JPS6241753A - Perovskite ceramic and manufacture - Google Patents

Perovskite ceramic and manufacture

Info

Publication number
JPS6241753A
JPS6241753A JP60175643A JP17564385A JPS6241753A JP S6241753 A JPS6241753 A JP S6241753A JP 60175643 A JP60175643 A JP 60175643A JP 17564385 A JP17564385 A JP 17564385A JP S6241753 A JPS6241753 A JP S6241753A
Authority
JP
Japan
Prior art keywords
perovskite
porcelain
materials
melting point
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60175643A
Other languages
Japanese (ja)
Other versions
JPH0323500B2 (en
Inventor
秀行 高原
和夫 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60175643A priority Critical patent/JPS6241753A/en
Priority to US07/135,521 priority patent/US4885267A/en
Priority to DE8585904295T priority patent/DE3584513D1/en
Priority to EP85904295A priority patent/EP0192779B1/en
Priority to PCT/JP1985/000490 priority patent/WO1986001497A1/en
Publication of JPS6241753A publication Critical patent/JPS6241753A/en
Publication of JPH0323500B2 publication Critical patent/JPH0323500B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は誘電率が高く、その温度依存性、電界依存性の
小さいペロブスカイト系磁器およびその製法に関し、特
に結晶粒径とそのばらつきの小さなペロブスカイト系磁
器およびその製法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to perovskite ceramics having a high dielectric constant and low temperature dependence and electric field dependence, and a method for producing the same, and in particular perovskite ceramics having small crystal grain size and small variations thereof. Concerning porcelain and its manufacturing method.

[従来の技術] 磁器コンデンサ用誘電体材料には、誘電率が大きく、し
かもその温度依存性、電界依存性の小さいことが要求さ
れる。しかし、高誘電率とそれら依存性の低減は相反す
る要求であり、従来同時に満足させることは困難であっ
た。この解決方法として、本発明者らは高誘電率を示す
キュリー温度の異なる2種類以上のペロブスカイト系磁
器材料が混在した混合焼結磁器とその製法を提案した(
特願昭59−182702号)、この磁器は第5図に示
す工程で作られる。すなわち、例えばPb(Feh町/
3)、、  (Fed Nby、狛03  とPb(F
”Ys ”/) )o、r;(Feg Nb J、、g
 03とを独ケに秤凌、混合、仮焼成し、粉砕した後、
混合し、2種類のペロブスカイトが完全に固溶すること
がないように未焼成するものである。こうして得られた
磁器は■従来の磁器のように上記依存性改善のための副
成分を必要としない、■to 、ooo以上の高誘電率
を有しながらしかもその温度依存性、電界依存性を従来
の約172に低減できる。■混合する磁器材料の組み合
わせおよびその混合比により依存性の制御が自由に行え
る。といった特徴を有している。しかしながら混合する
ペロブスカイト系磁器材料は各々本焼成時の粒成長速度
が異っているため均一な結晶粒が畳にくく、しかも粒成
長速度の速いものは粒径が10牌膠にも達するなど、改
善の余地があった。
[Prior Art] Dielectric materials for ceramic capacitors are required to have a high dielectric constant and low dependence on temperature and electric field. However, a high dielectric constant and a reduction in dependence on these are contradictory demands, and conventionally it has been difficult to satisfy them at the same time. As a solution to this problem, the present inventors proposed a mixed sintered porcelain in which two or more types of perovskite porcelain materials with different Curie temperatures, which exhibit high dielectric constants, are mixed together and a method for manufacturing the same (
(Japanese Patent Application No. 59-182702), this porcelain is made by the process shown in FIG. That is, for example, Pb(Feh town/
3), (Fed Nby, Koma03 and Pb(F
"Ys"/) ) o, r; (Feg Nb J,, g
After weighing, mixing, pre-calcining and crushing 03,
The two types of perovskites are mixed and unfired so that the two types of perovskites do not completely form a solid solution. The porcelain obtained in this way: does not require any subcomponents to improve the above-mentioned dependence like conventional porcelain, and has a high dielectric constant of more than 10,000 yen, while also improving its temperature dependence and electric field dependence. This can be reduced to about 172 compared to the conventional value. ■Dependency can be freely controlled by combining the porcelain materials to be mixed and their mixing ratio. It has the following characteristics. However, the perovskite-based porcelain materials to be mixed have different grain growth rates during main firing, making it difficult to form uniform crystal grains, and those with fast grain growth rates have grain sizes of up to 10 grains. There was room for.

