JPH1080688A - Demineralizing treatment of processed water exuded from filled-up land and device therefor - Google Patents

Demineralizing treatment of processed water exuded from filled-up land and device therefor

Info

Publication number
JPH1080688A
JPH1080688A JP8255370A JP25537096A JPH1080688A JP H1080688 A JPH1080688 A JP H1080688A JP 8255370 A JP8255370 A JP 8255370A JP 25537096 A JP25537096 A JP 25537096A JP H1080688 A JPH1080688 A JP H1080688A
Authority
JP
Japan
Prior art keywords
salt
concentration
desalination
water
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8255370A
Other languages
Japanese (ja)
Other versions
JP3658470B2 (en
Inventor
Toshiharu Yoshimura
俊治 吉村
Tadayoshi Tomita
忠義 冨田
Kiyoshi Narita
清 成田
Hidenori Shibata
英則 柴田
Hiroshi Kobayashi
拡 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOWA KAKO
Kyowa Kako Co Ltd
AGC Inc
Original Assignee
KYOWA KAKO
Asahi Glass Co Ltd
Kyowa Kako Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOWA KAKO, Asahi Glass Co Ltd, Kyowa Kako Co Ltd filed Critical KYOWA KAKO
Priority to JP25537096A priority Critical patent/JP3658470B2/en
Publication of JPH1080688A publication Critical patent/JPH1080688A/en
Application granted granted Critical
Publication of JP3658470B2 publication Critical patent/JP3658470B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance efficiency and stabilization of demineralization processing cost at economical site by maintaining consumption of fuel for drying per unit quantity of salt at almost definite estimated value even when salt concentration in water exuded from a filled-up land is lower than a set value or exuded water quantity is lower than a set value. SOLUTION: A demineralization processing device is constituted by providing a storage water tank 11 of exuded water, a demineralization concentration device 21 which executes demineralization and concentration of the exuded water A supplied from the storage water tank 11 and discharges demineralization processed water B, a heating-drying device 51 which recovers salt by drying and solidifying a salt enriched liquid C2 subjected to demineralization and concentration by the demineralization concentration device 21 and a system control device 31 which sets salt concentration at exit of the demineralization concentration device 21 to a salt concentration of the salt concentrated liquid C2 to be dried and solidified by the heating-drying device 51 and circulates a salt concentrated liquid C1 to the storage water tank 11 via a circulating means 41 until salt concentration in the salt concentrated liquid C2 reaches a set value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、埋立地浸出水のう
ち、必要に応じて塩分以外の成分が放流基準に適合する
ように除去処理された処理水(侵出水処理水)の脱塩処
理方法および装置に関し、さらに詳しくは、廃棄物およ
び/またはその焼却灰を埋立てた埋立地に生ずる浸出水
の処理水を水路,特に農業用水路へ放流して農業用水の
一部に利用する場合に、この浸出水処理水を脱塩して塩
分を含まない処理水にすることで、農作物への影響を避
け、併せて、選定した埋立地周辺の地域住民に十分な理
解を求めて用地確保に役立てるためにも適用して効果的
な埋立地浸出水処理水の脱塩処理方法および装置の改良
に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a desalination treatment of treated water (leached water treated water) which has been treated to remove components other than salt from the landfill leachate as required so as to meet the discharge standard. More specifically, the present invention relates to a method and an apparatus for discharging treated water of leachate generated in a landfill filled with waste and / or incinerated ash into a waterway, particularly an agricultural waterway to be used as a part of agricultural water. By desalinating this treated leachate into salt-free treated water, the effects on agricultural crops are avoided, and at the same time, the local residents around the selected landfill are asked for sufficient understanding to secure land. The present invention relates to an improvement in a method and an apparatus for desalination treatment of a treated landfill leachate, which is also effectively applied for use.

【0002】[0002]

【従来の技術】従来から、生活上ならびに産業上に関連
して生ずる種々の廃棄物については、これを種類別に不
燃性と可撚性とに分別した上で、不撚性のものは、破
砕,減量化,有価物の回収後埋立てられ、可燃性のもの
は、焼却処理する等の手法が一般に講じられており、現
況では、これらの処理後の廃棄物および/またはその焼
却灰等(以下、総称して廃棄残渣物という)を最終的に
処分するための有効な手段として、休閑地やこれに準ず
る雑種地等を利用した最終処分場の廃棄残渣物による埋
立てが行なわれる。
2. Description of the Related Art Conventionally, various kinds of waste generated in connection with life and industry are separated into non-flammable and twistable types according to their types. In general, methods such as incineration of flammable waste that have been landfilled after the collection of valuable resources, and inflammable waste have been taken. As an effective means for finally disposing of waste residues (hereinafter collectively referred to as waste residues), landfills with waste residues at a final disposal site using fallow land or a hybrid land equivalent thereto are performed.

【0003】また、前記のように廃棄残渣物を最終処分
場としての埋立て地に埋立て処分する場合には、埋立地
から雨水等の浸透に伴って浸出する水,いわゆる浸出水
を環境破壊を招く惧れのないように何らかのかたちで放
水可能にすることを考慮しなければならない。BOD,
COD,重金属等については放流基準に従った処理が行
われているが、塩分については規制は行われていない。
つまり、前記埋立地が、例えば、農地等に近接している
場合には、処理水を農地等やその農業用水路に放流せざ
るを得なくなるもので、この浸出水処理水の農業用水路
への放流が、農作物の育成に対する影響や環境保全上の
立場から大きな問題となる。
In the case where the waste residue is landfilled at a landfill site as a final disposal site as described above, water leached from the landfill along with infiltration of rainwater or the like, that is, so-called leachate, is subjected to environmental destruction. It must be considered that the water can be released in some way so as not to invite water. BOD,
Although COD, heavy metals, etc. are treated according to the discharge standard, there is no regulation on salt content.
In other words, when the landfill is, for example, close to agricultural land or the like, the treated water must be discharged to the agricultural land or the agricultural irrigation canal, and this leachate is discharged to the agricultural irrigation canal. However, this is a major problem from the standpoint of impact on the cultivation of crops and environmental conservation.

【0004】そこで、従来においては、前記埋立地から
の浸出水処理水に含まれる塩分を脱塩処理して塩分を低
減させた脱塩水に変えて農業用水路に放流することによ
り、農作物に対する影響を完全に避けると共に、他面か
らは、埋立て用地の確保,保全に役立てるべく、埋立地
周辺の地域住民に対して埋立て後の結果が無害である点
を十分な説得性で示し得るようにしているものである。
[0004] Therefore, conventionally, salt contained in the treated leachate from the above-mentioned landfill is desalinated, converted into desalinated water with reduced salt, and discharged into an agricultural waterway to reduce the influence on agricultural crops. In addition to avoiding them altogether, from the other side, in order to help secure and conserve the landfill, the local residents around the landfill should be able to show with sufficient persuasion that the results after landfilling are harmless. Is what it is.

