JPS6241791B2 - - Google Patents

Info

Publication number
JPS6241791B2
JPS6241791B2 JP58162782A JP16278283A JPS6241791B2 JP S6241791 B2 JPS6241791 B2 JP S6241791B2 JP 58162782 A JP58162782 A JP 58162782A JP 16278283 A JP16278283 A JP 16278283A JP S6241791 B2 JPS6241791 B2 JP S6241791B2
Authority
JP
Japan
Prior art keywords
sludge
chemical
turbidity
amount
supply pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58162782A
Other languages
Japanese (ja)
Other versions
JPS6054753A (en
Inventor
Shigeo Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58162782A priority Critical patent/JPS6054753A/en
Publication of JPS6054753A publication Critical patent/JPS6054753A/en
Publication of JPS6241791B2 publication Critical patent/JPS6241791B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Centrifugal Separators (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、下水処理場等で汚泥を濃縮脱水する
遠心脱水機に係り、特に、汚泥供給量と薬注量と
を最適にする遠心脱水機の濁度制御に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a centrifugal dewatering machine for concentrating and dewatering sludge in sewage treatment plants, etc., and particularly relates to a centrifugal dewatering machine that optimizes the amount of sludge supplied and the amount of chemical injection. Regarding turbidity control of the machine.

〔発明の背景〕[Background of the invention]

従来の汚泥濃縮脱水システムは、第1図に示す
如き構成を有している。すなわち、濃縮汚泥を適
宜かく拌しているサービスタンク1には、汚泥供
給ポンプ2を介して遠心脱水機4が接続されてい
る。この遠心脱水機4に入る汚泥の量は、汚泥供
給量計3によつて計測される。汚泥供給ポンプ2
には、汚泥供給ポンプ回転数指令装置8が接続さ
れており、この汚泥供給ポンプ回転数指令装置8
にPID調節計10が接続されている。このPID調
節計10には、汚泥供給量計3からの計測値が入
力されるように構成されている。また、遠心脱水
機4には、薬品が薬品供給ポンプ6を介して、薬
品溶解タンク7より注入されるように構成されて
いる。この薬品の注入量は、薬注量計5によつて
計測される。この薬品量計5には、PID調節計1
1が接続されており、PID調節計11がこの薬注
量計5の計測値によつて、薬品供給ポンプ回転数
指令装置9を介して薬品供給ポンプ6のPID制御
を行つている。
A conventional sludge concentration and dewatering system has a configuration as shown in FIG. That is, a centrifugal dehydrator 4 is connected via a sludge supply pump 2 to a service tank 1 in which thickened sludge is appropriately stirred. The amount of sludge entering the centrifugal dehydrator 4 is measured by a sludge supply meter 3. Sludge supply pump 2
A sludge supply pump rotation speed command device 8 is connected to the sludge supply pump rotation speed command device 8.
A PID controller 10 is connected to. This PID controller 10 is configured so that the measured value from the sludge supply amount meter 3 is inputted. Further, the centrifugal dehydrator 4 is configured such that chemicals are injected from a chemical dissolution tank 7 via a chemical supply pump 6. The amount of this medicine to be injected is measured by a medicine dosing meter 5. This chemical quantity meter 5 has a PID controller 1.
1 is connected, and a PID controller 11 performs PID control of the drug supply pump 6 via a drug supply pump rotation speed command device 9 based on the measured value of the drug dosing meter 5.

このように構成されている汚泥脱水システム
は、次の如く動作する。すなわち、濃縮された汚
泥は、一旦サービスタンク1に貯留され、汚泥供
給ポンプ2により引き抜かれて遠心脱水機4へ送
られる。遠心脱水機4への汚泥供給量は、汚泥供
給量計3にて測定される。汚泥供給量は、オペレ
ータが設定した汚泥供給量設定値となる様に、
PID調節計10により汚泥供給ポンプ回転数指令
装置8を介して汚泥供給ポンプ2の回転数を制御
して調整する。汚泥の脱水効率は、汚泥の粒径に
大きく依存するため、粒径を大きくして汚泥を効
率的に脱水するための薬品を遠心脱水機4に供給
する。この薬品は薬品溶解タンク7にて作られ
る。薬品は、薬品溶解タンク7から薬品供給ポン
プ6により引き抜かれ、遠心脱水機4へ供給され
る。遠心脱水機4への薬注量は、薬注量計5にて
測定される。薬注量は、オペレータが設定した薬
注量設定値となる様に、PID調節計11により薬
品供給ポンプ回転数指令装置9を介して薬品供給
ポンプ6の回転数を制御して調整する。
The sludge dewatering system configured as described above operates as follows. That is, the concentrated sludge is temporarily stored in the service tank 1, extracted by the sludge supply pump 2, and sent to the centrifugal dehydrator 4. The amount of sludge supplied to the centrifugal dehydrator 4 is measured by a sludge supply amount meter 3. The sludge supply amount is adjusted to match the sludge supply amount setting value set by the operator.
The rotation speed of the sludge supply pump 2 is controlled and adjusted by the PID controller 10 via the sludge supply pump rotation speed command device 8. Since the dewatering efficiency of sludge largely depends on the particle size of the sludge, chemicals are supplied to the centrifugal dehydrator 4 to increase the particle size and efficiently dewater the sludge. This chemical is produced in a chemical dissolution tank 7. The chemicals are drawn out from the chemical dissolution tank 7 by the chemical supply pump 6 and supplied to the centrifugal dehydrator 4. The amount of medicine injected into the centrifugal dehydrator 4 is measured by a medicine dosing meter 5. The drug injection amount is adjusted by controlling the rotation speed of the drug supply pump 6 via the drug supply pump rotation speed command device 9 using the PID controller 11 so that the drug injection amount setting value set by the operator is achieved.