[発明が解決しようとする問題点1 本発明は上記の従来法を改善して、結晶粒径が小さく、
また粒径のばらつきの小さいペロブスカイト系磁器およ
びその製法を提供することを目的とする。
[Problem to be Solved by the Invention 1] The present invention improves the above-mentioned conventional method so that the crystal grain size is small and
Another object of the present invention is to provide perovskite porcelain with small variation in particle size and a method for producing the same.

[問題点を解決するための手段] ペロブスカイトは化学式ABO3で表わされる複酸化物
で、Aは単純立方格子を作り、Bはその体心位置に、O
は面心位置に位置する。
[Means for solving the problem] Perovskite is a complex oxide represented by the chemical formula ABO3, where A forms a simple cubic lattice, and B forms an O
is located at the face center position.

−1−述の目的を達成するために、本発明においては、
ペロブスカイト系磁器材料のうちキュリー温度の5%な
る2種類の材料を完全に固溶させることなく混合焼成さ
せるに際レベロブス力イト系磁器Al3O3のB位置を
占めない元素の酸化物であって、しかもそのペロブスカ
イト系磁器より融点が高く、化学的に安定な金属酸化物
を添加することを特徴どする。
-1- In order to achieve the above objectives, in the present invention,
It is an oxide of an element that does not occupy the B position of level B vitreous porcelain Al3O3 when two types of perovskite porcelain materials having 5% of the Curie temperature are mixed and fired without forming a complete solid solution. It has a higher melting point than perovskite porcelain and is characterized by the addition of chemically stable metal oxides.

「作 川] −に述した酸化物は、焼成にさいしてベロジスカイl−
系磁器材料中にほとんど固溶されず、大部分結晶粒界に
存在し、ベロブスカイ!・の結晶粒1&ffiを抑制し
、誘電特性にはほとんど変化をゲえない。
``Sakukawa] The oxide mentioned in
It is hardly dissolved in the solid porcelain material, and exists mostly at the grain boundaries, and Belovsky!・The crystal grains 1 &ffi are suppressed, and there is almost no change in the dielectric properties.

[実施例1 本発明の一実施例として、2種類のペロブスカイト系耐
器材料としてPb(Fe、 Wy3)x(Fe、 Nb
臨)1−%05 (O≦X≦1)のうちx=0.1の材
料とX=0.5の材料を用い、粒成長を抑止する金属酸
化物にDy、O,、を用いた場合の結果について説明す
る。
[Example 1] As an example of the present invention, two types of perovskite-based vessel materials were Pb(Fe, Wy3)x(Fe, Nb
1-%05 (O≦X≦1), using materials with x = 0.1 and materials with We will explain the results in this case.

第1図に製造工程を示す、原料粉末pbo。Raw material powder PBO whose manufacturing process is shown in FIG.

Fe2,03  、 WO:q  、 Nbz[15奢
上述のXがそれぞれ0.1および0.5となるように秤
場し、ボールミル中で純水と共に混合した。そして、脱
水乾燥後それぞれ1050℃および850℃で空気中で
1時仮焼成し、さらにボールミル中で粉砕した。仮焼成
後の組成物に対し、 CuKα線を用いて20=20〜
90″の範囲のX線回折パターンを測定し、所定のペロ
ブスカイト系磁器材料であることを確認した。これら2
種類のペロブスカイト系磁器材料を等モル混合し、Dy
20.Aを加え、ポリビニルアルコール溶液バインダを
用いて直径約1211履、厚さ約0.71のベレフトに
加圧成形し、空気中1000℃で1時間本焼成を行った
。焼成した磁器の焼成面を電子m*鏡(倍率1,000
倍)で観察し、結晶粒の平均粒径(Martir+径)
を測定した。また焼成した磁器の両面にAg電極を焼付
け、誘電特性の測定は誘電率εrをl kHzで−40
〜 120℃の温度範囲で行った。
Fe2,03, WO:q, Nbz[15%] were weighed so that the above X was 0.1 and 0.5, respectively, and mixed with pure water in a ball mill. After dehydration and drying, they were calcined in air for one hour at 1050°C and 850°C, respectively, and then ground in a ball mill. For the composition after pre-calcination, 20=20~ using CuKα rays.
The X-ray diffraction pattern in the range of 90'' was measured, and it was confirmed that the material was a predetermined perovskite ceramic material.
By mixing equimolar amounts of different types of perovskite porcelain materials, Dy
20. A was added thereto, and a polyvinyl alcohol solution binder was used to pressure-form the material into a bereft with a diameter of about 1211 mm and a thickness of about 0.71 mm, and main firing was performed in air at 1000° C. for 1 hour. The fired surface of the fired porcelain was examined using an electronic m* mirror (magnification: 1,000
The average grain size of the crystal grains (Martir+diameter)
was measured. In addition, Ag electrodes were baked on both sides of the fired porcelain, and the dielectric properties were measured by changing the dielectric constant εr to −40 at l kHz.
The temperature range was 120°C.