【0005】前記脱塩処理のための従来技術には、本浸
出水処理水の脱塩処理に兼用可能な類似する一般的な手
段として、例えば、食塩(塩化ナトリウム)の製造に適
用する電気透析法を利用した装置設備を挙げることがで
きる。この食塩の製造技術は、海水中の塩化ナトリウム
成分を電気透析法によって脱塩且つ濃縮した上で、引続
き、該濃縮液を蒸発乾燥して塩分を固化させるシステム
であり、本食塩製造システムにおいては、通常の場合、
塩化ナトリウムの溶解濃度がほぼ一定の海水を製造原料
(脱塩原料)とし、また、装置設備に対しては、脱塩可
能な塩分濃度に一致する設計値を設定しておき、該設計
値に対応した定量の海水を脱塩濃縮装置に供給して、一
旦,該海水を脱塩作用の限界点付近まで脱塩且つ濃縮処
理すると共に、脱塩処理の結果、塩分濃度が低下した海
水が除去された不要な処理水は任意にしかるべく放流し
て処置し、さらに、該濃縮液,つまり、塩濃縮液の全量
を加熱乾燥装置に給液して蒸発乾固させ、結果的に海水
中の含有塩化ナトリウム成分を固化させて食塩を得るも
ので、このときの加熱乾燥装置には、真空蒸発装置もし
くはドラム式乾燥装置が用いられる。
[0005] The prior art for desalination treatment includes similar general means which can be used for desalination treatment of the present leachate treatment water, for example, electrodialysis applied to the production of sodium chloride (sodium chloride). Equipment utilizing the method. This salt production technology is a system in which the sodium chloride component in seawater is desalted and concentrated by electrodialysis, and then the concentrated solution is evaporated and dried to solidify the salt. , Usually
Seawater having a substantially constant concentration of dissolved sodium chloride is used as a raw material for production (desalting raw material), and a design value corresponding to a desalinable salt concentration is set for the equipment and the design value is set in advance. A corresponding amount of seawater is supplied to a desalination / concentration device, and the seawater is once desalinated and concentrated to near the limit of desalination, and seawater having a reduced salt concentration as a result of the desalination is removed. The unnecessary wastewater thus treated is optionally discharged and treated, and the concentrated liquid, that is, the entire amount of the salt concentrated liquid is supplied to a heating / drying apparatus and evaporated to dryness. The sodium chloride component is solidified to obtain salt, and a vacuum evaporator or a drum dryer is used as the heating and drying device at this time.

【0006】[0006]

【発明が解決しようとする課題】従来の一般的な食塩製
造システムでは、上記の如く、脱塩原水に塩化ナトリウ
ムの溶解濃度がほぼ一定の海水を用い、常時、その定量
を装置側へ順次供給して食塩を製造するようにしてお
り、ここでは、経済的に見合った製造費用で目的の食塩
を得ることができる。
In the conventional general salt production system, as described above, seawater in which the concentration of dissolved sodium chloride is substantially constant is used as the desalted raw water, and the amount of the salt is always supplied to the apparatus side sequentially. In this case, the target salt can be obtained at an economically appropriate production cost.

【0007】一方、埋立地からの浸出水処理水は、埋立
物が含む塩分の量,降雨量等によって、その浸出水量お
よび塩分濃度が常に変動するのが常態であり、特に該浸
出水処理水中に溶け込んでいる塩分濃度については、例
えば、先に述べた従来の食塩製造設備に設定されている
設計値よりも低くなる場合が多い。
On the other hand, treated leachate from landfills usually has a constant fluctuation in the amount of leachate and salt concentration depending on the amount of salt contained in the landfill, the amount of rainfall, and the like. For example, in many cases, the concentration of the salt dissolved in the water is lower than the design value set in the above-described conventional salt production facility.

【0008】従って、従来の食塩製造システムをそのま
まの装置形態で、本来の役割りである塩分を含む被処理
水(ここでは海水)を脱塩処理して食塩を製造するのと
は異なり、本発明での塩分を含む被処理水(ここでは浸
出水処理水)を脱塩処理して塩分を除去した処理水を得
るのに転用すると、次のようなそれぞれの問題点を生ず
ることになる。即ち、 (a) 多くの場合、実質的に装置の設計値よりも低い塩
分濃度の浸出水処理水を脱塩処理した上で蒸発乾固させ
ることになり、必然的に塩単位量当りの乾燥用燃料の消
費量が増加する。 (b) たとえ浸出水処理水の水量が装置の設計値より少
ない場合でも、加熱乾燥装置を稼働させなければなら
ず、このために乾燥用燃料が常に設計値なみに消費され
ることになる。 等のそれぞれである。
[0008] Therefore, unlike the conventional salt production system in which the salt water is produced by desalinating the water to be treated (in this case, seawater) containing salt, which is the original function, in a device form as it is, the salt is produced. If the water to be treated (treated water treated with leachate in this case) containing salt in the present invention is diverted to obtain treated water from which salt has been removed by desalination, the following problems will occur. (A) In many cases, leachate treated water having a salt concentration substantially lower than the design value of the equipment is desalinated and then evaporated to dryness. Fuel consumption increases. (b) Even if the amount of the leachate treatment water is smaller than the design value of the device, the heating and drying device must be operated, and as a result, the drying fuel is always consumed as much as the design value. Etc. respectively.

【0009】本発明は、従来のこのような問題点を改善
するためになされたもので、その目的とするところは、
埋立地からの浸出水処理水の塩分濃度が設定値より低い
場合や、浸出水量が設定値より少ない場合にも、塩単位
量当りの乾燥用燃料の消費量を予測されるほぼ一定値に
維持し得るようにして経済的な面で脱塩処理費の効率化
ならびに安定化を図った埋立地浸出水処理水の脱塩処理
方法および装置を提供することである。
The present invention has been made to solve such a conventional problem, and its object is to provide:
Even when the salt concentration of the leachate from the landfill is lower than the set value or when the amount of leachate is lower than the set value, the consumption of the drying fuel per unit of salt is maintained at almost the expected value. It is an object of the present invention to provide a method and an apparatus for desalinating treated water from a landfill leachate in which the desalination treatment cost is made more efficient and more stable in terms of economy.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る埋立地浸出水処理水の脱塩処理方法お
よび装置は、浸出水処理水を脱塩濃縮処理して含有塩分
が除去された放流可能な処理水と塩濃縮液とにし、ま
た、脱塩濃縮手段の処理出口側の塩分濃度を加熱乾燥手
段によって蒸発乾固する塩濃縮液の塩分濃度に設定して
おき、該脱塩濃縮手段に供給して脱塩濃縮される浸出水
処理水を塩濃縮液の塩分濃度設定値に達するまで還流処
理させるようにしたものであり、分離除去された塩分,
ここでは浸出水処理水中に溶け込んだ種々に不純物を含
む塩分(以下、単に塩分という)は、最終的に蒸発乾固
して回収される。
In order to achieve the above object, a method and an apparatus for desalination of treated leachate in a landfill according to the present invention are provided with a desalination and concentration treatment of treated leachate to remove salt content. And the salt concentration at the treatment outlet side of the desalting and concentration means is set to the salt concentration of the salt concentrate to be evaporated to dryness by heating and drying means. The leachate treated water to be supplied to the salt concentrating means and desalted and concentrated is refluxed until the salt concentration set value of the salt concentrate is reached.
Here, salts containing various impurities (hereinafter simply referred to as “salts”) dissolved in the leachate treatment water are finally evaporated to dryness and collected.

【0011】即ち、本発明に係る請求項1に記載の発明
は、埋立地からの塩分を含む浸出水処理水を脱塩濃縮手
段で処理し、脱塩された放流可能な処理水を得ると共
に、濃縮された塩濃縮液を加熱乾燥手段で蒸発乾固して
塩分を回収する方法において、前記脱塩濃縮手段の処理
出口側の塩分濃度を前記加熱乾燥手段で蒸発乾固される
塩濃縮液の所定塩分濃度に設定しておき、前記脱塩濃縮
手段に供給して脱塩濃縮される浸出水処理水を塩濃縮液
の塩分濃度設定値に達するまでの間、前記脱塩濃縮手段
の入口側へ還流して脱塩処理を継続させるようにしたこ
とを特徴とする埋立地浸出水処理水の脱塩処理方法であ
る。
That is, the invention according to claim 1 of the present invention is characterized in that treated leachate containing salt from a landfill is treated by a desalting and concentrating means to obtain desalted treated water that can be discharged. A method for recovering salts by evaporating the concentrated salt concentrate to dryness by heating and drying means, wherein the salt concentration at the treatment outlet side of the desalting and concentration means is evaporated to dryness by the heating and drying means. The salt concentration is set to a predetermined value, and the leachate treated water to be supplied to the desalting / concentrating means and subjected to desalting / concentration is supplied to the inlet of the desalting / concentrating means until the salt concentration of the salt concentrate reaches the set value. A method for desalinating treated water from a landfill leachate, characterized in that the wastewater is returned to the side to continue the desalination treatment.