上記のような従来の汚泥脱水システムにおいて
は、脱水した汚泥(ケーキ)の性状を管理する場
合に、オペレータが連続的にケーキの含水率をチ
エツク出来ないため、サンプリング的にチエツク
し、汚泥供給量や薬注量の目標値を修正してい
た。このため下記の様な欠点があつた。
In the conventional sludge dewatering system as described above, when controlling the properties of the dehydrated sludge (cake), the operator cannot continuously check the moisture content of the cake, so the operator checks the moisture content of the cake by sampling and checks the sludge supply amount. and the target value for drug injection amount. This resulted in the following drawbacks.

(1) オペレータが欲しているケーキ含水率にする
事が困難である。
(1) It is difficult to achieve the cake moisture content desired by the operator.

(2) 最適薬品供給が汚泥供給に対して不用である
ため不必要な薬品を供給していた。このため経
済性が悪かつた。
(2) Unnecessary chemicals were supplied because the optimal chemical supply was unnecessary for sludge supply. This made it uneconomical.

一方、特開昭53−34359号公報には、遠心脱水
機に流入する汚泥量、汚泥濃度を測定するととも
に、分離液中のSS(無機浮遊物質)濃度を測定
して、遠心脱水機の出口の性状を推定し、この推
定値に対応して入口を制御する旨が開示してあ
る。
On the other hand, Japanese Patent Application Laid-Open No. 53-34359 discloses that the amount of sludge flowing into a centrifugal dehydrator and the sludge concentration are measured, and the SS (inorganic suspended solids) concentration in the separated liquid is measured and It is disclosed that the properties of the system are estimated and the entrance is controlled in accordance with this estimated value.

しかし、この特開昭53−34359号公報に記載の
ものによれば、ケーキや分離液の性状を自動制御
することができても、汚泥処理装置の能力を充分
に発揮できず、効率的な汚泥処理をすることがで
きない。
However, according to the method described in Japanese Patent Application Laid-Open No. 53-34359, even if the properties of the cake and separated liquid can be automatically controlled, the capacity of the sludge treatment equipment cannot be fully demonstrated, and the efficiency It is not possible to treat sludge.

〔発明の目的〕[Purpose of the invention]

本発明は、前記従来技術の欠点を解消するため
になされたもので、最適含水率の汚泥ケーキを得
ることができるとともに、効率的に汚泥処理をす
ることができる遠心脱水機の濁度制御装置を提供
することを目的とする。
The present invention has been made in order to eliminate the drawbacks of the prior art, and is a turbidity control device for a centrifugal dewatering machine that can obtain a sludge cake with an optimal water content and efficiently process sludge. The purpose is to provide

〔発明の概要〕[Summary of the invention]

本発明はケーキ含水率と濁度が汚泥供給量及び
薬注率(汚泥供給量に対する薬品注入量の比
率)、遠心脱水機差速の関数であることを実験に
よつて確認し、濁度を中間変数とし汚泥供給量と
薬注率、遠心脱水機差速を変化させることによ
り、汚泥処理量を最大にしつつ最適含水率の汚泥
ケーキを得ようというものである。
The present invention has confirmed through experiments that cake moisture content and turbidity are functions of sludge supply amount, chemical injection rate (ratio of chemical injection amount to sludge supply amount), and centrifugal dehydrator differential speed. By changing the sludge supply amount, chemical injection rate, and differential speed of the centrifugal dewatering machine as intermediate variables, it is possible to maximize the sludge throughput and obtain a sludge cake with an optimal water content.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

第2図には、本発明の一実施例が示されてい
る。
FIG. 2 shows an embodiment of the invention.

