JPS6241972B2 - - Google Patents

Info

Publication number
JPS6241972B2
JPS6241972B2 JP55031792A JP3179280A JPS6241972B2 JP S6241972 B2 JPS6241972 B2 JP S6241972B2 JP 55031792 A JP55031792 A JP 55031792A JP 3179280 A JP3179280 A JP 3179280A JP S6241972 B2 JPS6241972 B2 JP S6241972B2
Authority
JP
Japan
Prior art keywords
foamable composition
vinyl chloride
mold
molded product
chloride resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55031792A
Other languages
Japanese (ja)
Other versions
JPS56129236A (en
Inventor
Hisashi Fujimori
Takashi Fujimori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Fuji Kasei Kogyo Co Ltd
Original Assignee
Mitsubishi Monsanto Chemical Co
Fuji Kasei Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Monsanto Chemical Co, Fuji Kasei Kogyo Co Ltd filed Critical Mitsubishi Monsanto Chemical Co
Priority to JP3179280A priority Critical patent/JPS56129236A/en
Publication of JPS56129236A publication Critical patent/JPS56129236A/en
Publication of JPS6241972B2 publication Critical patent/JPS6241972B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は、高発泡の成形品を得ることのできる
発泡性組成物及び該組成物から発泡成形品を製造
する方法に係る。 「従来の技術」 熱可塑性樹脂の独立気泡を有する高発泡体は、
断熱性が優れ、特に塩化ビニル樹脂発泡体は優れ
た難燃性、耐薬品性、機械的強度を合せもち、各
種保冷用タンクの断熱材、冷却ガスの断熱材、建
築用断熱材等の用途に使用されるに到つている。 しかして、塩化ビニル樹脂の発泡体は、その製
法として発泡剤を含有した塩化ビニル樹脂を押出
成形、射出成形等の方法で成形と同時に発泡させ
る方法や、発泡性樹脂を金型内で加圧下に加熱し
た発泡剤の熱分解後、除圧する方法等が知られて
いる。また、特殊な方法として塩化ビニル樹脂及
び充填材に溶剤と液化ブタンを混合して発泡させ
る方法が例えば特許第615762号、同第897788号、
同第929418号によつて公知になつている。 しかしながら、これらの発泡方法では10〜50倍
もの高発泡体を得ることは難しく、特殊な場合で
も塩化ビニル樹脂の物性、充填材の種類及び粒
径、発泡剤の種類、助剤の種類、成形方法等の厳
しい選択によりせいぜい16〜17倍程度の発泡が限
度であつた。たとえ厳しい条件下で成形しても得
られた成形品の発泡倍率、気泡の分布、寸法安定
性等が劣り、商品価値のある成形品となるには程
遠く、換言すれば安定して所望の成形品をまとめ
て製造することが出来ず、結果として原材料に対
する成形品の歩留も極めて低いというのが現状で
あつた。 「発明が解決しようとした問題点」 本発明者等は、微細でかつ均一気泡を有し、寸
法安定性の良好な高発泡倍率の成形品を製造すべ
く鋭意検討したところ、塩化ビニル系樹脂、有機
溶媒及び発泡剤からなる樹脂組成物にアクリロニ
トリルを存在させることにより極めて細かいしか
も均一な気泡構造を有し、寸法安定性は勿論圧縮
強度の優れた高発泡成形品を製造することができ
ることを見いだし、さらに、アクリロニトリルを
添加したことにより塩化ビニル系樹脂と同量以上
の無機質充填材を組成物中に添加してもいわゆる
ガス抜けと称する現象は全く起らず、極めて容易
にかつ安定して塩化ビニル系樹脂と同様の均一気
泡を有する、寸法安定性良好な高発泡成形品を製
造することができることを見いだし本発明を完成
するに到つた。 すなわち、本発明の目的は、微細で均一気泡構
造を有する寸法安定性の良好な、しかも圧縮強度
のすぐれた高発泡の成形品をうることのできる発
泡性組成物及びそれを使用した発泡成形品の製造
方法を提供するにある。 「問題点を解決するための手段」 しかして、本発明の要旨は、第一に塩化ビニル
系樹脂、有機溶媒、発泡剤及びアクリロニトリル
からなる発泡性組成物にあり、第二に発泡性組成
物を密閉金型内で加熱成形した後、金型から取り
出して発泡成形品を製造する方法において、前記
発泡性組成物は、塩化ビニル系樹脂、有機溶媒、
発泡剤及びアクリロニトリルを混練してなり、前
記密閉された金型内での加熱は、昇温中発泡性組
成物の各個所の温度差が小さい値になるようにゆ
つくりと行い、発泡剤が分解または気化する温度
以上でかつ塩化ビニル系樹脂がゲル化する温度ま
で加熱することを特徴とする発泡成形品の製造方
法に存する。 本発明をさらに詳細に説明するに、本発明の組
成物に使用しうる塩化ビニル系樹脂とは、特に限
定されるものではなく、塩化ビニルまたは塩化ビ
ニリデンの単独重合体のほか、これら単量体と共
重合可能な単量体、例えばエチレン、プロピレ
ン、酢酸ビニル、アクリル酸、アクリル酸メチ
ル、メタクリル酸、メタタリル酸メチル、スチレ
ン等との共重合体等を挙げることができる。この
内でも塩化ビニル単独重合体、またはこれと酢酸
ビニルとの共重合体が、充填材との混和性、難燃
性の成形品を得ることができるという点で好適に
使用される。さらに、塩化ビニル系樹脂は、発泡
成形品の製造の方法から考え、粉末状であるのが
好ましく、特に塩化ビニル樹脂の場合は3μ以下
の平均粒径を有するペーストレジンであるのが最
も好ましい。 本発明の組成物に使用しうる無機質充填材と
は、カルシウム、マグネシウム、アルミニウム等
の炭酸塩、硫酸塩、珪酸塩、酸化物または水酸化
物、タルク、ベントナイト、クレー、ガラス繊
維、アスベスト等の熱可塑性樹脂の充填材として
使用される各種のものがあげられ、これらの一種
または二種以上が混合して用いられる。そしてこ
れらの充填材の粒度分布は、1mm以下の大きさ、
すなわち20メツシユ以上の値を有するのがよく、
好ましくは60メツシユの篩を通過するものが使用
される。本発明の組成物では、発泡倍率、発泡成
形品の所望する物性等を考慮して、好んで200メ
ツシユ以上の値を有する微細な粒子と200メツシ
ユ以下の値を有する粒子とを適宜量混合して使用
されることが多い。 無機質充填材の塩化ビニル系樹脂に対する混合
割合は、特に限定されるものではなく、塩化ビニ
ル系樹脂100重量部に対し、900重量部までの範囲
で大量に添加することができ、例えば、塩化ビニ
ル樹脂の場合は樹脂成分100重量部に対して200〜
900重量部、特に400〜800重量部の範囲であるの
が発泡成形品の物性の点、難燃性の付与及び経済
性の面から好ましい。 本発明組成物の一成分である有機溶媒は、用い
られる塩化ビニル系樹脂の種類によつて選択され
るべきであり、また該有機溶媒は塩化ビニル系樹
脂を完全に溶解させる必要はなく、一部溶解また
は膨潤させる程度の溶媒であればよく、要は、混
練中に塩化ビニル系樹脂または無機質充填材との
馴みが良ければよい。しかしながら、混練中また
は加熱成形中に溶媒が分解せず、一旦成形した後
は、成形品から除去し易いものであるのが良い。
有機溶媒の例としてはベンゼン、トルエン、キシ
レン、クロルベンゼン等沸点が70〜150℃程度の
芳香族化合物が適しており、その他、塩化エチレ
ン、トリクロルエタン、四塩化炭素等が用いられ
る。塩化ビニル樹脂の場合はトルエンまたはトル
エンとキシレンの混合物を使用するのが最も好適
である。 有機溶媒の使用割合は特に制約されるものでは
ないが、混練性や経済性の点から塩化ビニル系樹
脂またはそれと充填材の混合物(以下これらを
「基材」という)100重量部に対して30〜80重量
部、好ましくは40〜70重量部であるのが適当であ
る。溶媒の量が30重量部より少なくなるにしたが
つて可塑剤の存在なくしては、組成物の各成分を
均一に馴ませるのが難しくなり、また80重量%以
上使用すれば昇温中発泡性組成物を均一に加熱し
て、組成物の各個所の温度差を小さくすることが
できる利点はあるけれども、発泡成形品の気泡が
荒れ気味になつたり、溶媒の回収等に莫大な経費
を要したりして不利な点が多くなる傾向にある。 発泡剤は、加熱分解有機系発泡剤、無機系発泡
剤または揮発性発泡剤のあらゆるものが使用し得
る。例えば有機系発泡剤としては、アゾジカルボ
ンアミド、N,N′―ジニトロソペンタメチレン
テトラミン、N,N′―ジニトロソ―N,N′―ジ
メチルテレフタルアミド、ベンゼン―1,3―ジ
スルホヒドラジド、テレフタルアジド等があげら
れる。また、無機系発泡剤としては、重炭酸ソー
ダ、塩化アンモニウム等1g当り150c.c.以上の多
量のガス発生量を有する加熱分解型発泡剤があげ
られる。さらに、液化されたプロパン、メチルエ
ーテル、二塩化二フツ化メタン、ブタン等の室温
(20℃)で気体の揮発性発泡剤があげられる。こ
れら発泡剤は、単独でまたは複数を混合して用い
られる。 本発明の組成物においては、特にN,N′―ジ
ニトロソペンタメチレンテトラミンのような顕熱
型の発泡剤を用いるのが好ましく、さらにはN,
N′―ジニトロソペンタメチレンテトラミンと他
の発泡剤、例えばアゾジカルボンアミドまたは重
炭酸ソーダとを混合して使用するのが最適であ
る。両者の併用割合は、全発泡剤に対して前者を
30〜90重量%、特に40〜80重量%の範囲内とする
のが好ましい。重炭酸ソーダを用いることによ
り、発泡成形品の気泡がより微細にかつ均一にな
る。しかして、発泡剤の添加量は、基材100重量
部に対して2〜20重量部、好ましくは3〜15重量
部の範囲から選択するのが適当である。 本発明組成物の必須成分であるアクリロニトリ
ルは、基材100重量部に対して10重量部までの範
囲、好ましくは2〜5重量部の範囲で使用するこ
とができる。多量に使用するからといつて、使用
量の増大にともない成形品の圧縮強度が比例して
増大するものでない。そして、いかなる理由によ
るかは不明であるけれども、ニトリル化合物を添
加した組成物から製造された発泡成形品は、発泡
剤のガスを組成物中に均一に分散させ、圧縮強度
等の物性の向上に極めて大きな影響を与えてい
る。 本発明の発泡性組成物は、前記の必須成分のほ
かに発泡剤の分解温度を調節する助剤、紫外線吸
収剤、耐熱安定剤、酸化防止剤、有機系充填材、
染顔料等を必要に応じ添加することができる。 本発明の組成物から発泡成形品を製造するに
は、まず塩化ビニル系樹脂、有機溶媒、発泡剤、
アクリロニトリルまたは無機質充填材を、さらに
必要に応じ発泡助剤等を均一に混合する。これら
成分を混合する方法としては、スーパーミキサ
ー、らい潰機、バンバリーミキサー、ニーダー等
を用いて常温で均一に混合する。本発明方法では
特に、ニーダーで少なくとも10分間程度、好まし
くは30〜80分間混練するのが好ましい。勿論揮発
性発泡剤をその一成分としている場合には密閉型
ニーダを用いるのがよい。全成分を混練する時、
無機質充填材とアクリロニトリルを、また必要に
応じ有機溶媒と一緒に、前もつて混練処理した後
塩化ビニル系樹脂、発泡剤、有機溶媒等を混練す
るのが、発泡成形品の気泡を緻密にし、均一にす
る効果があるので好ましい。 均一に混練された発泡性組成物は、スクリユー
押出機、ロータリーポンプ等の移送装置でもつて
金型内に移送され、金型を密閉した後加熱を開始
する。また金型への移送は密閉された金型内に発
泡性組成物を圧入してもよい。金型内への充填量
は、金型内の空間を完全に充たすのが好ましく、
こうすることにより加熱中に金型内での発泡性組
成物の各個所での温度差を小さくすることがで
き、また金型内で発泡ガスの分離を防ぐことがで
き、発泡性組成物自体も発泡しない。 金型は密閉され、しかも容易に加熱し得るもの
なら特に限定されないが、本発明方法では、通常
熱硬化性樹脂の成形に広く用いられるトランスフ
ア成形用の装置及びトランスフア成形用金型に類
似した金型が、高い型締圧が得られ、金型から発
泡ガスの洩がない等の利点を有し、かつ寸法安定
性のすぐれた成形品を容易に製造することができ
るという点で最も好都合に使用される。金型の加
熱には、通常電気、油等の熱媒または水蒸気が用
いられ、金型またはプレス板に装着されたニクロ
ム線または配管によつて行う。 加熱の速度は、金型キヤビテイーの大きさ、す
なわち発泡性組成物の厚さ、幅等を考慮して決め
る必要があり、金型内の発泡性組成物の各個所で
の温度差が加熱中にあまり大きくならないように
