JPH10330158A - Dielectric raw material powder, particle diameter control of the raw material powder, and dielectric ceramic capacitor obtained by using the raw material powder - Google Patents

Dielectric raw material powder, particle diameter control of the raw material powder, and dielectric ceramic capacitor obtained by using the raw material powder

Info

Publication number
JPH10330158A
JPH10330158A JP9155938A JP15593897A JPH10330158A JP H10330158 A JPH10330158 A JP H10330158A JP 9155938 A JP9155938 A JP 9155938A JP 15593897 A JP15593897 A JP 15593897A JP H10330158 A JPH10330158 A JP H10330158A
Authority
JP
Japan
Prior art keywords
raw material
material powder
dielectric
sample
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9155938A
Other languages
Japanese (ja)
Inventor
Tamotsu Saito
保 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP9155938A priority Critical patent/JPH10330158A/en
Publication of JPH10330158A publication Critical patent/JPH10330158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a dielectric raw material powder used for producing a dielectric ceramic composition, to provide a method for controlling the particle diameter thereof, and to obtain a dielectric ceramic by using the raw material powder. SOLUTION: The change of the particle diameter of a powder based on the change of a calcining temperature is reduced by allowing 1 mol BaTiO3 type raw material powder represented by the formula A.B.O3 to include 0.05-2.0 mol.% Cl, and the powder having a homogeneous particle diameter is obtained. A dielectric ceramic product having good characteristics can be produced by producing the dielectric ceramic product by using the raw material powder produced by the method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘電体磁器組成物
を製造する際に使用される誘電体原料粉末及びその粒径
制御方法及び該原料粉末を用いた磁器コンデンサに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric raw material powder used for producing a dielectric ceramic composition, a method for controlling the particle size thereof, and a ceramic capacitor using the raw material powder.

【0002】[0002]

【従来の技術】従来から、誘電体磁器組成物を製造する
には、BaCO3 、SrCO3 、CaCO3 、Ti
2 、ZrO2 等の原材料粉末を混合し、仮焼して、一
般式A・B・O3 で表されるBaTiO3 原料粉末を
得、さらに該原料粉末に添加剤を加えて誘電体磁器原料
粉末を構成し、該粉末を成形・焼成して誘電体磁器を製
造している。またこの際、必要に応じてSrCO3 、C
aCO3 を加えてBaの一部をSr、Caで置換し、Z
rO2 を加えてTiの一部をZrで置換することも知ら
れている。この場合、現実には上記の一般式A・B・O
3 におけるA/B比が僅かにずれるのが一般である。
2. Description of the Related Art Conventionally, to produce a dielectric ceramic composition, BaCO 3 , SrCO 3 , CaCO 3 , Ti
O 2, a mixture of raw material powders such as ZrO 2, calcined to obtain a BaTiO 3 material powder represented by the general formula A · B · O 3, a dielectric ceramic further added an additive to the raw material powder The raw material powder is formed, and the powder is molded and fired to produce a dielectric porcelain. At this time, if necessary, SrCO 3 , C
aCO 3 is added to partially replace Ba with Sr and Ca, and Z
It is also known to add rO 2 to partially replace Ti with Zr. In this case, in reality, the above general formula A, B, O
Generally, the A / B ratio in 3 is slightly shifted.

【0003】また、上記の工程中、仮焼された原料粉末
の粒径が磁器組成物の焼結性及びその磁器特性に関連す
ることが知られている。すなわち、仮焼された原料粉末
の粒径が小さいと充填密度が上がらず、良好な磁器特性
が得られず、また粒径が大き過ぎると、焼結性が悪くな
り、良好な焼結体が得られず、その結果充分な磁器特性
が得られない。
[0003] It is known that, during the above process, the particle size of the calcined raw material powder is related to the sinterability of the porcelain composition and its porcelain properties. That is, if the particle size of the calcined raw material powder is small, the packing density does not increase, and good porcelain characteristics cannot be obtained.If the particle size is too large, the sinterability deteriorates, and a good sintered body As a result, sufficient porcelain characteristics cannot be obtained.

【0004】さらに、仮焼された原料粉末は、その粒径
及び該粒径のばらつきが小さいことが望ましいが、一般
的に粒径は0.2〜1μm程度であり、そのばらつきの
程度を標準偏差値/平均値で表現すると、平均粒径の4
0%程度である。
Further, it is desirable that the calcined raw material powder has a small particle size and a small variation in the particle size. Generally, however, the particle size is about 0.2 to 1 μm. Expressed as a deviation value / average value, the average particle size is 4
It is about 0%.