図において、第1図図示従来例と同一の符号の
付してあるものは、同一の部品、同一の機能を有
するものである。本実施例が、第1図図示従来例
と異なる点は、遠心脱水機4内の脱離水濁度を検
出する濁度計13を設け、この濁度計13からの
濁度と、汚泥供給量計3によつて検出される汚泥
供給量とを取込み、PID調節計10,11にそれ
ぞれ、汚泥供給量設定値、薬注量設定値を出力す
るとともに、遠心脱水機駆動用電動機15を制御
する脱水機差速指令装置14に差速値を出力する
汚泥供給量・薬注量演算装置12を設けた点であ
る。
In the drawings, the same reference numerals as in the conventional example shown in FIG. 1 indicate the same parts and the same functions. This embodiment is different from the conventional example shown in FIG. 3, outputs the sludge supply amount set value and chemical injection amount set value to the PID controllers 10 and 11, respectively, and controls the centrifugal dewatering machine driving electric motor 15. The point is that the dewatering machine differential speed command device 14 is provided with a sludge supply amount/chemical injection amount calculation device 12 that outputs a differential speed value.

このように構成されるものであるから、まず、
濃縮された汚泥は、一旦サービスタンク1に貯留
され、汚泥供給ポンプ2により引き抜かれて遠心
脱水機4へ送られる。遠心脱水機4への汚泥供給
量は、汚泥供給量計3にて測定される。汚泥供給
量は、汚泥供給量・薬注量演算装置12が演算し
た汚泥供給量設定値となる様に、PID調節計10
により汚泥供給ポンプ回転数指令装置8を介して
汚泥供給ポンプ2の回転数を制御して調整する。
汚泥の脱水効果は、汚水内の汚泥の粒の大きさと
遠心力により決る。このため、汚泥を効率的に脱
水するために、遠心脱水機4に薬品(例えばポリ
マ、FeCl3)を供給し、汚泥の粒を大きくする必
要がある。この薬品は、薬品溶解タンク7にて作
られる。薬品は、薬品溶解タンク7から薬品供給
ポンプ6により引き抜かれ、遠心脱水機4へ供給
される。遠心脱水機4への薬注量は、薬注量計5
にて測定される。薬注量は、汚泥供給量・薬注量
演算装置12が演算した薬注率に、汚泥供給量計
3からの入力を掛け合せた薬注量設定値となる様
に、PID調節計11により薬品供給ポンプ回転数
指令装置9を介して薬品供給ポンプ6の回転数を
制御して調整する。
Since it is configured like this, first of all,
The concentrated sludge is temporarily stored in a service tank 1, drawn out by a sludge supply pump 2, and sent to a centrifugal dehydrator 4. The amount of sludge supplied to the centrifugal dehydrator 4 is measured by a sludge supply amount meter 3. The sludge supply amount is determined by the PID controller 10 so that it becomes the sludge supply amount setting value calculated by the sludge supply amount/chemical injection amount calculation device 12.
The rotation speed of the sludge supply pump 2 is controlled and adjusted via the sludge supply pump rotation speed command device 8.
The dewatering effect of sludge is determined by the size of sludge particles in sewage and centrifugal force. Therefore, in order to efficiently dewater the sludge, it is necessary to supply chemicals (for example, polymer, FeCl 3 ) to the centrifugal dehydrator 4 to increase the size of the sludge particles. This chemical is produced in the chemical dissolution tank 7. The chemicals are drawn out from the chemical dissolution tank 7 by the chemical supply pump 6 and supplied to the centrifugal dehydrator 4. The amount of medicine injected into the centrifugal dehydrator 4 is determined by the medicine dosing meter 5.
Measured at The chemical injection amount is controlled by the PID controller 11 so that the chemical injection rate is calculated by the sludge supply amount/chemical injection amount calculation device 12, and the chemical injection amount setting value is obtained by multiplying the input from the sludge supply amount meter 3. The rotation speed of the chemical supply pump 6 is controlled and adjusted via the supply pump rotation speed command device 9.