第2図はDyL03添加量と磁器の平均粒径およびに対
するmo1%で示しである。また、測定した結晶粒の個
数は20であった0図より、ayλ03の添加ψが0.
1mo1%まで増加すると、結晶粒径は無添加の場合の
5.04mに比べて約1/2の2.6用■に減少し、ま
た粒径偏差も無添加の場合の1.5〜10gm と比較
して1〜4ル謹と、かなり小さくなっている。しかしな
がら、0.2麿OI%を越えると逆にモ均粒径並びに粒
径偏差が大きくなっている。従ってDy、03は0.i
o1%ないし0.2mo1%添加した時に粒成長抑It
、の効果が著しくなることがわかる。
FIG. 2 shows the amount of DyL03 added, the average particle size of porcelain, and mo1% relative to the amount. Also, from Figure 0, in which the number of measured crystal grains was 20, the addition ψ of ayλ03 was 0.
When increasing to 1mol1%, the crystal grain size decreases to 2.6cm, which is about half of the 5.04m without additives, and the particle size deviation also decreases from 1.5 to 10gm compared to the case with no additives. Compared to that, it is considerably smaller at 1 to 4 ru. However, when OI% exceeds 0.2%, the average particle size and particle size deviation become large. Therefore, Dy, 03 is 0. i
Grain growth is inhibited when 1% to 0.2mol1% of o is added.
It can be seen that the effect of , becomes significant.

ペロブスカイト系磁器材料(ABO3)のB位置に他の
金属イオンが置換する場合は、キュリー温度が変化し、
温度依存性に見られる誘電率のピークが移動する。しか
し、第3図に示したay、、o3無添加の場合(図中(
a))と0.1mo1%添加した場合(図中(b))の
ペロブスカイト系磁器の誘電率温度9存性を比較すると
、Dyゆ03を0.1層O】%添加しても無添加の場合
と同様に20℃と80℃に弱い誘電率のピークが生じ、
ピークの移動は見られない、しかもD!z03を添加し
ても誘電率およびその温度依存性の平坦化は損われない
、従って、添加したDy2O3はペロブスカイト系磁器
材料のX=O,lとx = 0.5の結晶粒内に拡散さ
れるのではなく主に粒界に存在し、単に粒成長を抑制す
る効果のみ発揮するものと考えられる。
When another metal ion is substituted at the B position of the perovskite ceramic material (ABO3), the Curie temperature changes,
The peak of the dielectric constant seen in the temperature dependence shifts. However, in the case of no addition of ay, , o3 shown in Fig. 3 (in the figure (
Comparing the dielectric constant and temperature properties of perovskite ceramics when a)) and 0.1mol1% ((b) in the figure) are added, it is found that even if 0.1% of Dyyu03 is added, there is no additive. As in the case of , weak dielectric constant peaks occur at 20℃ and 80℃,
I can't see any peak movement, and D! The addition of z03 does not impair the flattening of the dielectric constant and its temperature dependence. Therefore, the added Dy2O3 is diffused into the crystal grains of the perovskite ceramic material with X=O,l and x=0.5. It is thought that it exists mainly at grain boundaries rather than at grain boundaries, and only exerts the effect of suppressing grain growth.