【0012】従って、請求項1の方法発明では、脱塩濃
縮手段に供給して脱塩濃縮処理される浸出水処理水が順
次に脱塩された処理水として放流可能にされ、且つ同時
に該浸出水処理水の塩分濃度が脱塩濃縮手段に設定され
ている塩分濃度設定値よりも低い場合、該浸出水処理水
に対する脱塩濃縮処理が脱塩濃縮手段の塩分濃度設定値
に達するまで繰り返されて、脱塩濃縮処理後の塩濃縮液
の塩分濃度がほぼ一定に制御されることになり、この結
果、加熱乾燥手段での塩濃縮液に対する蒸発乾固に必要
な乾燥用燃料の消費量がほぼ一定の設定値に維持され
る。
Therefore, according to the first aspect of the present invention, the leachate treated water supplied to the desalination and concentration means for desalination and concentration treatment can be sequentially discharged as desalinated treated water, and at the same time, the leachate is treated. When the salt concentration of the water treatment water is lower than the salt concentration set value set in the desalination concentration means, the desalination concentration treatment for the leachate treatment water is repeated until the salt concentration set value of the desalination concentration means is reached. As a result, the salt concentration of the salt concentrate after the desalting and concentration treatment is controlled to be substantially constant, and as a result, the consumption of the drying fuel required for evaporating and drying the salt concentrate with the heating and drying means is reduced. It is maintained at a substantially constant set value.

【0013】本発明に係る請求項2に記載の発明は、埋
立地からの塩分を含む浸出水処理水を脱塩濃縮手段で処
理し、脱塩された放流可能な脱塩水を得ると共に、濃縮
された塩濃縮液を加熱乾燥手段で蒸発乾固して塩分を回
収する装置において、前記浸出水処理水の貯留水槽と、
該貯留水槽から供給される浸出水処理水を脱塩濃縮し、
脱塩水を放流する脱塩濃縮装置と、該脱塩濃縮装置で脱
塩濃縮された塩濃縮液を蒸発乾固して塩分を回収する加
熱乾燥装置と、前記脱塩濃縮装置の出口塩分濃度を前記
加熱乾燥装置で蒸発乾固される塩濃縮液の塩分濃度に設
定し、且つ塩濃縮液の塩分濃度が設定値に達するまでの
間、還流手段を介して該塩濃縮液を前記貯留水槽に還流
させる制御装置とを備えることを特徴とする埋立地浸出
水処理水の脱塩処理装置である。
[0013] The invention according to claim 2 of the present invention is characterized in that treated leachate treated water containing salt from a landfill is treated by a desalting and concentrating means to obtain desalted and dischargeable demineralized water and to concentrate the treated water. In the apparatus for recovering the salt by evaporating the salt concentrated liquid by heating and drying to dryness, the storage tank for the leachate treated water,
Desalting and treating the leachate treated water supplied from the storage water tank,
A desalting / concentrating apparatus for discharging desalinated water, a heating / drying apparatus for evaporating and drying the concentrated salt solution that has been desalinated and concentrated by the desalting / concentrating apparatus, and a salinity concentration at the outlet of the desalting / concentrating apparatus. The salt concentration is set to the salt concentration of the salt concentrate to be evaporated to dryness by the heating and drying device, and the salt concentrate is returned to the storage tank via a reflux unit until the salt concentration of the salt concentrate reaches the set value. A desalination treatment device for treating treated landfill leachate, comprising a control device for refluxing.

【0014】本発明に係る請求項3に記載の発明は、前
記請求項2の埋立地浸出水処理水の脱塩処理装置におい
て、前記還流手段が、実質的に前記制御装置と貯留水槽
とを連通接続する循環管路であることを特徴としてい
る。
According to a third aspect of the present invention, in the desalination treatment apparatus for treated landfill leachate of the second aspect, the reflux means substantially comprises the control device and the storage tank. It is characterized in that it is a circulating conduit for communication.

【0015】本発明に係る請求項4に記載の発明は、前
記請求項2の埋立地浸出水処理水の脱塩処理装置におい
て、前記脱塩濃縮装置として、電気透析による脱塩濃縮
手法を用いたことを特徴としている。
According to a fourth aspect of the present invention, in the desalination treatment apparatus for treated landfill leachate according to the second aspect, the desalination and concentration apparatus uses a desalination and concentration method by electrodialysis. It is characterized by having been.

【0016】本発明に係る請求項5に記載の発明は、前
記請求項2の埋立地浸出水処理水の脱塩処理装置におい
て、前記乾燥装置として、バッチ式の加熱蒸発型遠心薄
膜乾燥装置を用いたことを特徴としている。
According to a fifth aspect of the present invention, there is provided the desalination treatment apparatus for treated landfill leachate according to the second aspect, wherein the drying apparatus is a batch-type heat evaporation type centrifugal thin film drying apparatus. It is characterized by being used.

【0017】従って、請求項2および請求項3ないし5
の装置発明では、貯留水槽から供給される浸出水処理水
が脱塩濃縮装置によって脱塩濃縮処理された上で順次に
脱塩された処理水として放流可能にされ、且つ同時に該
浸出水処理水の塩分濃度が脱塩濃縮手段に設定されてい
る塩分濃度の設定値よりも低い場合、該浸出水処理水に
対する脱塩濃縮処理が脱塩濃縮手段の塩分濃度設定値に
達するまでの間、制御装置による還流手段を介した循環
処理で繰り返されて、脱塩濃縮処理後の塩濃縮液の塩分
濃度がほぼ一定に制御されることになり、この結果、加
熱乾燥手段での塩濃縮液に対する蒸発乾固に必要な乾燥
用燃料の消費量がほぼ一定の設定値に維持される。
Therefore, claim 2 and claims 3 to 5
In the apparatus invention, the treated leachate supplied from the storage water tank is desalinated and concentrated by the desalination / concentration device, and then can be discharged as treated water which is sequentially desalinated. If the salt concentration is lower than the set value of the salt concentration set in the desalination / concentration means, the control is performed until the desalination / concentration treatment for the treated leachate reaches the salt concentration set value of the desalination / concentration means. The salt concentration of the salt concentrate after the desalting and concentration treatment is controlled to be substantially constant by repeating the circulation treatment through the reflux means by the device, and as a result, the evaporation of the salt concentrate by the heating and drying means is performed. The consumption of the drying fuel required for drying is maintained at a substantially constant set value.

【0018】[0018]

【発明の実施の形態】以下、本発明に係る埋立地浸出水
処理水の脱塩処理方法および装置の実施形態例につき、
図1ないし図3を参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of a method and an apparatus for desalinating treated landfill leachate according to the present invention will be described.
This will be described in detail with reference to FIGS.