第3図には、汚泥供給量・薬注量演算装置12
内の薬注率を決定する方法のフローチヤートが示
されている。すなわち、汚泥供給量・薬注量演算
装置12は、脱水機制御の開始時現在の汚泥供給
量、薬注率、濁度を前回値として記憶する。その
後、薬注率を所定量(例えば0.5%)下げ、濁度
計13の検出値から脱離液の濁度が設定値か否か
を判断する。濁度計13の検出値が設定濁度でな
い場合には、汚泥供給量が汚泥供給ポンプ2の供
給能力の上限値か下限値かを判断し、いずれでも
ないときには、設定濁度と検出濁度との偏差が小
さくなるように汚泥供給量を変化させる。
FIG. 3 shows the sludge supply amount/chemical injection amount calculation device 12.
A flowchart of a method for determining the drug dosing rate within is shown. That is, the sludge supply amount/chemical injection amount calculation device 12 stores the current sludge supply amount, chemical injection rate, and turbidity as the previous values at the time of starting the dehydrator control. Thereafter, the chemical injection rate is lowered by a predetermined amount (for example, 0.5%), and it is determined from the detected value of the turbidity meter 13 whether the turbidity of the desorbed liquid is at the set value. If the detected value of the turbidity meter 13 is not the set turbidity, it is determined whether the sludge supply amount is the upper limit or the lower limit of the supply capacity of the sludge supply pump 2, and if it is neither, the set turbidity and the detected turbidity are determined. Change the sludge supply amount so that the deviation from

汚泥供給量と離脱水の濁度、ケーキ含水率との
間には、第7図に示すような関係がある。すなわ
ち、汚泥供給量を徐々に増加させると、濁度及び
ケーキ含水率ともに増加する。このことは、薬品
の効果が汚泥供給量の増加によつて薄れて来て、
脱離液に汚泥分が溶け込むことを示している。従
つて、検出濁度が設定濁度より大きい場合には、
汚泥供給量を所定量ずつ減少させ、逆の場合には
汚泥供給量を所定量ずつ増加させる。このような
操作をして、汚泥供給量が上、下限値に達しても
濁度に偏差がある場合には、薬注率を所定量だけ
変化させる。
There is a relationship as shown in FIG. 7 between the amount of sludge supplied, the turbidity of the separated water, and the moisture content of the cake. That is, when the sludge supply amount is gradually increased, both the turbidity and the cake water content increase. This means that the effectiveness of the chemicals is diminished by the increase in the amount of sludge supplied.
This shows that sludge content dissolves in the desorbed liquid. Therefore, if the detected turbidity is greater than the set turbidity,
The sludge supply amount is decreased by a predetermined amount, and in the opposite case, the sludge supply amount is increased by a predetermined amount. Through such operations, if there is a deviation in turbidity even when the sludge supply amount reaches the upper and lower limit values, the chemical injection rate is changed by a predetermined amount.

薬注率と脱離水の濁度、ケーキ含水率との間に
は、第6図に示すような関係がある。
There is a relationship as shown in FIG. 6 between the chemical injection rate, the turbidity of the desorbed water, and the cake water content.

すなわち、第6図は、薬注率を変数とした時
(例えば薬注率を0〜2000ppmまで変化させた
時)の濁度とケーキ含水率を示したものである。
いま、薬注率を徐々に増加していくと濁度、ケー
キ含水率とも下がつてくる。しかし、薬注率があ
る範囲を越えると濁度は上がるが、ケーキ含水率
はほとんど変化がない。このことは、ケーキ含水
率の方は、薬品をいくら投入してもある一定量を
超えると、薬品の効果が飽和してしまうことを示
している。一方、濁度は、ある一定量を超える
と、薬品の効果が飽和してしまい、飽和量を超え
た薬品が逆に脱離液に溶け込むことを示してい
る。
That is, FIG. 6 shows the turbidity and cake moisture content when the chemical injection rate is used as a variable (for example, when the chemical injection rate is varied from 0 to 2000 ppm).
Now, if the chemical injection rate is gradually increased, both the turbidity and cake moisture content will decrease. However, when the chemical dosing rate exceeds a certain range, the turbidity increases, but the cake water content hardly changes. This indicates that the effect of the chemical becomes saturated when the cake water content exceeds a certain amount no matter how much chemical is added. On the other hand, turbidity indicates that when a certain amount is exceeded, the effect of the chemical becomes saturated, and the chemical that exceeds the saturated amount dissolves in the desorbed liquid.