するのが好ましい。要するに発泡性組成物の中心
と金型に接する組成物の温度との間に大きな温度
差、すなわち温度勾配を生じさせないような速度
で昇温するのが好ましい。温度差は15℃以内、で
きれば10℃以内の範囲に維持するのが好ましい。
しかして、発泡性組成物の温度は、少なくとも発
泡剤の分解または気化する温度以上で、かつ塩化
ビニル系樹脂がゲル化する温度まで加熱する必要
がある。発泡剤の分解速度が遅い場合には、ゲル
化温度またはそれ以上の温度で発泡剤が完全に分
解するまで保つのが望ましい。発泡性組成物の温
度の上限は、塩化ビニル系樹脂の分解しない温度
であれば良いが、通常塩化ビニル系樹脂の種類、
発泡剤の種類等により決定するのが良く、200℃
以下、好ましくは150〜180℃、特に160〜170℃の
範囲まで昇温することができる。勿論、発泡性組
成物の昇温は、上述の昇温方法に限定されるもの
ではなく、間欠、段階的に昇温することもでき
る。 発泡性組成物が充分にゲル化し、発泡剤が分解
または気化が行われた後は加熱を停止し、金型を
密閉した状態で速やかに冷却を行う。冷却方法は
空冷、水冷等いかなる方法でもよいが、水蒸気加
熱に用いられた配管に冷却水を通して冷却するの
が好ましく、該冷却は室温以下の過冷却になつて
もなんら差支えない。金型内で冷却された発泡性
組成物は除圧して金型を開放することにより、除
圧と同時に通常は2〜5倍に発泡し、発泡成形品
となる。成形品の肉厚が大きい場合、その表面は
固化しているけれども、成形品内部はまだ充分に
冷却されていない状態にある場合が多く、この場
合でも自然放冷することにより内部の気泡構造に
大きな変化を与えることなく固化され、良好な発
泡成形品となる。 本発明方法により得られた発泡成形品は、さら
に80〜120℃、好ましくは90〜110℃に保持された
オーブン中で加熱することにより発泡成形品自体
が2〜10倍、すなわち発泡性組成物の4〜50倍も
の体積に二次発泡し、膨張する。オーブン中に保
持する時間は、発泡成形品の肉厚にもよるが、通
常100mm程度の肉厚であれば30分間以上、好まし
くは50〜70分間である。発泡成形品の内部がまだ
充分に冷却されていない状態のものを使用すると
二次発泡に際しては好都合に作用し、さらに気泡
構造を均一にし、内部まで完全に冷却したものに
比較し加熱時間も短縮される。 「発明の効果」 本発明は、次のような特別に顕著な効果を奏
し、その産業上の利用価値は極めて大である。 1 本発明の発泡性組成物は、従来の組成物から
は得られないような緻密で均一な気泡構造を有
する高発泡体が得られ、アクリロニトリルがい
かなる作用をなすのか明確ではないけれども、
塩化ビニル系樹脂に対して9倍もの無機質充填
材を添加しても、発泡時にガス抜けという現象
は起らず、また発泡後も大きな収縮はなく、寸
法安定性の良い発泡成形品を成形することがで
きる。 2 アクリロニトリルを使用しなければ、各気泡
毎に被膜(隔壁)強度低下によるガス抜けのた
めに、発泡成形品の二次加工から生じる発泡成
形品回収屑等(粉砕再利用、以下R―レジンと
いう)を混合することはできなかつたが、少量
のアクリロニトリルを使用することによりR―
レジンを使用することができ、しかも基材の全
量をロスすることなく使用することができ、し
かも極めて容易に良好な発泡成形品の製造が可
能となり経済的にも頗る有利であることが判つ
た。 3 本発明の組成物から得た発泡成形品は、アク
リロニトリルを使用しないものに比し圧縮強度
が極めて高い値を示し、また独立気泡構造を有
するため、浮力材、断熱材、電気絶縁材として
頗る利用価値が高い。 本発明の組成物には、可塑剤を添加して軟質の
発泡体を製造することもできるが、可塑剤を使用
しないで硬質の高発泡成形品を製造することの方
が、成形品に不燃、準不燃という性質を付与する
ため有利であり、各種保冷用タンクの断熱材また
は建築用の断熱材等としての用途が広い。 「実施例」 以下、本発明を実施例により更に詳細に説明す
るが、本発明は、その要旨を超えない限り、以下
の実施例に限定されるものではない。 実施例1及び比較例1 塩化ビニルペーストレジン(基材)800g、ジ
ニトロソペンタメチレンテトラミン(DPT)54
g、アゾジカルボンアミド(ADCA)12g、尿素
系発泡助剤32g、カルシウム―亜鉛系安定剤
(Ca―Zn系安定剤)10g、トルエン440g及びア
クリロニトリル32gを20℃でニーダーに仕込み、
約1時間混練した。 得られた組成物をスクリユ型移送機でトランス
フア成形用金型(内容積250mm×250mm×15mm)に
移送し、発泡ガスが洩れないように型締めし、金
型に設けた配管に8Kg/cm2の圧力を有する水蒸気
を調節しながら、30分かけて160℃までゆつくり
と昇温し、該温度で10分間保持した。その後金型
の配管に冷却水を通し30分間で室温まで冷却し金
型を除圧し発泡成形品を得た。該発泡成形品は型
開きと同時に約2.8倍に発泡した。 この発泡成形品をさらに100℃に加熱されたオ
ーブン中に1時間放置して自由に発泡させた後オ
ーブンから取り出した。この時の全発泡倍率は16
倍以上で、見掛け比重は0.0923であつた。得られ
た二次発泡成形品の気泡は、直径約1.5〜2mmで
均一に分散しており、該成形品の8点における圧
縮強度は最大値が8.82Kg/cm2、最低値が8.36Kg/
cm2であり、平均8.52Kg/cm2であつた。 比較のため、アクリロニトリルを使用しないほ
かは実施例1と同様にして二次発泡成形品を得
た。該二次発泡成形品の気泡は、2mmから5mmの
大きさを有し、その中心程大きく、また気泡間の
肉厚も大きかつた。該発泡体の見掛け比重は、
0.132であつた。 また、比較例1において発泡剤の量を増し実施
例1に近似した見掛け比重を有する二次発泡体の
8点における圧縮強度は、最大9.3Kg/cm2、最低
3.6Kg/cm2、平均で6.1Kg/cm2と実施例1に比べて
著しく低い値を示した。
"Industrial Application Field" The present invention relates to a foamable composition capable of producing a highly foamed molded article and a method for producing a foamed molded article from the composition. ``Prior art'' Highly foamed thermoplastic resin with closed cells is
It has excellent insulation properties, and PVC resin foam in particular has excellent flame retardancy, chemical resistance, and mechanical strength, and is used as insulation for various cold storage tanks, cooling gas insulation, and construction insulation. It has come to be used. Polyvinyl chloride resin foams can be manufactured by extrusion molding, injection molding, or other methods in which polyvinyl chloride resin containing a foaming agent is foamed at the same time as the molding process, or by pressurizing the foamable resin in a mold. A method is known in which the pressure is removed after thermal decomposition of a blowing agent heated to . In addition, as a special method, there is a method in which a solvent and liquefied butane are mixed with vinyl chloride resin and a filler to foam, for example, Japanese Patent Nos. 615762 and 897788,
It is known from the same No. 929418. However, it is difficult to obtain foams as high as 10 to 50 times with these foaming methods. Due to strict selection of methods, foaming was limited to about 16 to 17 times. Even if molded under severe conditions, the resulting molded product will have poor expansion ratio, bubble distribution, dimensional stability, etc., and will be far from being a molded product with commercial value.In other words, it will not be possible to stably produce the desired molded product. Currently, molded products cannot be manufactured in bulk, and as a result, the yield of molded products based on raw materials is extremely low. ``Problems that the invention seeks to solve'' The inventors of the present invention conducted intensive studies to produce a molded product with fine and uniform cells, good dimensional stability, and high expansion ratio, and discovered that vinyl chloride resin It was discovered that by including acrylonitrile in a resin composition consisting of an organic solvent and a blowing agent, it is possible to produce a highly foamed molded product with an extremely fine and uniform cell structure and excellent compressive strength as well as dimensional stability. Furthermore, by adding acrylonitrile, even if an amount of inorganic filler equal to or more than that of the vinyl chloride resin is added to the composition, the phenomenon called so-called outgassing does not occur at all, and it is extremely easy and stable. The present invention was completed by discovering that it is possible to produce a highly foamed molded product with good dimensional stability and having uniform cells similar to those of vinyl chloride resin. That is, the object of the present invention is to provide a foamable composition capable of producing a highly foamed molded product having a fine, uniform cell structure, good dimensional stability, and excellent compressive strength, and a foamed molded product using the same. To provide a manufacturing method. "Means for Solving the Problems" The gist of the present invention is, firstly, a foamable composition comprising a vinyl chloride resin, an organic solvent, a blowing agent, and acrylonitrile; In the method of producing a foamed molded product by heating and molding the composition in a closed mold and then removing it from the mold, the foamable composition comprises a vinyl chloride resin, an organic solvent,