【0019】図1は、本実施形態例を適用した電気透析
法による脱塩濃縮装置と加熱乾燥装置とを組み込み且つ
システム制御装置によって制御操作可能にした浸出水処
理水の脱塩処理システム全体の概要を示すブロック図で
あり、また、図2は、同上システム制御装置の一例を概
略的に説明する回路構成図、図3は、同上加熱乾燥装置
としてのバッチ式加熱蒸発型遠心薄膜乾燥装置の概要構
成を模式的に示す断面説明図である。
FIG. 1 shows a whole system of a desalination treatment water for leachate treated water in which a desalination concentration device and a heating / drying device by an electrodialysis method to which the present embodiment is applied are incorporated and controllable by a system controller. FIG. 2 is a block diagram showing an outline, and FIG. 2 is a circuit configuration diagram schematically illustrating an example of a system control device according to the first embodiment. FIG. It is sectional explanatory drawing which shows a schematic structure typically.

【0020】本図1に示す装置形態において、この実施
形態例による浸出水処理水の脱塩処理システムは、図示
省略した埋立地の浸出水処理水Aを受け入れて一旦貯留
する貯留水槽11と、該貯留水槽11から供給される浸
出水処理水Aを脱塩濃縮すると共に、脱塩処理された脱
塩水Bを放流する電気透析法による脱塩濃縮装置21
と、該脱塩濃縮装置21で濃縮処理された塩濃縮液の塩
分濃度が後述する塩分濃度設定値の範囲以下(塩濃縮液
C1 )であるか範囲内(塩濃縮液C2 )であるかを検出
して装置を制御操作するシステム制御装置31,および
前記塩濃縮液の塩分濃度が塩分濃度設定値の範囲以下
(塩濃縮液C1 )である場合に、該塩濃縮液C1 を再
度,前記貯留水槽11に還流させることで、塩濃縮液C
2 の塩濃度に達するまで再濃縮処理させるための還流手
段41と、前記脱塩濃縮装置21からシステム制御装置
31を介して給液される塩濃縮液C2 を蒸発乾固して塩
分を固化する加熱乾燥装置51とによって構成されてお
り、この場合、前記塩分濃度設定値については、前記加
熱乾燥装置51での前記塩濃縮液C2 に対する乾燥性能
を効果的に活用させ得る程度の塩分濃度に設定する。
In the apparatus configuration shown in FIG. 1, the desalination system for leachate treated water according to this embodiment includes a storage tank 11 for receiving and temporarily storing leachate treated water A from a landfill (not shown). A desalination / concentration apparatus 21 by electrodialysis, which demineralizes and concentrates leachate-treated water A supplied from the storage water tank 11 and discharges desalinated deionized water B
And whether the salt concentration of the salt concentrate concentrated by the desalting / concentrating apparatus 21 is equal to or less than a salt concentration set value described below (salt concentrate C1) or within the range (salt concentrate C2). A system controller 31 for detecting and controlling the apparatus, and, when the salt concentration of the salt concentrate is below the range of the salt concentration set value (salt concentrate C1), the salt concentrate C1 is stored again. By refluxing in the water tank 11, the salt concentrate C
And a recirculation means 41 for re-concentrating until the salt concentration reaches 2, and a salt concentrate C2 supplied from the desalting / concentrating apparatus 21 via the system controller 31 is evaporated to dryness to solidify the salt content. In this case, the salt concentration set value is set to such a level that the drying performance of the heating and drying device 51 with respect to the salt concentrate C2 can be effectively utilized. I do.

【0021】前記貯留水槽11は、集約管路12を通し
て塩分を含む浸出水処理水Aを受け入れることで、これ
を一旦貯留し、且つ該貯留した浸出水処理水Aを供給管
路13によって前記脱塩濃縮装置21に供給する。そし
て、該貯留水槽11内には、埋立地からの浸出量に即応
した流量の浸出水処理水Aが不断に貯留されるため、そ
の水位が必ずしも一定せず、従って、供給管路13を通
した脱塩濃縮装置21への浸出水処理水Aの供給量に関
しても、水位差,ひいては水圧差に対応した供給水量に
なる。
The storage tank 11 receives the treated leachate A containing salt through the collecting pipe 12, temporarily stores the leachate A, and removes the stored treated leachate A through the supply pipe 13. It is supplied to the salt concentrator 21. In the storage tank 11, since the leachate treated water A having a flow rate corresponding to the amount of leachate from the landfill is constantly stored, the water level is not always constant. The supply amount of the leachate treatment water A to the desalination / concentration device 21 is also the supply water amount corresponding to the water level difference and, consequently, the water pressure difference.

【0022】ここで、前記脱塩濃縮装置21における透
析負担を一定且つ定常化する等のために浸出水処理水A
の供給水量を定量もしくはほぼ定量化する必要がある場
合には、例えば、前記貯留水槽11での水槽自体の口径
を広くして水位差による影響を逓減させるとか、あるい
は、供給管路13に定量給送ポンプを介在させて強制供
給する等の手段を講ずれば足りる。
Here, in order to keep the dialysis load in the desalting / concentrating apparatus 21 constant and steady, etc., the leachate treated water A is used.
When it is necessary to quantitatively or substantially quantify the amount of supplied water, for example, the diameter of the water tank itself in the storage water tank 11 may be widened to reduce the influence of the water level difference, or the amount of water supplied to the supply line 13 may be reduced. It suffices to take measures such as forced supply through a feed pump.

【0023】前記脱塩濃縮装置21は、既知の電気透析
による脱塩濃縮手法を採用した構成のものであってよ
く、前記供給管路13から供給もしくは定量供給される
塩分を含んだ浸出水処理水Aは、従来からよく知られて
いるように、本脱塩濃縮装置21に内蔵した透析膜を通
して脱塩濃縮され、且つ脱塩処理されて塩分が除去され
た処理水Bは、放水管路22から図示しない農業用水路
等にそのまま放水される。
The desalting / concentrating apparatus 21 may be of a construction employing a known desalting / concentrating method by electrodialysis, and is a treatment for leachate containing salt supplied or quantitatively supplied from the supply line 13. As is well known, the water A is desalinated and concentrated through a dialysis membrane built in the present desalination and concentration device 21, and the treated water B, which has been subjected to desalination treatment to remove salt, is discharged from a discharge line. From 22, water is discharged as it is into an agricultural waterway (not shown).

【0024】一方、塩分が濃縮処理された塩濃縮液につ
いては、この場合、供給される浸出水処理水Aの塩分濃
度が前記した塩分濃度設定値の範囲内にあれば、設定塩
分濃度対応の塩濃縮液C1 として、また、範囲以下であ
れば、設定塩分濃度よりも低濃度の塩濃縮液C2 として
濃縮出口管路23から排出される。なお、本実施形態例
で取扱う浸出水処理水Aについては、先にも述べた如
く、その塩分濃度が比較的低いことから、1回程度の透
析による脱塩濃縮では、未だ前記設定塩分濃度よりも低
濃度の塩濃縮液C1 とされる場合が殆んどである。
On the other hand, in the case of the salt concentrate in which the salt is concentrated, if the salt concentration of the supplied leachate treatment water A is within the above-mentioned set value of the salt concentration, the salt concentration corresponding to the set salt concentration is set. The salt concentrate C1 is discharged from the concentration outlet line 23 as a salt concentrate C2 having a concentration lower than the set salt concentration if the concentration is below the range. As described above, the treated leachate A treated in the present embodiment has a relatively low salt concentration. Therefore, in the desalination and concentration by dialysis about once, the leachate treated water A is still higher than the set salt concentration. In most cases, the concentration of the concentrated salt solution is low.