従つて、薬注率を変化させる場合、薬注率は極
小値を有するところから、前回の薬注率の増加、
減少の方向を考えて薬注率を変化させる。例え
ば、前回薬注率を下げた時に、設定濁度と計測し
た濁度の偏差が少なくなつた場合には、今回も薬
注率を下げれば良く、逆に偏差が大きくなつた場
合には、今回の薬注率を増加させれば良い。この
様な処理を行つていて薬注率が上、下限値にな
り、また汚泥供給量も上、下限値になつた場合に
は、遠心脱水機4の差速を濁度の偏差を基にし
て、汚泥供給量・薬注量演算装置12にてPID演
算を行ない、脱水機差速指令装置14を介して遠
心脱水機駆動用電動機15の回転数を制御する。
遠心脱水機4の差速が変つた事により、脱離水の
濁度が変化し、脱水ケーキの含水率も変化する。
Therefore, when changing the drug injection rate, the drug injection rate changes from a minimum value to an increase in the previous drug injection rate,
Change the drug injection rate considering the direction of decrease. For example, if the deviation between the set turbidity and the measured turbidity decreased when the chemical injection rate was lowered last time, it is sufficient to lower the chemical injection rate this time as well; conversely, if the deviation increases, It would be better to increase the drug injection rate this time. When performing such processing, if the chemical injection rate reaches the upper or lower limit, and the sludge supply amount also reaches the upper or lower limit, the differential speed of the centrifugal dewatering machine 4 should be adjusted based on the turbidity deviation. Then, the sludge supply amount/chemical injection amount calculation device 12 performs PID calculation, and the rotation speed of the centrifugal dehydrator driving electric motor 15 is controlled via the dehydrator differential speed command device 14.
As the differential speed of the centrifugal dehydrator 4 changes, the turbidity of the dehydrated water changes, and the water content of the dehydrated cake also changes.

すなわち、遠心脱水機4の内側と外側との回転
数の差(遠心脱水機差速)が大きくなると、第8
図に示すように脱離水の濁度は漸減し、反対にケ
ーキ含水率は漸増する。
In other words, when the difference in rotational speed between the inside and outside of the centrifugal dehydrator 4 (centrifugal dehydrator differential speed) increases, the
As shown in the figure, the turbidity of the desorbed water gradually decreases, while the moisture content of the cake gradually increases.

これは、回転差速が大きくなると、差速の小さ
い時よりも早くケーキが出てくるため、ケーキ含
水率が高くなり、脱離液の濁度はケーキが水分と
ともに汚泥分を外に持ち出す分だけ低くなるため
である。
This is because when the differential speed of rotation increases, the cake comes out faster than when the differential speed is small, so the moisture content of the cake increases, and the turbidity of the desorbed liquid increases as the cake carries out the sludge with water. This is because it becomes lower.

このため、前記した如く薬注率と汚泥供給量と
が上、下限値になり、例えば遠心脱水機4の差速
を小さくすると、薬注率、汚泥供給量に対する等
濁度曲線(等しい濁度を結んだ曲線)が第4図か
ら第5図のように変化する。そこで、汚泥供給
量・薬注量演算装置12は、濁度計13が検出し
た新しい濁度に基づき、上記と同様にして薬注率
と汚泥供給量とを求め、PID調節計10,11、
ポンプ2,6を介して汚泥供給量と薬品の注入量
とを制御する。なお、第4図、第5図のア点は、
同一汚泥供給量、同一薬注率での濁度の違いを示
している。また、第9図は、遠心脱水機4の差速
を一定とした時、第6図、第7図を考慮して作つ
た等濁度曲線である。矢印A方向は濁度が高い領
域になる事を示し、矢印B方向は濁度が低い領域
になる事を示している。
For this reason, as described above, the chemical injection rate and the sludge supply amount have upper and lower limits. For example, if the differential speed of the centrifugal dehydrator 4 is reduced, an isoturbidity curve (equal turbidity ) changes as shown in Figures 4 and 5. Therefore, the sludge supply amount/chemical injection amount calculation device 12 calculates the chemical injection rate and the sludge supply amount in the same manner as described above based on the new turbidity detected by the turbidity meter 13,
The amount of sludge supplied and the amount of chemical injection are controlled via pumps 2 and 6. Note that the points a in Figures 4 and 5 are as follows:
It shows the difference in turbidity with the same sludge supply amount and the same chemical injection rate. Moreover, FIG. 9 is an equal turbidity curve created in consideration of FIGS. 6 and 7 when the differential speed of the centrifugal dehydrator 4 is constant. The direction of arrow A indicates an area with high turbidity, and the direction of arrow B indicates an area with low turbidity.