The foaming agent and acrylonitrile are kneaded together, and the foaming composition is heated slowly in the sealed mold so that the temperature difference between each part of the foaming composition is small during heating. The present invention relates to a method for producing a foamed molded article, which comprises heating to a temperature at which the vinyl chloride resin gels and above a temperature at which it decomposes or vaporizes. To explain the present invention in more detail, the vinyl chloride resin that can be used in the composition of the present invention is not particularly limited, and includes homopolymers of vinyl chloride or vinylidene chloride, as well as monomers thereof. Examples include copolymers with monomers copolymerizable with ethylene, propylene, vinyl acetate, acrylic acid, methyl acrylate, methacrylic acid, methyl methacrylate, styrene, and the like. Among these, vinyl chloride homopolymers or copolymers of vinyl acetate and vinyl chloride homopolymers are preferably used because they are miscible with fillers and can provide flame-retardant molded products. Furthermore, in view of the method of manufacturing foamed molded products, the vinyl chloride resin is preferably in powder form, and in particular, in the case of vinyl chloride resin, it is most preferably a paste resin having an average particle size of 3 μm or less. Inorganic fillers that can be used in the composition of the present invention include carbonates, sulfates, silicates, oxides, or hydroxides of calcium, magnesium, aluminum, etc., talc, bentonite, clay, glass fiber, asbestos, etc. There are various fillers used as fillers for thermoplastic resins, and one or more of these may be used as a mixture. The particle size distribution of these fillers is 1 mm or less,
In other words, it is better to have a value of 20 meshes or more,
Preferably, those that pass through a 60 mesh sieve are used. In the composition of the present invention, an appropriate amount of fine particles having a value of 200 mesh or more and particles having a value of 200 mesh or less are preferably mixed in consideration of the expansion ratio, desired physical properties of the foamed molded product, etc. It is often used. The mixing ratio of the inorganic filler to the vinyl chloride resin is not particularly limited, and it can be added in large amounts up to 900 parts by weight per 100 parts by weight of the vinyl chloride resin. In the case of resin, 200 to 100 parts by weight of resin component
A content of 900 parts by weight, particularly preferably from 400 to 800 parts by weight, is preferable from the viewpoints of physical properties of the foam molded product, imparting flame retardance, and economical efficiency. The organic solvent that is one of the components of the composition of the present invention should be selected depending on the type of vinyl chloride resin used, and the organic solvent does not need to completely dissolve the vinyl chloride resin; Any solvent may be used as long as it partially dissolves or swells the resin, and in short, it only needs to be compatible with the vinyl chloride resin or inorganic filler during kneading. However, it is preferable that the solvent does not decompose during kneading or hot molding, and that it can be easily removed from the molded product once molded.
Suitable examples of the organic solvent include aromatic compounds having a boiling point of about 70 to 150°C, such as benzene, toluene, xylene, and chlorobenzene.Other examples include ethylene chloride, trichloroethane, and carbon tetrachloride. In the case of vinyl chloride resins, it is most preferred to use toluene or a mixture of toluene and xylene. The proportion of organic solvent to be used is not particularly restricted, but from the viewpoint of kneading properties and economic efficiency, it is 30 parts by weight per 100 parts by weight of vinyl chloride resin or a mixture of it and filler (hereinafter referred to as "base material"). ~80 parts by weight, preferably 40-70 parts by weight is suitable. As the amount of solvent becomes less than 30 parts by weight, it becomes difficult to uniformly mix the components of the composition without the presence of a plasticizer, and if it is used in an amount of 80 parts by weight or more, the foamability during heating increases. Although it has the advantage of being able to uniformly heat the composition and reduce the temperature difference between different parts of the composition, it can also cause the bubbles in the foam molded product to become rough and require a huge amount of money to recover the solvent. There is a tendency for there to be many disadvantages. As the blowing agent, any of thermally decomposable organic blowing agents, inorganic blowing agents, and volatile blowing agents can be used. For example, organic blowing agents include azodicarbonamide, N,N'-dinitrosopentamethylenetetramine, N,N'-dinitroso-N,N'-dimethylterephthalamide, benzene-1,3-disulfohydrazide, and terephthalamide. Examples include azide. Examples of inorganic blowing agents include thermally decomposed blowing agents that generate a large amount of gas of 150 c.c. or more per gram, such as sodium bicarbonate and ammonium chloride. Further examples include blowing agents that are gaseous at room temperature (20° C.), such as liquefied propane, methyl ether, methane dichloride difluoride, and butane. These blowing agents may be used alone or in combination. In the composition of the present invention, it is particularly preferable to use a sensible heat blowing agent such as N,N'-dinitrosopentamethylenetetramine;