本実施例では混合する各磁器材料を仮焼成し、粉砕した
後、所望のモル比に混合する際に粒成長を抑1トする金
属酸化物(例えばDy4Ch )を同時に添加し、焼成
する方法について説明したが、第4図に示すように、原
料粉末を秤量する際に粒成長を抑1)−する金属酸化物
(例えばay2o3)を同時に添加し、仮焼成、粉砕を
行い所望のモル比に混合して焼成しても効果はかわらな
い。さらにこの場合には、本焼成時の粒成p速度が速い
方のペロブスカイト(本例ではx = 0.5)のみに
、粒!&長を抑11−する金属酸化物を添加するだけで
、同様の効果が得られる。
This example describes a method of pre-firing and pulverizing each of the porcelain materials to be mixed, and then simultaneously adding a metal oxide (for example, Dy4Ch) that suppresses grain growth when mixing to a desired molar ratio, and then firing. As explained above, as shown in Fig. 4, when weighing the raw material powder, a metal oxide (for example, ay2o3) that inhibits grain growth is added at the same time, and calcined and pulverized to achieve the desired molar ratio. Even if they are mixed and fired, the effect remains the same. Furthermore, in this case, only the perovskite with a faster grain formation p speed (x = 0.5 in this example) during main firing has grains! A similar effect can be obtained simply by adding a metal oxide that suppresses the & length.

添加する酸化物は、焼成にさいしてペロブスカイト系磁
器に固溶しないこと、特にABO3で表わされる一般式
のB位置(体心位置)の原子と置換しない金属元素の酸
化物であることが、磁器材料の誘電特性を損わないため
に必要である。また、酸化物がプロブスカイトにほとん
ど固溶せず、結晶粒界に存在することが結晶粒の成長抑
制のために効果的である。このためにペロブスカイト磁
器より高い融点をもち、化学的に安定な酸化物が有効で
ある。このような酸化物の一例としてFly、03(融
点2375℃)の例を示した、GdJ3 (融点239
5”C)  、 SmbO*  (融点2250℃)も
同様な効果を示す。
The oxide to be added must not form a solid solution in the perovskite porcelain during firing, and in particular must be an oxide of a metal element that does not replace the atom at the B position (body center position) in the general formula represented by ABO3. This is necessary in order not to damage the dielectric properties of the material. Furthermore, the fact that the oxide is hardly dissolved in solid solution in the provskite and is present at the grain boundaries is effective for suppressing the growth of the crystal grains. For this purpose, chemically stable oxides that have a higher melting point than perovskite porcelain are effective. Examples of such oxides include Fly,03 (melting point 2375°C) and GdJ3 (melting point 239°C).
5''C) and SmbO* (melting point 2250°C) also exhibit similar effects.

第1図の方法では第5図に示した従来の方法と仮焼成し
た磁器材料を混合する際に結晶粒の成長を抑Iトする金
属酸化物(例えばDy1o3 )を添加することが異な
り、また第4図の方法では原料粉末の秤峨時に粒成長を
抑止する金属酸化物(例えばDffJh )を添加する
ことが異なっているだけで従来の方法と基本的には全く
変わらない、なお、これらの方法は3種類以上の異なる
ペロブスカイト系磁器材料を混合し、焼結する場合につ
いても適用できることは言うまでもない。
The method shown in Figure 1 differs from the conventional method shown in Figure 5 in that a metal oxide (for example, Dy1O3) is added to suppress the growth of crystal grains when mixing the pre-fired porcelain material. The method shown in Figure 4 is basically the same as the conventional method, with the only difference being that a metal oxide (for example, DffJh) that suppresses grain growth is added during weighing of the raw material powder. It goes without saying that the method can also be applied to cases where three or more different types of perovskite ceramic materials are mixed and sintered.

[発明の効果1 以北説明したように、DYzQ3のような結晶粒成長を
抑I卜する金属酸化物の添加は2種類以上のペロブスカ
イト系磁器材料が混在した磁器の誘電特性を損なうこと
なく結晶粒を小さくし、しかも粒径偏差をも小さくする
ことができるという利点がある。このため積層磁器コン
デンサ用材料として用いた場合は誘電体である磁器層を
薄く、しかもピンホール等欠陥を少なくすることができ
るという利点がある。
[Effect of the invention 1] As explained above, the addition of a metal oxide such as DYzQ3, which suppresses crystal grain growth, improves crystal grain growth without impairing the dielectric properties of porcelain in which two or more types of perovskite ceramic materials are mixed. It has the advantage that the grains can be made smaller and the particle size deviation can also be made smaller. Therefore, when used as a material for a multilayer ceramic capacitor, it has the advantage that the dielectric ceramic layer can be made thinner and defects such as pinholes can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のペロブスカイト系磁器の製造方法の実
施例の工程を示す図、 第2図はDyル03の添加場とY均粒系の関係を示す図
、 第3図はDy2O3を添加した場合としない場合のペロ
ブスカイト系磁器の誘電率温度依存性を示す図、 第4図は本発明の他の実施例の製造玉梓を示す図、 第5図は従来のペロブスカイト系磁器の製造■:程を示
す図である。
Figure 1 is a diagram showing the steps of an embodiment of the method for producing perovskite ceramics of the present invention, Figure 2 is a diagram showing the relationship between the addition field of Dy 03 and the Y uniform grain system, and Figure 3 is a diagram showing the addition of Dy2O3. Figure 4 shows the temperature dependence of the permittivity of perovskite porcelain with and without it. Figure 4 shows the manufacturing process of another embodiment of the present invention. Figure 5 shows the conventional manufacturing process of perovskite porcelain. : It is a diagram showing the process.