濁度設定値と計測した濁度が等しくなつた時に
は、汚泥供給量が上、下限値になつていない限
り、薬注率を変更して汚泥供給量の変化を見る。
例えば、濁度設定値と計測した濁度が等しい状態
で、前回薬注率を下げた時に汚泥供給量が増えた
ならば、今回も薬注率を下げれば、さらに汚泥供
給量が増加すると考えられる。逆に減少したなら
ば、今回の薬注率を増加すれば、汚泥供給量が増
加すると考えられる。この様に、汚泥供給量の増
加を、汚泥供給量が極大値かまたは、上、下限値
となるまで続ける。また、薬注率を変化させた場
合に、濁度設定値と計測した濁度が異なつたとき
には、汚泥供給量をPID調節計10にて制御し、
濁度を濁度設定値とする。この様に、汚泥供給量
が極大か上、下限値となり、濁度が濁度設定値と
なつた時点で安定な運転状態に入り、濁度設定値
の修正を待つ事になる。
When the turbidity setting value and the measured turbidity become equal, the chemical injection rate is changed and changes in the sludge supply amount are observed unless the sludge supply amount has reached the upper or lower limit.
For example, if the turbidity setting value and the measured turbidity are the same, and the amount of sludge supplied increased when the chemical injection rate was lowered last time, it is assumed that if the chemical injection rate is lowered again this time, the amount of sludge supplied will further increase. It will be done. On the other hand, if it decreases, increasing the current chemical injection rate will likely increase the sludge supply amount. In this way, the increase in the sludge supply amount is continued until the sludge supply amount reaches the maximum value or the upper and lower limit values. In addition, when changing the chemical injection rate and the turbidity setting value differs from the measured turbidity, the sludge supply amount is controlled by the PID controller 10,
The turbidity is set as the turbidity setting value. In this way, when the sludge supply amount reaches the maximum, upper or lower limit, and the turbidity reaches the turbidity set value, a stable operating state is entered and the turbidity set value is awaited for correction.

なお、本実施例においては、マイクロコンピユ
ータ等の小型の計算機をコントローラーとして使
用することを前提としている。従つて、第9図に
示す如き等濁曲線をモデルとしてフアイル化する
ことなく、プラントに対するカツトアンドトライ
方式を用いている。このため、 (1) 回転差速の変更、汚泥濃度、汚泥特性が変化
しても変化した時の状態で、最適な薬注率や最
大汚泥量を求めて運転点を移動していく。この
ため外乱に対して強いシステムとなる。
In this embodiment, it is assumed that a small computer such as a microcomputer is used as a controller. Therefore, the cut-and-try method for the plant is used without creating a file using the isoturbidity curve as shown in FIG. 9 as a model. For this reason, (1) Even if the rotation differential speed is changed, the sludge concentration, and the sludge characteristics change, the operating point is moved to find the optimal chemical injection rate and maximum sludge amount under the changed conditions. This makes the system resistant to external disturbances.

(2) 小型の計算機でも処理が可能となり安価とな
る。
(2) Processing can be performed even on a small computer, making it inexpensive.

という長所を有している。一方、 (1) プラントの状態を一度変化させるため、積極
的に外乱を与える事になる。
It has the advantage of On the other hand, (1) To change the state of the plant once, disturbances are actively applied.

(2) プラントの動作時間が遅い場合、最適薬注
率、最大汚泥量となるまでに時間がかかる。モ
デルがあればその内で最適値を1回で見つける
事が出来早く目的とする点に行きつく。
(2) If the plant operating time is slow, it takes time to reach the optimum chemical injection rate and maximum sludge volume. If you have a model, you can find the optimal value in one go and quickly reach the desired point.