Optimally, a mixture of N'-dinitrosopentamethylenetetramine and other blowing agents such as azodicarbonamide or sodium bicarbonate is used. The ratio of the former to the total foaming agent is
It is preferably in the range of 30 to 90% by weight, particularly 40 to 80% by weight. By using bicarbonate of soda, the cells in the foamed molded product become finer and more uniform. Therefore, the amount of the foaming agent added is appropriately selected from the range of 2 to 20 parts by weight, preferably 3 to 15 parts by weight, based on 100 parts by weight of the base material. Acrylonitrile, which is an essential component of the composition of the present invention, can be used in an amount of up to 10 parts by weight, preferably in a range of 2 to 5 parts by weight, based on 100 parts by weight of the base material. Even if a large amount is used, the compressive strength of the molded article does not increase proportionally as the amount used increases. Although it is unclear what the reason is, foamed molded products manufactured from compositions containing nitrile compounds have been found to have improved physical properties such as compressive strength by uniformly dispersing the foaming agent gas in the composition. It has had a huge impact. In addition to the above-mentioned essential components, the foamable composition of the present invention includes an auxiliary agent for adjusting the decomposition temperature of the foaming agent, an ultraviolet absorber, a heat stabilizer, an antioxidant, an organic filler,
Dyes and pigments can be added as necessary. To produce a foamed molded product from the composition of the present invention, first a vinyl chloride resin, an organic solvent, a blowing agent,
Acrylonitrile or an inorganic filler and, if necessary, a foaming aid and the like are mixed uniformly. As a method of mixing these components, they are uniformly mixed at room temperature using a super mixer, a crusher, a Banbury mixer, a kneader, or the like. In the method of the present invention, it is particularly preferable to knead in a kneader for at least about 10 minutes, preferably 30 to 80 minutes. Of course, if a volatile blowing agent is used as one of the components, a closed kneader is preferably used. When kneading all ingredients,
The inorganic filler and acrylonitrile are kneaded together with an organic solvent if necessary, and then the vinyl chloride resin, blowing agent, organic solvent, etc. are kneaded to make the cells in the foam molded product dense. This is preferable because it has a uniform effect. The uniformly kneaded foamable composition is transferred into a mold using a transfer device such as a screw extruder or a rotary pump, and after the mold is sealed, heating is started. Further, the foamable composition may be transferred to a mold by press-fitting the foamable composition into a closed mold. It is preferable that the amount of filling into the mold completely fills the space within the mold.
By doing this, it is possible to reduce the temperature difference between different parts of the foamable composition in the mold during heating, and also to prevent the separation of foaming gas in the mold, so that the foamable composition itself It also doesn't foam. The mold is not particularly limited as long as it is sealed and can be heated easily, but in the method of the present invention, it is possible to use a transfer molding device and a mold similar to the transfer molding mold that are commonly used for molding thermosetting resins. These molds are the most popular in that they have advantages such as high mold clamping pressure, no leakage of foaming gas from the mold, and can easily produce molded products with excellent dimensional stability. used for convenience. The mold is usually heated using electricity, a heating medium such as oil, or steam, and is carried out by a nichrome wire or piping attached to the mold or press plate. The speed of heating must be determined by taking into account the size of the mold cavity, i.e. the thickness and width of the foamable composition, and the temperature difference at each location of the foamable composition in the mold will increase during heating. It is preferable not to make it too large. In short, it is preferable to raise the temperature at a rate that does not create a large temperature difference, that is, a temperature gradient, between the center of the foamable composition and the temperature of the composition in contact with the mold. It is preferable to maintain the temperature difference within 15°C, preferably within 10°C.
Therefore, the temperature of the foamable composition needs to be at least higher than the temperature at which the foaming agent decomposes or vaporizes, and heated to a temperature at which the vinyl chloride resin gels. If the blowing agent has a slow decomposition rate, it is desirable to maintain the blowing agent at a temperature at or above the gelling temperature until the blowing agent is completely decomposed. The upper limit of the temperature of the foamable composition may be a temperature at which the vinyl chloride resin does not decompose, but it usually depends on the type of vinyl chloride resin,
It is best to decide based on the type of blowing agent, etc., and the temperature is 200℃.
