2 (en)
US5134318A (en) Adjustable analog filter circuit with temperature compensation
US4247789A (en) Electronic circuitry for multiplying/dividing analog input signals
EP0250763A1 (en) Differental summing amplifier for inputs having large common mode signals
JPS62256504A (en) Wide band amplifier
JPH02223209A (en) Amplifier circuit using feedback type load
US4013972A (en) Amplifier with gain control means
JPH0233387Y2 (en)
JP2901248B2 (en) Variable reactance circuit
JPS6218089B2 (en)
JPH0154884B2 (en)
JPS63193710A (en) Integration circuit
JPS628572Y2 (en)
JPH0720969Y2 (en) Variable gain circuit of differential amplifier