という短所をも有している。It also has the disadvantage of

上記のように、本実施例によれば、容易にオペ
レータの欲しているケーキ含水率にする事ができ
る。また、本実施例によれば、薬品供給量が最適
とすることができるため、汚泥供給量が最大とな
り、汚泥処理の効率化が図れ、経済性を良くする
ことができる。
As described above, according to this embodiment, it is possible to easily achieve the cake moisture content desired by the operator. Further, according to this embodiment, since the amount of chemicals supplied can be optimized, the amount of sludge supplied can be maximized, making it possible to improve the efficiency of sludge treatment and improve economic efficiency.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、効率的
に汚泥の処理ができ、最適含水量の汚泥ケーキを
得ることができる。
As explained above, according to the present invention, sludge can be efficiently treated and a sludge cake with an optimum water content can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の汚泥濃縮脱水システムの構成
図、第2図は本発明の実施例を示す図、第3図は
汚泥供給量・薬注量演算装置内部の処理フローチ
ヤート、第4図は遠心脱水機の差速を変える前の
濁度と汚泥供給量と薬注率の特性図、第5図は遠
心脱水機の差速を変えた後の濁度と汚泥供給量と
薬注率の特性図、第6図は遠心脱水機内の薬注率
を変数としたときの濁度とケーキ含水率の関係を
示す図、第7図は遠心脱水機内の汚泥供給量を変
数としたときの濁度とケーキ含水率の関係を示す
図、第8図は遠心脱水機内の遠心脱水機差速を変
数としたときの濁度とケーキ含水量の関係を示す
図、第9図は遠心脱水機内の汚泥供給量と薬注率
を変数としたときの等濁度曲線を示す図である。 1……サービスタンク、2……汚泥供給ポン
プ、3……汚泥供給量計、4……遠心脱水機、5
……薬注量計、6……薬品供給ポンプ、7……薬
品溶解タンク、8……汚泥供給ポンプ回転数指令
装置、9……薬品供給ポンプ回転数指令装置、1
0……PID調節計、11……PID調節計、12…
…汚泥供給量・薬注量演算装置、13……濁度
計、14……脱水機差速指令装置、15……遠心
脱水機駆動用電動機。
Fig. 1 is a block diagram of a conventional sludge concentration and dewatering system, Fig. 2 is a diagram showing an embodiment of the present invention, Fig. 3 is a processing flowchart inside the sludge supply amount/chemical injection amount calculation device, and Fig. 4 is a diagram showing an example of the present invention. Figure 5 shows the characteristics of turbidity, sludge supply amount, and chemical injection rate before changing the differential speed of the centrifugal dehydrator, and Figure 5 shows the characteristics of turbidity, sludge supply amount, and chemical injection rate after changing the differential speed of the centrifugal dehydrator. Characteristic diagram, Figure 6 is a diagram showing the relationship between turbidity and cake moisture content when the chemical injection rate in the centrifugal dehydrator is used as a variable, and Figure 7 is a diagram showing the relationship between turbidity and cake water content when the sludge supply amount in the centrifugal dehydrator is used as a variable. Figure 8 shows the relationship between turbidity and cake water content when the differential speed of the centrifugal dehydrator in the centrifugal dehydrator is used as a variable. Figure 9 shows the relationship between turbidity and cake water content in the centrifugal dehydrator. It is a figure which shows the isoturbidity curve when the sludge supply amount and chemical injection rate are made into variables. 1... Service tank, 2... Sludge supply pump, 3... Sludge supply meter, 4... Centrifugal dehydrator, 5
...Medicine dosing meter, 6...Chemical supply pump, 7...Chemical dissolution tank, 8...Sludge supply pump rotation speed command device, 9...Chemical supply pump rotation speed command device, 1
0...PID controller, 11...PID controller, 12...
... Sludge supply amount/chemical injection amount calculation device, 13... Turbidity meter, 14... Dehydrator differential speed command device, 15... Centrifugal dehydrator driving electric motor.

Claims (1)

【特許請求の範囲】[Claims] 1 汚泥を一旦貯留するサービスタンクと、該サ
ービスタンクから汚泥を引き出す汚泥供給ポンプ
と、前記汚泥供給ポンプの吐出量を測定する汚泥
供給量計と、前記汚泥供給ポンプによつて汚泥の
供給を受け該汚泥の脱水を行う遠心脱水機と、汚
泥を凝縮するための薬品を貯留する薬品溶解タン
クと、該薬品溶解タンクから薬品を前記遠心脱水
機に供給する薬品供給ポンプと、該薬品供給ポン
プの吐出量を測定する薬注量計と、汚泥供給量目
標値とするため汚泥供給ポンプの回転数を制御す
るPID調節計と、前記汚泥供給ポンプの回転数を
指令する回転数指令装置と、薬品供給量目標値と
するため前記薬品供給ポンプの回転数を制御する
PID調節計と、前記薬品供給ポンプの回転数を指
令する回転数指令装置とを有し下水処理場等にお
いて汚泥を濃縮脱水するものにおいて、上記遠心
脱水機より排出される脱離液濁度を検出する濁度
計と、この濁度計の検出値が設定濁度となるよう
に、かつ汚泥供給量が増大するように薬注率を変
化させて上記各PID調節計を制御するとともに、
薬注率が上限または下限となつたときに、上記遠
心脱水機の差速を変化させ、上記設定濁度に対す
る最大汚泥供給量を求める汚泥供給量・薬注量演
算装置とを設けたことを特徴とする遠心脱水機の
濁度制御装置。
1. A service tank that temporarily stores sludge, a sludge supply pump that draws out sludge from the service tank, a sludge supply meter that measures the discharge amount of the sludge supply pump, and a system that receives sludge from the sludge supply pump. a centrifugal dehydrator for dewatering the sludge; a chemical dissolving tank for storing chemicals for condensing the sludge; a chemical supply pump for supplying chemicals from the chemical dissolving tank to the centrifugal dehydrator; A chemical dosing meter that measures the discharge amount, a PID controller that controls the rotation speed of the sludge supply pump to achieve the target sludge supply amount, a rotation speed command device that commands the rotation speed of the sludge supply pump, and a chemical. Control the rotation speed of the chemical supply pump to achieve the supply amount target value.
In a device that concentrates and dehydrates sludge in a sewage treatment plant, etc., and has a PID controller and a rotation speed command device that commands the rotation speed of the chemical supply pump, the turbidity of the desorbed liquid discharged from the centrifugal dehydrator is controlled. The turbidity meter to be detected and the PID controllers are controlled by changing the chemical injection rate so that the detected value of this turbidity meter becomes the set turbidity and the amount of sludge supplied increases.
A sludge supply amount/chemical injection amount calculation device is provided which changes the differential speed of the centrifugal dewatering machine to calculate the maximum sludge supply amount for the set turbidity when the chemical injection rate reaches the upper or lower limit. Features: Turbidity control device for centrifugal dehydrators.
JP58162782A 1983-09-05 1983-09-05 Turbidity controlling device of centrifugal dehydrator Granted JPS6054753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58162782A JPS6054753A (en) 1983-09-05 1983-09-05 Turbidity controlling device of centrifugal dehydrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58162782A JPS6054753A (en) 1983-09-05 1983-09-05 Turbidity controlling device of centrifugal dehydrator