Thereafter, the temperature can be increased preferably to a range of 150 to 180°C, particularly 160 to 170°C. Of course, the temperature increase of the foamable composition is not limited to the above-mentioned temperature increase method, and the temperature can also be increased intermittently or in stages. After the foamable composition has sufficiently gelled and the foaming agent has been decomposed or vaporized, heating is stopped and the mold is quickly cooled with the mold closed. The cooling method may be any method such as air cooling or water cooling, but it is preferable to cool by passing cooling water through the piping used for steam heating, and there is no problem even if the cooling is supercooled to below room temperature. When the foamable composition cooled in the mold is depressurized and the mold is opened, the foaming composition usually expands 2 to 5 times as much as the pressure is removed, thereby forming a foamed molded product. When the wall thickness of a molded product is large, although the surface has solidified, the inside of the molded product is often not yet sufficiently cooled. It solidifies without major changes and becomes a good foam molded product. The foamed molded product obtained by the method of the present invention is further heated in an oven maintained at 80 to 120°C, preferably 90 to 110°C, so that the foamed molded product itself becomes 2 to 10 times larger than the foamable composition. It undergoes secondary foaming and expands to 4 to 50 times the volume. The time for holding in the oven depends on the wall thickness of the foam molded product, but if the foam molded product has a wall thickness of about 100 mm, it is usually 30 minutes or more, preferably 50 to 70 minutes. If the inside of the foam molded product is not yet sufficiently cooled, it will be advantageous for secondary foaming, and the cell structure will be uniform, and the heating time will be shorter than when the inside is completely cooled. be done. "Effects of the Invention" The present invention has the following particularly remarkable effects, and its industrial utility value is extremely large. 1. The foamable composition of the present invention provides a highly foamed product with a dense and uniform cell structure that cannot be obtained from conventional compositions, and although it is not clear what effect acrylonitrile has,
Even if 9 times as much inorganic filler is added to the vinyl chloride resin, there will be no outgassing phenomenon during foaming, and there will be no large shrinkage after foaming, making it possible to mold foam molded products with good dimensional stability. be able to. 2 If acrylonitrile is not used, the foam molded product recovered waste (pulverized reuse, hereinafter referred to as R-resin) generated from the secondary processing of the foam molded product is ) could not be mixed, but by using a small amount of acrylonitrile, R-
It has been found that resin can be used without losing the entire amount of the base material, and it is also possible to manufacture good foam molded products extremely easily, which is extremely advantageous economically. . 3. Foamed molded products obtained from the composition of the present invention exhibit extremely high compressive strength compared to products that do not use acrylonitrile, and have a closed cell structure, making them excellent as buoyancy materials, heat insulating materials, and electrical insulating materials. Highly useful. Although a plasticizer can be added to the composition of the present invention to produce a soft foam, it is better to produce a hard, highly foamed molded product without using a plasticizer. It is advantageous because it imparts quasi-nonflammable properties, and has a wide range of uses as a heat insulating material for various cold storage tanks or as a heat insulating material for buildings. "Examples" Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. Example 1 and Comparative Example 1 Vinyl chloride paste resin (base material) 800 g, dinitrosopentamethylenetetramine (DPT) 54
g, 12 g of azodicarbonamide (ADCA), 32 g of urea foaming aid, 10 g of calcium-zinc stabilizer (Ca-Zn stabilizer), 440 g of toluene, and 32 g of acrylonitrile were placed in a kneader at 20°C.
The mixture was kneaded for about 1 hour. The obtained composition was transferred to a transfer molding mold (inner volume 250 mm x 250 mm x 15 mm) using a screw-type transfer machine, the mold was clamped to prevent foaming gas from leaking, and 8 kg/kg was transferred to the piping provided in the mold. The temperature was slowly raised to 160° C. over 30 minutes while controlling the steam having a pressure of cm 2 and maintained at this temperature for 10 minutes. Thereafter, cooling water was passed through the piping of the mold to cool it down to room temperature for 30 minutes, and the mold was depressurized to obtain a foamed molded product. The foamed molded product expanded approximately 2.8 times as soon as the mold was opened. This foamed molded product was further left in an oven heated to 100° C. for 1 hour to allow it to foam freely, and then removed from the oven. The total foaming ratio at this time is 16
It was more than double that, and the apparent specific gravity was 0.0923. The cells in the obtained secondary foamed molded product have a diameter of about 1.5 to 2 mm and are uniformly dispersed, and the compressive strength at 8 points of the molded product has a maximum value of 8.82 Kg/cm 2 and a minimum value of 8.36 Kg/cm 2 .
cm2 , and the average was 8.52Kg/ cm2 . For comparison, a secondary foam molded product was obtained in the same manner as in Example 1 except that acrylonitrile was not used. The cells in the secondary foamed molded product had a size of 2 mm to 5 mm, and were larger toward the center, and the wall thickness between the cells was also larger. The apparent specific gravity of the foam is
It was 0.132. In addition, in Comparative Example 1, the compressive strength at 8 points of the secondary foam with an increased amount of blowing agent and an apparent specific gravity similar to that of Example 1 was 9.3 Kg/cm 2 at the maximum and 9.3 Kg/cm 2 at the minimum.
3.6Kg/cm 2 , and an average of 6.1Kg/cm 2 , which was significantly lower than that of Example 1.