【0025】前記システム制御装置31は、その一例と
して図2に示されている如く、前記濃縮出口管路23の
前流側にあって、塩濃縮液の塩分濃度および流量を常時
検出して濃度検出値信号S1 および流量検出値信号S2
を出力する濃度検出器32を、その後流側にあって、三
方切替えバルブ33をそれぞれに介在させると共に、前
記三方切替え弁33からは、前記塩分濃度設定値の範囲
内の塩濃縮液C2 を次段の前記加熱乾燥装置51に給液
する給液管路34と、範囲以下の塩濃縮液C1を最前段
の貯留水槽11に還流するために用いられる前記還流手
段41としての給液量可変ポンプ43を含む還流管路4
2とをそれぞれに取り出してあり、通常の切替え形態で
は、該三方切替えバルブ33が前記濃縮出口管路23を
還流管路42側に連通接続させている。
As shown in FIG. 2 as an example, the system controller 31 is located at the upstream side of the concentration outlet pipe 23, and constantly detects the salt concentration and the flow rate of the salt concentrate to obtain the concentration. Detection value signal S1 and flow detection value signal S2
Is provided on the downstream side, and a three-way switching valve 33 is interposed in each of them. From the three-way switching valve 33, a salt concentrate C2 within the range of the salt concentration set value is detected. A liquid supply line 34 for supplying liquid to the heating and drying device 51 of the stage, and a liquid supply amount variable pump as the reflux means 41 used for refluxing the salt concentrate C1 below the range to the storage water tank 11 of the foremost stage Reflux line 4 including 43
In the normal switching mode, the three-way switching valve 33 connects the concentration outlet line 23 to the reflux line 42 side.

【0026】そして、前記システム制御装置31は、マ
イクロコンピュータ等の演算装置を用いた操作制御器3
5を有し、該操作制御器35には、塩分濃度設定回路3
6および濃度比較回路37とポンプ駆動回路38とが設
けられている。ここで、塩分濃度設定回路36に対して
は、前記した塩分濃度設定値が外部設定されており、濃
度比較回路37においては、該塩分濃度設定回路36に
設定されている塩分濃度設定値を濃度検出器32から入
力される濃度検出値信号S1 と比較した上で、該濃度検
出値信号S1 が塩分濃度設定値の範囲以下であるとき,
つまり、塩濃縮液C1 が検出されたときにポンプ駆動回
路38に前記給液量可変ポンプ36の吐出量可変作動信
号S3 を出力し、且つ塩分濃度設定値の範囲内にあると
き,つまり、塩濃縮液C2 が検出されたときに前記三方
切替えバルブ33にバルブ切替え作動信号S4 を出力す
る。また、ポンプ駆動回路38は、濃度比較回路37か
らの吐出量可変作動信号S3 の入力を条件に、濃度検出
器32から入力される流量検出値信号S2 に対応して前
記給液量可変ポンプ36の吐出量を可変調整する。
The system controller 31 includes an operation controller 3 using an arithmetic device such as a microcomputer.
The operation controller 35 includes a salt concentration setting circuit 3
6 and a concentration comparing circuit 37 and a pump driving circuit 38 are provided. Here, the above-mentioned salinity concentration setting value is externally set to the salinity concentration setting circuit 36, and the salinity concentration setting value set in the salinity concentration setting circuit 36 is set to the concentration in the concentration comparing circuit 37. Compared with the density detection value signal S1 input from the detector 32, when the density detection value signal S1 is below the range of the salt concentration set value,
That is, when the salt concentrate C1 is detected, the discharge amount variable operation signal S3 of the variable liquid supply amount pump 36 is output to the pump drive circuit 38, and when it is within the range of the salt concentration set value, that is, when the salt concentration is within the range. When the concentrated liquid C2 is detected, a valve switching operation signal S4 is output to the three-way switching valve 33. The pump drive circuit 38 is responsive to the flow rate detection value signal S2 input from the concentration detector 32 on condition that the discharge amount variable operation signal S3 from the density comparison circuit 37 is input. Is variably adjusted.

【0027】前記の如く、濃度検出器32においては、
三方切替えバルブ33が濃縮出口管路23を給液管路3
4側で遮断,還流管路42側で連通させた状態で、脱塩
濃縮装置21によって濃縮処理された塩濃縮液の塩分濃
度(塩濃縮液C1 またはC2の何れかの塩分濃度に該
当)と流量(同様に、塩濃縮液C1 またはC2 の何れか
の流量に該当)とがそれぞれに検出されて、濃度検出値
信号S1 と流量検出値信号S2 とを出力するのである
が、これらの各検出出力により、前記操作制御器35
は、次のように作用する。
As described above, in the concentration detector 32,
The three-way switching valve 33 connects the concentration outlet line 23 to the feed line 3
In the state of being blocked on the 4 side and communicating with the reflux line 42 side, the salt concentration (corresponding to either the salt concentration of the salt concentrate C1 or C2) of the salt concentrate concentrated by the desalination concentrator 21 is shown. The flow rates (similarly, corresponding to the flow rates of the salt concentrates C1 and C2) are respectively detected, and the detected concentration signal S1 and the detected flow rate signal S2 are output. Depending on the output, the operation controller 35
Works as follows.

【0028】(1) 濃度検出器32で検出出力される濃
度検出値信号S1 の塩分濃度値が塩分濃度設定値の範囲
以下であって、実質的に、該濃度検出値信号S1 が塩濃
縮液C1 に該当する場合.濃度比較回路37は、入力さ
れる濃度検出値信号S1 と塩分濃度設定回路36の塩分
濃度設定値とを比較して、これが一致しないときに、こ
の状態を塩濃縮液C1 が検出されたものと判断し、吐出
量可変作動信号S3 を出力し、且つバルブ切替え作動信
号S4 を出力しない。このため三方切替えバルブ33が
濃縮出口管路23と還流管路42とを連通した常態のま
まで維持されている。一方、流量検出値信号S2 が入力
されるポンプ駆動回路38では、同時に入力される吐出
量可変作動信号S3 によって操作が開始され、流量検出
値信号S2 に基づいて演算される検出流量から、該演算
結果に見合って給液量可変ポンプ43の吐出量を自動的
に調整した上で駆動させ、濃度検出値信号S1 が塩濃縮
液C1 に該当するものと判断されている間中,つまり、
塩濃縮液C1 が排出されている限り、還流管路42を通
してその全量を貯留水槽11内に還流させ、該還流され
た塩濃縮液C1を脱塩濃縮装置21によって再濃縮処理
し、この操作を循環して継続するのである。即ち、この
場合には、濃度検出値信号S1 が塩濃縮液C2 に該当す
るものと判断されるまでの間、これを換言すると、浸出
水処理水Aの濃縮処理条件として、塩分濃度設定値で規
定された加熱乾燥装置51の乾燥性能を効果的に活用さ
せ得る程度の塩分濃度に達するまで繰り返されるのであ
る。
(1) The salt concentration value of the concentration detection value signal S1 detected and output by the concentration detector 32 is below the range of the salinity concentration set value, and substantially the concentration detection value signal S1 When C1 applies. The concentration comparing circuit 37 compares the inputted detected concentration signal S1 with the set value of the salt concentration of the salt concentration setting circuit 36, and when the values do not match, this state is regarded as that in which the salt concentrate C1 is detected. Judgment is made and the discharge amount variable operation signal S3 is output, and the valve switching operation signal S4 is not output. For this reason, the three-way switching valve 33 is maintained in a normal state in which the concentration outlet pipe 23 and the reflux pipe 42 are communicated. On the other hand, in the pump drive circuit 38 to which the flow rate detection value signal S2 is input, the operation is started by the simultaneously input discharge amount variable operation signal S3, and the calculation is performed based on the detected flow rate calculated based on the flow rate detection value signal S2. The discharge amount of the liquid supply amount variable pump 43 is automatically adjusted in accordance with the result and then driven, and while the concentration detection value signal S1 is determined to correspond to the salt concentrate C1, that is,
As long as the salt concentrate C1 is discharged, the whole amount is returned to the storage tank 11 through the reflux line 42, and the refluxed salt concentrate C1 is re-concentrated by the desalting / concentrating apparatus 21. It keeps circulating. In other words, in this case, until the concentration detection value signal S1 is determined to correspond to the salt concentrate C2, in other words, as the concentration treatment condition of the leachate treatment water A, the salt concentration set value is used. The process is repeated until the salt concentration reaches a level at which the specified drying performance of the heating and drying device 51 can be effectively utilized.