Publications (2)

Publication Number Publication Date
JPS6054753A JPS6054753A (en) 1985-03-29
JPS6241791B2 true JPS6241791B2 (en) 1987-09-04

Family

ID=15761104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58162782A Granted JPS6054753A (en) 1983-09-05 1983-09-05 Turbidity controlling device of centrifugal dehydrator

Country Status (1)

Country Link
JP (1) JPS6054753A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2785856B2 (en) * 1992-08-17 1998-08-13 株式会社 西原環境衛生研究所 Apparatus and method for measuring turbidity of separated liquid in centrifugal dehydrator
JPH07997A (en) * 1993-06-15 1995-01-06 Tokyo Met Gov Gesuido Service Kk Sludge treating device
JPH07232200A (en) * 1994-02-24 1995-09-05 Tokyo Met Gov Gesuido Service Kk Treatment of sludge
JP2004167401A (en) * 2002-11-20 2004-06-17 Toshiba Corp Waste water treatment equipment and waste water treatment method
EP2091656A1 (en) 2006-11-15 2009-08-26 Westfalia Separator Australia Pty.Ltd. Continuous self-cleaning centrifuge assembly
JP4739263B2 (en) * 2007-03-30 2011-08-03 Nok株式会社 Sealing structure and gasket
JP5999877B2 (en) * 2011-06-20 2016-09-28 株式会社タクマ Sludge treatment system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5088687A (en) * 1973-10-12 1975-07-16
JPS5334359A (en) * 1976-09-10 1978-03-30 Kubota Ltd Sludge dewatering process and device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5088687A (en) * 1973-10-12 1975-07-16
JPS5334359A (en) * 1976-09-10 1978-03-30 Kubota Ltd Sludge dewatering process and device

Also Published As

Publication number Publication date
JPS6054753A (en) 1985-03-29

Similar Documents

Publication Publication Date Title
JP2006289308A (en) Method and apparatus for controlling operation in differential velocity rotary concentrator
JP5176625B2 (en) Constant moisture content control method and moisture content constant control device in screw press
JPS6241791B2 (en)
JP2009220085A5 (en)
KR980000552A (en) Oxidation Control Method in Flue Gas Desulfurization
JP5041299B2 (en) Operation control method of screw press connected to rotary concentrator
JP5041298B2 (en) Operation control method of screw press connected to rotary concentrator
JP2010247044A5 (en)
JP2010247043A5 (en)
JP3894034B2 (en) Concentration method of sludge
JP5327159B2 (en) Sludge concentration and dehydration system and control method thereof
CN112007942B (en) Kitchen waste treatment automatic control method based on industrial Internet of things
JPH09290273A (en) Method for adjusting amount of flocculant to be added and device therefor
CN210736454U (en) Device for treating high-salt silica sol-containing wastewater
JP3705466B2 (en) Concentration dehydration method and concentration dehydration apparatus
JPH0721234Y2 (en) Sludge treatment equipment
JPS5775190A (en) Method and device for automatic control of sewage treatment by activated sludge method
CN1084216C (en) Concentrating and discharging method for wet fume-extracting desulfurizing absorption liquor raw material
JPS6130605B2 (en)
JPH0592105A (en) Method and apparatus for concentrating suspension
JPH1080688A (en) Demineralizing treatment of processed water exuded from filled-up land and device therefor
JP2004167401A (en) Waste water treatment equipment and waste water treatment method
JPH07148595A (en) Controller for belt press type dehydrating machine
JP2927381B2 (en) Sludge dewatering method
JPS5946719B2 (en) Dehydration equipment