【表】 実施例 2 塩化ビニルペーストレジン120g、R―レジン
280g(以上基材)、DPT24g、ADCA8g、尿素
系発泡助剤16g、Ca―Zn系安定剤、トルエン220
g、アクリロニトリル12gを均一に混練し、実施
例1で使用した金型よりも小さい金型内に入れ実
施例1と同様にして二次発泡成形品を得た。 該成形品の見掛け比重は、0.0677で21倍以上発
泡しており、直径2〜3mmの均一な気泡構造を有
していた。 実施例 3 ニーダー中にタルク276g、炭酸カルシウム180
g、アスベスト粉末54g及びアクリロニトリル36
gを仕込み、10分間均一に混合し、次いでトルエ
ン100gを添加してさらに10分間混合した。その
後塩化ビニルペーストレジン300g、R―レジン
90g、トルエン395g、DPT36g、尿素系発泡助
剤を添加して均一に充分混練した。混練組成物を
実施例1で使用したより小型の金型に移送し、そ
の後ほぼ実施例1と同様にして二次発泡成形品を
製造した。 得られた成形品の見掛け比重は、0.135であ
り、直径約2〜3mmの気泡構造を有する均一な高
発泡成形品であつた。 実施例 4 実施例3においてDPT36gの代りにDPT18
g、重炭酸ソーダ18gを用いたほかは実施例3と
同様にして二次発泡体を製造した。 該発泡体の見掛け比重は0.101であり、22倍以
上の発泡倍率を有し、直径約1mmの緻密、均一気
泡構造を有する高発泡成形品であつた。 実施例 5 アクリロニトリル36gに替えて、市販のニトリ
ルゴム40gをトルエンに溶解して加えたほかは実
施例3と同様の方法にて二次発泡成形品を得た。 該発泡品の見掛け比重は、0.140であり、直径
約3mmの気泡構造を有していた。
[Table] Example 2 Vinyl chloride paste resin 120g, R-resin
280g (base material), DPT24g, ADCA8g, urea foaming aid 16g, Ca-Zn stabilizer, toluene 220g
g and 12 g of acrylonitrile were uniformly kneaded and placed in a mold smaller than that used in Example 1 to obtain a secondary foam molded product in the same manner as in Example 1. The molded product had an apparent specific gravity of 0.0677, was foamed more than 21 times, and had a uniform cell structure with a diameter of 2 to 3 mm. Example 3 Talc 276g, calcium carbonate 180g in kneader
g, asbestos powder 54g and acrylonitrile 36g
g was charged and mixed uniformly for 10 minutes, then 100 g of toluene was added and mixed for an additional 10 minutes. Then 300g of vinyl chloride paste resin, R-resin
90g of toluene, 395g of toluene, 36g of DPT, and a urea-based foaming aid were added and thoroughly kneaded uniformly. The kneaded composition was transferred to a smaller mold than that used in Example 1, and then a secondary foam molded article was produced in substantially the same manner as in Example 1. The apparent specific gravity of the obtained molded product was 0.135, and it was a uniform highly foamed molded product having a cell structure with a diameter of about 2 to 3 mm. Example 4 DPT18 instead of DPT36g in Example 3
A secondary foam was produced in the same manner as in Example 3, except that 18 g of sodium bicarbonate was used. The foam had an apparent specific gravity of 0.101, an expansion ratio of 22 times or more, and was a highly foamed molded product having a dense, uniform cell structure with a diameter of about 1 mm. Example 5 A secondary foam molded product was obtained in the same manner as in Example 3, except that 40 g of commercially available nitrile rubber was dissolved in toluene and added instead of 36 g of acrylonitrile. The foamed product had an apparent specific gravity of 0.140 and a cell structure with a diameter of about 3 mm.