【0029】(2) 濃度検出器32で検出出力される濃
度検出値信号S1 の塩分濃度値が塩分濃度設定値の範囲
内にあって、実質的に、該濃度検出値信号S1 が塩濃縮
液C2に該当する場合.濃度比較回路37は、同様に入
力される濃度検出値信号S1 と塩分濃度設定回路36の
塩分濃度設定値とを比較して、これが一致したときに、
この状態を塩濃縮液C2 が検出されたものと判断し、吐
出量可変作動信号S3 を出力せず、バルブ切替え作動信
号S4 を出力する。これによって三方切替えバルブ33
が切替え作動され、濃縮出口管路23が還流管路42側
から給液管路34側に切替え接続される。一方、流量検
出値信号S2 が入力されるポンプ駆動回路38は、吐出
量可変作動信号S3 が入力されないために操作されな
い。従って、この状態では、濃縮出口管路23から排出
される塩濃縮液C2 の全量が給液管路34を通して加熱
乾燥装置51に給液されることになる。
(2) The salt concentration value of the concentration detection value signal S1 detected and outputted by the concentration detector 32 is within the range of the salinity concentration set value, and the concentration detection value signal S1 is substantially equal to the salt concentration solution. If C2 applies. The density comparison circuit 37 compares the similarly detected density detection value signal S1 with the salinity concentration set value of the salinity concentration setting circuit 36, and when they match,
In this state, it is determined that the salt concentrate C2 has been detected, and the valve switching operation signal S4 is output without outputting the discharge amount variable operation signal S3. Thereby, the three-way switching valve 33
Is switched, and the concentration outlet line 23 is switched and connected from the reflux line 42 side to the liquid supply line 34 side. On the other hand, the pump drive circuit 38 to which the flow rate detection value signal S2 is input is not operated because the discharge amount variable operation signal S3 is not input. Accordingly, in this state, the entire amount of the salt concentrate C2 discharged from the concentration outlet line 23 is supplied to the heating / drying device 51 through the liquid supply line 34.

【0030】前記加熱乾燥装置51には、その一例とし
てバッチ式の加熱蒸発型遠心薄膜乾燥装置を用いること
ができる。本加熱蒸発型遠心薄膜乾燥装置51は、図3
に示されている如く、装置筺体52の乾燥室53内中心
部に電動モーター55で回転駆動される乾燥用遠心翼5
4を設け、且つ筺体外周部にあっては、加熱蒸気発生
源,例えば、ボイラー57から加熱蒸気を供給する加熱
用ジャケット56を囲繞するように形成してある。ま
た、前記給液管路34を通して給液される塩濃縮液C2
は、塩濃縮液槽58内に一旦貯留された上で、塩濃縮液
ポンプ59によって乾燥室53内に供給される。なお、
図中,60は前記塩濃縮液C2 を蒸発乾固した塩分Dを
回収するための回収口であり、61は前記加熱用ジャケ
ット56のドレン抜きである。
As the heating and drying device 51, for example, a batch type heating and evaporation type centrifugal thin film drying device can be used. FIG.
As shown in FIG. 3, a drying centrifugal impeller 5 rotationally driven by an electric motor 55 is provided at a central portion in a drying chamber 53 of an apparatus housing 52.
4 is provided, and is formed so as to surround a heating steam generation source, for example, a heating jacket 56 for supplying heating steam from a boiler 57 at the outer peripheral portion of the housing. Further, the salt concentrate C2 supplied through the liquid supply line 34
Is once stored in a salt concentrate tank 58 and then supplied into a drying chamber 53 by a salt concentrate pump 59. In addition,
In the drawing, reference numeral 60 denotes a recovery port for recovering the salt D obtained by evaporating the salt concentrate C2 to dryness, and 61 denotes a drain of the heating jacket 56.

【0031】従って、本加熱乾燥装置51では、ボイラ
ー57から給送される加熱蒸気により、加熱用ジャケッ
ト56を介して乾燥室53内が乾燥性能に対応して十分
に加熱された状態で、塩濃縮液ポンプ59で該乾燥室5
3内に適量供給される塩濃縮液C2 が、回転駆動する乾
燥用遠心翼54により飛散されて瞬時に蒸発乾固される
ことになるもので、この場合には、先にも述べた如く、
該乾燥対象となる塩濃縮液C2 の塩分濃度が、装置自体
の乾燥性能を効果的に活用させ得る程度に設定されてい
ることから、乾燥用燃料の消費量が少なくなってほぼ一
定の設定値に維持できるもので、浸出水処理水Aの水量
が少なくて、一定量以上の塩濃縮液C2が貯留されない
場合の稼働停止とも合わせて無意味な燃料消費を効果的
に防止できて無駄がない。
Therefore, in the heating and drying apparatus 51, the inside of the drying chamber 53 is sufficiently heated according to the drying performance by the heating steam supplied from the boiler 57 through the heating jacket 56, and the salt is dried. With the concentrated liquid pump 59, the drying chamber 5
An appropriate amount of the salt concentrate C2 supplied into the tank 3 is scattered by the rotating centrifugal impeller 54 and is instantaneously evaporated to dryness. In this case, as described above,
Since the salt concentration of the salt concentrate C2 to be dried is set to such an extent that the drying performance of the apparatus itself can be effectively utilized, the consumption of the drying fuel is reduced and the set value is almost constant. The amount of treated leachate water A is small, and it is possible to effectively prevent meaningless fuel consumption together with the shutdown when the salt concentrate C2 of a certain amount or more is not stored and there is no waste. .

【0032】[0032]

【実験例1】長さ190cm,幅30cmおよび厚さ
0.05cmのイオン交換膜200枚からなる電気透析
槽器の2基を直列に配設した脱塩濃縮装置と、バッチ式
の加熱蒸発型遠心薄膜乾燥装置とで構成した脱塩設備を
用い、従来方式の下で埋立て地浸出水を脱塩処理したと
ころ次の通りであった。 浸出水処理水の水量 30T/日(塩素イオン濃度:6000ppm) 電気透析設備の運転条件 第1の電気透析槽 印加電流 24A,印加電圧 80V 第2の電気透析槽 印加電流 6A,印加電圧 80V 脱塩処理水の水量 27T/日(塩素イオン濃度:300ppm) 濃縮液の水量 3T/日(塩素イオン:6%) 加熱用燃料の消費量 72リットル/日
[Experimental example 1] A desalination / concentration device in which two electrodialysis tanks each having 200 ion exchange membranes each having a length of 190 cm, a width of 30 cm and a thickness of 0.05 cm are arranged in series, and a batch-type heat evaporation type. Using a desalination facility composed of a centrifugal thin-film dryer and desalination of landfill leachate under the conventional method, the results were as follows. Leachate treatment water volume 30 T / day (chlorine ion concentration: 6000 ppm) Operating conditions of electrodialysis equipment First electrodialysis tank Applied current 24 A, Applied voltage 80 V Second electrodialysis tank Applied current 6 A, Applied voltage 80 V Desalination Treated water volume 27 T / day (chlorine ion concentration: 300 ppm) Concentrate water volume 3 T / day (chlorine ion: 6%) Heating fuel consumption 72 liters / day

【0033】[0033]

【実験例2】上記脱塩設備を用い、本発明方式によって
運転稼働したところ、電力消費量は殆んど変化せず、加
熱用燃料の消費量が35リットル/日となって半分量以
下に激減することが確かめられた。
[Experimental example 2] When the above desalination equipment was operated according to the method of the present invention, the power consumption was hardly changed, and the fuel consumption for heating was 35 liters / day, less than half the amount. It has been confirmed that it will decrease sharply.