Claims (1)

【特許請求の範囲】 1)キュリー温度が異なる2種類以上の化学式ABO_
3で表わされるペロブスカイト系磁器材料が混在してい
るペロブスカイト系磁器において、前記ABO_3のB
位置を占めず、前記2種類のペロブスカイト系磁器材料
の融点より高い融点の金属酸化物を含むことを特徴とす
るペロブスカイト系磁器。 2)キュリー温度の異なる2種類以上の化学式ABO_
3で表わされるペロブスカイト系磁器材料の原料粉末を
予め別々に仮焼してキュリー温度の異なる2種類以上の
ペロブスカイト系磁器材料とした後これらの材料を粉砕
して各々を零でない適当な比で混合する際に、前記AB
O_3中のB位置を占めない金属元素の酸化物であって
、前記2種類以上のペロブスカイト系磁器材料の融点よ
り高い融点の金属酸化物を添加し、前記2種類以上のペ
ロブスカイト系磁器材料を完全に固溶させることなく焼
結させることを特徴とするペロブスカイト系混合焼結磁
器の製法。 3)キュリー温度の異なる2種類以上の化学式ABO_
3で表わされるペロブスカイト系磁器材料の原料粉末の
少なくとも一種類に前記ABO_3のB位置を占めない
金属元素の酸化物であって、前記2種類以上のペロブス
カイト系磁器材料の融点より高い融点の金属酸化物を添
加した後、別々に仮焼成して、キュリー温度の異なる2
種類以上のペロブスカイト系磁器材料とした後、これら
を粉砕して各々を零でない適当な比で混合し、完全に固
溶させることなく焼結させることを特徴とするペロブス
カイト系磁器の製法。
[Claims] 1) Two or more chemical formulas ABO_ with different Curie temperatures
In the perovskite porcelain in which the perovskite porcelain material represented by 3 is mixed, B of ABO_3 is
Perovskite-based porcelain, characterized in that it contains a metal oxide that does not occupy a certain position and has a melting point higher than the melting points of the two types of perovskite-based porcelain materials. 2) Two or more chemical formulas ABO_ with different Curie temperatures
The raw material powder of the perovskite porcelain material represented by 3 is calcined separately in advance to obtain two or more types of perovskite porcelain materials having different Curie temperatures, and then these materials are crushed and mixed in an appropriate non-zero ratio. When doing so, the AB
Adding an oxide of a metal element that does not occupy the B position in O_3 and having a melting point higher than the melting point of the two or more types of perovskite ceramic materials, completely melting the two or more types of perovskite ceramic materials. A method for manufacturing perovskite mixed sintered porcelain, which is characterized by sintering without forming a solid solution in perovskite. 3) Two or more chemical formulas ABO_ with different Curie temperatures
At least one kind of the raw material powder of the perovskite ceramic material represented by 3 is an oxide of a metal element that does not occupy the B position of the above ABO_3, and has a melting point higher than the melting point of the two or more kinds of perovskite ceramic materials. After adding the material, pre-calcining them separately to produce two products with different Curie temperatures.
A method for producing perovskite porcelain, which is characterized in that after producing more than one type of perovskite porcelain materials, the materials are pulverized and mixed in an appropriate non-zero ratio, and sintered without forming a complete solid solution.
JP60175643A 1984-09-03 1985-08-12 Perovskite ceramic and manufacture Granted JPS6241753A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60175643A JPS6241753A (en) 1985-08-12 1985-08-12 Perovskite ceramic and manufacture
US07/135,521 US4885267A (en) 1984-09-03 1985-09-02 Perovskite ceramic and fabrication method thereof
DE8585904295T DE3584513D1 (en) 1984-09-03 1985-09-02 PEROWSKITE TYPE AND PRODUCTION CERAMIC MATERIAL.
EP85904295A EP0192779B1 (en) 1984-09-03 1985-09-02 Perovskite-type ceramic material and a process for producing the same
PCT/JP1985/000490 WO1986001497A1 (en) 1984-09-03 1985-09-02 Perovskite-type ceramic material and a process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60175643A JPS6241753A (en) 1985-08-12 1985-08-12 Perovskite ceramic and manufacture