Claims (1)

【特許請求の範囲】 1 塩化ビニル系樹脂、有機溶媒、発泡剤及びア
クリロニトリルからなることを特徴とする発泡性
組成物。 2 無機質充填材を含有することを特徴とする特
許請求の範囲第1項記載の発泡性組成物。 3 塩化ビニル系樹脂が塩化ビニル樹脂であるこ
とを特徴とする特許請求の範囲第1項または第2
項記載の発泡性組成物。 4 発泡剤がジニトリソペンタメチレンテトラミ
ンとアゾジカルボンアミドまたは重炭酸ナトリウ
ムであることを特徴とする特許請求の範囲第1項
または第2項記載の発泡性組成物。 5 発泡性組成物を密閉金型内で加熱成形した
後、金型から取り出して発泡成形品を製造する方
法において、前記発泡性組成物は、塩化ビニル系
樹脂、有機溶媒、発泡剤及びアクリロニトリルを
混練してなり、前記密閉された金型内での加熱
は、昇温中発泡性組成物の各個所の温度差が小さ
い値になるようにゆつくりと行ない、発泡剤が分
解または気化する温度以上でかつ塩化ビニル系樹
脂がゲル化する温度まで加熱することを特徴とす
る発泡成形品の製造方法。 6 無機質充填材を混練してなる発泡性組成物で
あることを特徴とする特許請求の範囲第5項記載
の発泡成形品の製造方法。 7 発泡性組成物は無機質充填材をアクリロニト
リルと混練し、これをほかの成分と混練して得ら
れるものであることを特徴とする特許請求の範囲
第6項記載の発泡成形品の製造方法。 8 混練をニーダーで行うことを特徴とする特許
請求の範囲第5項、第6項または第7項記載の発
泡成形品の製造方法。 9 発泡性組成物の各個所での温度差が15℃以内
となるように加熱することを特徴とする特許請求
の範囲第5項、第6項または第7項記載の発泡成
形品の製造方法。
[Scope of Claims] 1. A foamable composition comprising a vinyl chloride resin, an organic solvent, a blowing agent, and acrylonitrile. 2. The foamable composition according to claim 1, which contains an inorganic filler. 3. Claim 1 or 2, characterized in that the vinyl chloride resin is a vinyl chloride resin.
The foamable composition described in . 4. The foamable composition according to claim 1 or 2, wherein the foaming agents are dinitrisopentamethylenetetramine, azodicarbonamide, or sodium bicarbonate. 5. A method of manufacturing a foam molded article by heating and molding a foamable composition in a closed mold and then removing it from the mold, wherein the foamable composition contains a vinyl chloride resin, an organic solvent, a blowing agent, and acrylonitrile. The foaming composition is kneaded and heated in the sealed mold slowly so that the temperature difference between each part of the foamable composition during heating is small, and the temperature at which the foaming agent decomposes or vaporizes is maintained. A method for producing a foamed molded product, which is as above and further comprises heating to a temperature at which the vinyl chloride resin gels. 6. The method for producing a foamed molded article according to claim 5, which is a foamable composition obtained by kneading an inorganic filler. 7. The method for producing a foamed molded article according to claim 6, wherein the foamable composition is obtained by kneading an inorganic filler with acrylonitrile and kneading this with other components. 8. The method for producing a foamed molded product according to claim 5, 6 or 7, wherein the kneading is carried out using a kneader. 9. A method for producing a foamed molded article according to claim 5, 6, or 7, which comprises heating the foamable composition so that the temperature difference at each location is within 15°C. .
JP3179280A 1980-03-13 1980-03-13 Expandable composition and manufacture of expanded molding Granted JPS56129236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3179280A JPS56129236A (en) 1980-03-13 1980-03-13 Expandable composition and manufacture of expanded molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3179280A JPS56129236A (en) 1980-03-13 1980-03-13 Expandable composition and manufacture of expanded molding