【0047】[0047]

【発明の効果】以上、実施形態例によって詳述したよう
に、本発明によれば、埋立地からの塩分を含む浸出水処
理水を脱塩濃縮処理し、脱塩された放流可能な処理水を
得ると共に、濃縮された塩濃縮液を蒸発乾固して塩分を
回収する場合、脱塩濃縮手段で脱塩濃縮される浸出水処
理水の塩分濃度を加熱乾燥手段で蒸発乾固される塩濃縮
液の所定塩分濃度,ここでは加熱乾燥手段の乾燥性能を
効果的に活用させ得る程度の塩分濃度に設定しておき、
脱塩濃縮手段に供給して脱塩濃縮される浸出水処理水を
塩濃縮液の塩分濃度設定値に達するまでの間、脱塩濃縮
手段の入口側へ還流して脱塩処理を継続させるようにし
たので、一般的に低い塩分濃度の浸出水処理水に対する
脱塩濃縮処理が、脱塩濃縮手段の塩分濃度設定値に達す
るまで繰り返されることになり、これによって脱塩濃縮
処理後の塩濃縮液の塩分濃度を常にほぼ一定に制御でき
るもので、この結果、比較的簡単な手段であるのにもか
かわらず、加熱乾燥手段による塩濃縮液の蒸発乾固に必
要な乾燥用燃料の消費量を格段に節減できるという優れ
た特長がある。
As described above in detail in the embodiment, according to the present invention, the treated leachate containing salt from the landfill is desalted and concentrated, and the desalted treated water that can be discharged is desalted. When the salt is recovered by evaporating the concentrated salt concentrate to dryness and recovering the salt, the salt concentration of the leachate treated water to be desalinated and concentrated by the desalting and concentration means is adjusted by heating and drying by the heating and drying means. A predetermined salt concentration of the concentrated liquid, here, a salt concentration that is set so as to effectively utilize the drying performance of the heating and drying means,
The leachate treated water to be supplied to the desalting / concentrating means and desalted and concentrated is returned to the inlet side of the desalting / concentrating means until the salt concentration of the salt concentrate reaches the set value of the salt concentration to continue the desalting treatment. Therefore, the desalination and concentration treatment for the leachate treated water having a low salt concentration is generally repeated until the salt concentration set value of the desalination and concentration means is reached, whereby the salt concentration after the desalination and concentration treatment is performed. The salt concentration of the liquid can always be controlled to be almost constant. As a result, despite the relatively simple means, the consumption of the drying fuel required for evaporating and drying the salt concentrate by the heating and drying means is reduced. It has an excellent feature that it can save much.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態例を適用した電気透析法に
よる脱塩濃縮装置と加熱乾燥装置とを組み込み且つシス
テム制御装置によって制御操作可能にした浸出水処理水
の脱塩処理システム全体の概要を示すブロック図であ
る。
FIG. 1 is a schematic diagram showing the overall structure of a desalination treatment water desalination system in which a desalination concentration device and a heating / drying device by an electrodialysis method to which an embodiment of the present invention is applied are incorporated and controllable by a system controller. It is a block diagram showing an outline.

【図2】同上システム制御装置の一例を概略的に説明す
る回路構成図である。
FIG. 2 is a circuit diagram schematically illustrating an example of the system control device.

【図3】同上加熱乾燥装置としてのバッチ式加熱蒸発型
遠心薄膜乾燥装置の概要構成を模式的に示す断面説明図
である。
FIG. 3 is an explanatory cross-sectional view schematically showing a schematic configuration of a batch-type heating-evaporation type centrifugal thin-film drying apparatus as the heating and drying apparatus.

【符号の説明】[Explanation of symbols]

A 浸出水処理水 B 処理水 C1 塩分濃度設定値の範囲以下の塩濃縮液 C2 塩分濃度設定値の範囲内の塩濃縮液 D 蒸発乾固された塩分 11 貯留水槽 12 集約管路 13 供給管路 21 電気透析法による脱塩濃縮装置 22 放水管路 23 濃縮出口管路 31 システム制御装置 32 濃度検出器 33 三方切替えバルブ 34 給液管路 35 操作制御器 36 塩分濃度設定回路 37 濃度比較回路 38 ポンプ駆動回路 41 還流手段 42 還流管路 43 給液量可変ポンプ 51 加熱乾燥装置 S1 濃度検出値信号 S2 流量検出値信号 S3 吐出量可変作動信号 S4 バルブ切替え作動信号 A Leachate treated water B Treated water C1 Salt concentrate below the range of salinity set value C2 Salt concentrate within the range of salinity set value D Salt evaporated and dried 11 Storage tank 12 Consolidating line 13 Supply line 21 Desalting / concentrating apparatus by electrodialysis method 22 Drainage line 23 Concentration outlet line 31 System controller 32 Concentration detector 33 Three-way switching valve 34 Liquid supply line 35 Operation controller 36 Salt concentration setting circuit 37 Concentration comparison circuit 38 Pump Drive circuit 41 Reflux means 42 Reflux line 43 Liquid supply amount variable pump 51 Heating / drying device S1 Concentration detection value signal S2 Flow detection value signal S3 Discharge amount variable operation signal S4 Valve switching operation signal