Publications (2)

Publication Number Publication Date
JPS6241753A true JPS6241753A (en) 1987-02-23
JPH0323500B2 JPH0323500B2 (en) 1991-03-29

Family

ID=15999671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60175643A Granted JPS6241753A (en) 1984-09-03 1985-08-12 Perovskite ceramic and manufacture

Country Status (1)

Country Link
JP (1) JPS6241753A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63257110A (en) * 1987-04-14 1988-10-25 日本電信電話株式会社 Mixture sintered porcelain and manufacture thereof
JP2008093097A (en) * 2006-10-10 2008-04-24 Shigeaki Gunji Laundry pole hanging device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347920A (en) * 1976-10-12 1978-04-28 Westinghouse Electric Corp Electric induction unit
JPS5520616A (en) * 1978-07-28 1980-02-14 Dai Ichi Kogyo Seiyaku Co Ltd Manufacture of solid cationic high polymeric flocculant
JPS5768009A (en) * 1980-10-15 1982-04-26 Nippon Electric Co Large capacity laminated ceramic condenser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347920A (en) * 1976-10-12 1978-04-28 Westinghouse Electric Corp Electric induction unit
JPS5520616A (en) * 1978-07-28 1980-02-14 Dai Ichi Kogyo Seiyaku Co Ltd Manufacture of solid cationic high polymeric flocculant
JPS5768009A (en) * 1980-10-15 1982-04-26 Nippon Electric Co Large capacity laminated ceramic condenser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63257110A (en) * 1987-04-14 1988-10-25 日本電信電話株式会社 Mixture sintered porcelain and manufacture thereof
JP2008093097A (en) * 2006-10-10 2008-04-24 Shigeaki Gunji Laundry pole hanging device
JP4563979B2 (en) * 2006-10-10 2010-10-20 重秋 軍司 Clothes hanging tool

Also Published As

Publication number Publication date
JPH0323500B2 (en) 1991-03-29

Similar Documents

Publication Publication Date Title
JPH09205036A (en) Multilayered capacitor having dielectric of modified barium strontium titanate
JP2010285336A (en) Sintered material for dielectric substance and method for producing the same, and sintered material for dielectric substance which has core-shell fine structure and method for producing the same
JP2011116630A (en) Hexagonal type barium titanate powder, method for producing the same, dielectric ceramic composition and electronic component
JP2003533019A (en) Tunable device incorporating CaCu3Ti4O12
JP4730796B2 (en) Method for producing dielectric ceramic raw material powder and dielectric ceramic composition
JP2012517955A (en) Sintered precursor powder for dielectric production and method for producing the same
JP2003531809A (en) Substituted barium titanate and barium strontium titanate ferroelectric composition
JP7021897B2 (en) Dielectric compositions and dielectric ceramics
JP4465663B2 (en) Dielectric porcelain composition
JPH0660721A (en) Dielectric porcelain and its manufacture
JPS6241753A (en) Perovskite ceramic and manufacture
JP4419889B2 (en) Dielectric porcelain composition
JPH0612917A (en) Dielectric porcelain and its manufacture
JP2002087879A (en) Dielectric ceramic composition and laminated ceramic capacitor using the same
JP3798905B2 (en) Dielectric porcelain and multilayer porcelain capacitor
JPH10330158A (en) Dielectric raw material powder, particle diameter control of the raw material powder, and dielectric ceramic capacitor obtained by using the raw material powder
JP3588210B2 (en) Dielectric porcelain composition
JP2023176583A (en) Dielectric composition and electronic part
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
JP3704424B2 (en) Dielectric material
JP2003532979A (en) Tunable device incorporating BiCu3Ti3FeO12
JP2023069307A (en) Dielectric composition and electronic component
JP2022111644A (en) Dielectric composition and electronic component
JP2005179110A (en) Dielectric ceramic composition
JPH04114919A (en) Production of multiple perovskite-type dielectric porcelain powder and porcelain capacitor using same