Publications (2)

Publication Number Publication Date
JPS56129236A JPS56129236A (en) 1981-10-09
JPS6241972B2 true JPS6241972B2 (en) 1987-09-05

Family

ID=12340913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3179280A Granted JPS56129236A (en) 1980-03-13 1980-03-13 Expandable composition and manufacture of expanded molding

Country Status (1)

Country Link
JP (1) JPS56129236A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203753A (en) * 1983-04-28 1984-11-17 有限会社林セメント工業 Mortar or ready mixed concrete
JP2003064232A (en) * 2001-08-27 2003-03-05 Yazaki Corp Pvc-based resin composition

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537944A (en) * 1976-07-08 1978-01-24 Nat Jutaku Kenzai Rain door

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537944A (en) * 1976-07-08 1978-01-24 Nat Jutaku Kenzai Rain door

Also Published As

Publication number Publication date
JPS56129236A (en) 1981-10-09

Similar Documents

Publication Publication Date Title
CN101326225B (en) Method of manufacturing polystyrene foam with polymer processing additives
EP3169723B1 (en) Non-voc processing aids for use in manufacturing foams using low global warming potential blowing agents
AU2001264643B2 (en) Extruded vinyl aromatic foam with 134A and alcohol as blowing agent
JPS5859233A (en) Chlorinated polyvinyl chloride composition, foamed body and manufacture
US3366580A (en) Chlorinated polyvinyl chloride foam
AU2001264643A1 (en) Extruded vinyl aromatic foam with 134A and alcohol as blowing agent
CA2399239C (en) Extruded foam product with reduced surface defects
JP2024015417A (en) Expandable chlorinated vinyl chloride resin particles, expanded particles thereof, and chlorinated vinyl chloride resin foam molded articles using the same
JP2024015416A (en) Expandable chlorinated vinyl chloride resin particles, expanded particles thereof, and chlorinated vinyl chloride resin foam molded articles using the same
JPS60252636A (en) Preparation of preexpanded particle
JPS6241972B2 (en)
KR100902786B1 (en) Expandable Polystyrene Using Recycled Styrene Resin and Method of Preparing the Same
JPS6152115B2 (en)
JPH0569068B2 (en)
JPS59147029A (en) Preparation of expanded particles of polyethylene having uniform and fine bubbles
JPS5917737B2 (en) Method for manufacturing styrenic resin foam
JP5704831B2 (en) Bubble-containing expandable polystyrene resin particles and method for producing the same, polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molded article
JPH0384081A (en) Foaming agent for thermoplastic resin
KR20230073022A (en) A composition, eco-friendly polystyrene foam having excellent thermal insulation property and method for manufactureing the same
JPH11349720A (en) Production of inorganic foam
JPH1192585A (en) Expandable styrene resin particle and expandable styrene resin molded product
CN114773670A (en) Methyl octabromoether flame-retardant master batch containing multi-component compatilizer and flame-retardant polystyrene foam material thereof
JPS5826369B2 (en) Method for producing chlorinated vinyl chloride resin foam
JPH02284933A (en) Production of foamed styrene resin board
JPH09132659A (en) Production of polyolefin resin foam