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/04 C02F 1/04 C (72)発明者 成田 清 東京都品川区西五反田7─25─19 共和化 工株式会社内 (72)発明者 柴田 英則 東京都江東区亀戸2−25−14 旭硝子株式 会社内 (72)発明者 小林 拡 東京都江東区亀戸2−25−14 旭硝子株式 会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication C02F 1/04 C02F 1/04 C (72) Inventor Kiyoshi Narita 7-25 Nishigotanda, Shinagawa-ku, Tokyo ─19 Kyowa Kako Co., Ltd. (72) Inventor Hidenori Shibata 2-25-14 Kameido, Koto-ku, Tokyo Asahi Glass Co., Ltd. (72) Inventor Hiroshi Kobayashi 2-25-14 Kameido, Koto-ku, Tokyo Asahi Glass Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 埋立地からの塩分を含む浸出水処理水を
脱塩濃縮手段で処理し、脱塩水を得ると共に、濃縮され
た塩濃縮液を加熱乾燥手段で蒸発乾固して塩分を回収す
る方法において、 前記脱塩濃縮手段の処理出口側の塩分濃度を前記加熱乾
燥手段で蒸発乾固される塩濃縮液の所定塩分濃度に設定
しておき、前記脱塩濃縮手段に供給して脱塩濃縮される
浸出水処理水を塩濃縮液の塩分濃度設定値に達するまで
の間、前記脱塩濃縮手段の入口側へ還流して脱塩濃縮処
理を継続させるようにしたことを特徴とする埋立地浸出
水処理水の脱塩処理方法。
1. A treated leachate containing salt from a landfill is treated by desalting and concentrating means to obtain desalinated water, and the concentrated salt concentrate is evaporated to dryness by heating and drying means to recover salt. In the method, the salt concentration on the processing outlet side of the desalting / concentrating means is set to a predetermined salt concentration of the salt concentrated solution evaporated and dried by the heating / drying means, and then supplied to the desalting / concentrating means for desalination. Until the salt-concentrated leachate-treated water reaches the salt concentration set value of the salt concentrate, it is refluxed to the inlet side of the desalting / concentrating means to continue the desalting / concentrating process. Desalination method of landfill leachate.
【請求項2】 埋立地からの塩分を含む浸出水処理水を
脱塩濃縮手段で処理し、脱塩水を得ると共に、濃縮され
た塩濃縮液を加熱乾燥手段で蒸発乾固して塩分を回収す
る装置において、 前記浸出水処理水の貯留水槽と、該貯留水槽から供給さ
れる浸出水処理水を脱塩濃縮し、脱塩水を放流する脱塩
濃縮装置と、該脱塩濃縮装置で脱塩濃縮された塩濃縮液
を蒸発乾固して塩分を回収する加熱乾燥装置と、前記脱
塩濃縮装置の処理出口側の塩分濃度を前記加熱乾燥装置
で蒸発乾固される塩濃縮液の所定塩分濃度に設定し、且
つ塩濃縮液の塩分濃度が設定値に達するまでの間、還流
手段を介して該塩濃縮液を前記貯留水槽に還流させる制
御装置とを備えることを特徴とする埋立地浸出水処理水
の脱塩処理装置。
2. A treated leachate containing salt from a landfill is treated by desalting and concentrating means to obtain demineralized water, and the concentrated salt concentrate is evaporated to dryness by means of heating and drying to recover salt. A desalination / concentration device for desalting and condensing leachate-treated water supplied from the storage water tank, and discharging the desalinated water; and desalination with the desalination / concentration device. A heating and drying device for evaporating the concentrated salt concentrate to dryness to recover salt, and a salt concentration at a processing outlet side of the desalting and concentration device, the salt concentration of the salt concentrate to be evaporated and dried by the heating and drying device. Landfill leaching, comprising: a control device for setting the salt concentration and returning the salt concentrate to the storage tank via a reflux means until the salt concentration of the salt concentrate reaches the set value. Desalination equipment for water treatment water.
【請求項3】 前記還流手段が、実質的に前記制御装置
と貯留水槽とを連通接続する還流管路であることを特徴
とする請求項2に記載の埋立地浸出水処理水の脱塩処理
装置。
3. The desalination treatment of landfill leachate according to claim 2, wherein the reflux means is a reflux pipe which substantially connects the control device and the storage tank. apparatus.
【請求項4】 前記脱塩濃縮装置として、電気透析によ
る脱塩濃縮手法を用いたことを特徴とする請求項2に記
載の埋立地浸出水処理水の脱塩処理装置。
4. The desalination treatment device for treated landfill leachate according to claim 2, wherein the desalination concentration device uses a desalination concentration method by electrodialysis.
【請求項5】 前記加熱乾燥装置として、バッチ式の加
熱蒸発型遠心薄膜乾燥装置を用いたことを特徴とする請
求項2に記載の埋立地浸出水処理水の脱塩処理装置。
5. The desalination treatment device for treated landfill leachate according to claim 2, wherein a batch-type heat evaporation type centrifugal thin film drying device is used as the heating and drying device.
JP25537096A 1996-09-06 1996-09-06 Desalination treatment method and apparatus for landfill leachate treatment water Expired - Lifetime JP3658470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25537096A JP3658470B2 (en) 1996-09-06 1996-09-06 Desalination treatment method and apparatus for landfill leachate treatment water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25537096A JP3658470B2 (en) 1996-09-06 1996-09-06 Desalination treatment method and apparatus for landfill leachate treatment water

Publications (2)

Publication Number Publication Date
JPH1080688A true JPH1080688A (en) 1998-03-31
JP3658470B2 JP3658470B2 (en) 2005-06-08

Family

ID=17277834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25537096A Expired - Lifetime JP3658470B2 (en) 1996-09-06 1996-09-06 Desalination treatment method and apparatus for landfill leachate treatment water

Country Status (1)

Country Link
JP (1) JP3658470B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220019A (en) * 2008-03-17 2009-10-01 Metawater Co Ltd Method and apparatus for treating wastewater
JP4428582B1 (en) * 2009-06-17 2010-03-10 株式会社富士クリーン Method and apparatus for producing acid and alkali from leachate
JP2012239965A (en) * 2011-05-18 2012-12-10 Japan Organo Co Ltd Electric deionized water producing apparatus
JP2015020136A (en) * 2013-07-22 2015-02-02 株式会社クラレ Method for treating landfill leachate
JP2015226910A (en) * 2015-08-12 2015-12-17 オルガノ株式会社 Electric deionized water production apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220019A (en) * 2008-03-17 2009-10-01 Metawater Co Ltd Method and apparatus for treating wastewater
JP4428582B1 (en) * 2009-06-17 2010-03-10 株式会社富士クリーン Method and apparatus for producing acid and alkali from leachate
JP2011000522A (en) * 2009-06-17 2011-01-06 Fuji Clean:Kk Method and apparatus for producing acid and alkali from leachate
JP2012239965A (en) * 2011-05-18 2012-12-10 Japan Organo Co Ltd Electric deionized water producing apparatus
JP2015020136A (en) * 2013-07-22 2015-02-02 株式会社クラレ Method for treating landfill leachate
JP2015226910A (en) * 2015-08-12 2015-12-17 オルガノ株式会社 Electric deionized water production apparatus

Also Published As

Publication number Publication date
JP3658470B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
CN105000737B (en) A kind of Industrial sewage treatment system and sewage water treatment method
CN105107821B (en) A kind of garbage flying ash cement kiln synergic processing and recycling of water resource method of disposal
US20040262206A1 (en) Mobile field electrical supply, freshwater and saltwater purification system, powder wash, wash station, and water collection and reclamation apparatus
Peters Purification of landfill leachate with membrane filtration
CN105080936B (en) A kind of garbage flying ash cement kiln synergic processing method
KR101795698B1 (en) Waste water Treatment Method and apparatus by Centrifuges
EP1414552A1 (en) Reverse osmosis system with controlled recirculation
JP3270211B2 (en) Freshwater production equipment
KR102024871B1 (en) Device for removing residual ozone gas
WO2010006310A1 (en) Water purification process
JP2019107645A (en) Wastewater treatment method
JPH1080688A (en) Demineralizing treatment of processed water exuded from filled-up land and device therefor
CN215559661U (en) Landfill leachate membrane after-concentration liquid treatment system
CN105080935B (en) A kind of garbage flying ash cement kiln synergic processing and recycling of water resource utilize system
CN209835873U (en) Waste water treatment combines multiple-effect riser crystallization to divide salt device
KR20030000039A (en) Device for recycling wastewater used in water jet loom and method of it
AU2004100721A4 (en) A Portable or Transportable Water Treatment System
WO2000010922A1 (en) Treatment of aqueous wastes
RU2207987C2 (en) Method for purifying drain water of solid domestic waste polygons
KR101801842B1 (en) Apparatus of treating wastewater using concentration control and Method of treating wastewater using the same
CN106145490A (en) A kind of expoxy propane calcium chloride saponification waste-water processes method of resource
JP3434022B2 (en) Fuel cell device
CN211367302U (en) Natural bubble gas production wastewater treatment system
Gerbasi et al. ECH NO= ECONOMlC ASSESSMENT
JP4052652B2 (en) Water treatment method and equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term