【0005】ところで、誘電体磁器組成物を製造する際
に用いる原料粉末の粒径は、該組成物の焼結性や電気的
特性を大きく左右するものであり、常に同じ大きさの粒
径の粉体を製造することが必要であり、その粒径は、一
般的には前記のように0.2〜1μm程度であり、各誘
電体磁器組成物に適合した特定の粒径の粉体を使用して
いる。
[0005] The particle size of the raw material powder used in producing the dielectric ceramic composition greatly affects the sinterability and electrical characteristics of the composition, and always has the same particle size. It is necessary to produce a powder, the particle size of which is generally about 0.2 to 1 μm as described above, and a powder having a specific particle size suitable for each dielectric ceramic composition. I'm using

【0006】従って、所望の粒径を有する粉末を得るた
めには、仮焼温度を所定温度に保持することが必要であ
るが、この原料粉末の粒径は、仮焼温度の微小な変動に
よって大きく変動し、しかもばらつきが大きく、仮焼温
度を制御しても均一な粒径の粉末を得ることは困難であ
った。
Therefore, in order to obtain a powder having a desired particle size, it is necessary to maintain the calcining temperature at a predetermined temperature. Even if the calcination temperature is controlled, it is difficult to obtain a powder having a uniform particle size because of a large variation and a large variation.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記のよう
な課題を解決し、仮焼温度の変動に対して、粒成長が鈍
感で、ばらつきの少ない仮焼された原料粉末及び該粉末
を容易に製造するための粒径制御方法及び該粉末を用い
た誘電体磁器コンデンサを提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned problems, and provides a calcined raw material powder which is insensitive to the fluctuation of the calcining temperature and has a small variation in grain growth and a small variation. It is an object of the present invention to provide a particle size control method for easily manufacturing and a dielectric ceramic capacitor using the powder.

【0008】[0008]

【課題を解決するための手段】すなわち本発明は、一般
式A・B・O3 で表されるBaTiO3 系原料粉末1m
olに対して、Clを0.05〜2.0mol%含有す
ることを特徴とする誘電体原料粉末及び、該誘電体原料
粉末において、Baの一部をSr及び/又はCaで置換
したこと、さらには、これらの誘電体原料粉末におい
て、Tiの一部をZrで置換したことを特徴とするもの
であり、また該誘電体原料粉末を製造するに際し、仮焼
温度を変化させることにより粉末の粒径を制御すること
を特徴とする粒径制御方法及び上記の誘電体原料粉末を
用いることを特徴とする誘電体磁器コンデンサである。
Means for Solving the Problems] The present invention, BaTiO 3 system material powder represented by the general formula A · B · O 3 1m
a dielectric raw material powder comprising 0.05 to 2.0 mol% of Cl with respect to ol, and in the dielectric raw material powder, a part of Ba is replaced with Sr and / or Ca; Further, in these dielectric raw material powders, a part of Ti is replaced by Zr. In producing the dielectric raw material powder, the calcining temperature is changed to change the powder. A particle size control method characterized by controlling the particle size and a dielectric ceramic capacitor characterized by using the above-mentioned dielectric raw material powder.

【0009】[0009]

【発明の実施の形態】以下、本発明について説明する。
本発明の第一の特徴は、一般式A・B・O3で表される
BaTiO3 系原料粉末の粒成長を伴う仮焼合成過程の
前段階において、BaTiO3 系原料粉末1molに対
して、Clを0.05〜2.0mol%添加することに
ある。このようにすると仮焼温度の変化に対しての粒成
長の変化が緩やかになり、粉末の粒径の制御が容易とな
る。なお、Clの添加は塩化アンモニウムあるいは塩化
バリウム等の形で行うことができるが、添加の形態は特
定されない。なお、Clの添加により粒成長が緩やかに
なる理由は、未だ理論的に解明されていないが、本発明
者は、多数の実験の結果から、上記の知見を経験的に得
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below.
The first feature of the present invention, in the stage prior to calcination synthesis process with a grain growth of the BaTiO 3 system material powder represented by the general formula A · B · O 3, with respect to BaTiO 3 based raw powder 1 mol, Cl means to add 0.05 to 2.0 mol%. By doing so, the change in the grain growth with respect to the change in the calcining temperature becomes gentle, and the control of the particle size of the powder becomes easy. The addition of Cl can be performed in the form of ammonium chloride or barium chloride, but the form of addition is not specified. The reason why the grain growth is moderated by the addition of Cl has not been theoretically elucidated yet, but the present inventor has obtained the above findings empirically from the results of many experiments.

【0010】また、BaTiO3 系原料粉末のBaの一
部をSr及び/又はCaで置換し、あるいはTiの一部
をZrで置換した場合も、同様の効果が得られる。
The same effect can be obtained when a part of Ba of the BaTiO 3 -based raw material powder is replaced with Sr and / or Ca, or a part of Ti is replaced with Zr.

【0011】また、本発明においては、BaTiO3
原料粉末の仮焼温度を制御することによって、粉末の粒
径を制御することができる。
In the present invention, the particle diameter of the BaTiO 3 -based raw material powder can be controlled by controlling the calcining temperature of the powder.

【0012】さらに、本発明は、上記の原料粉末を使用
することにより、コンデンサ等の誘電体磁器製品を製造
すれば、特性の良好な製品を得ることができる。
Further, according to the present invention, if a dielectric porcelain product such as a capacitor is manufactured by using the above-mentioned raw material powder, a product having good characteristics can be obtained.

【0013】[0013]

【実施例】次に、本発明の実施例を示す。出発原料とし
て、BaCO3 、TiO2 、SrCO3 、CaCO3
ZrO2、NH4 Cl、BaCl2 を用い、表1に示す
割合で秤量し、これをボールミルで混合した後に乾燥し
た。この乾燥物を焼成炉において表2に示す温度で各2
時間保持し、仮焼して合成粉体を得た。
Next, examples of the present invention will be described. As starting materials, BaCO 3 , TiO 2 , SrCO 3 , CaCO 3 ,
ZrO 2 , NH 4 Cl, and BaCl 2 were weighed at the ratios shown in Table 1 and mixed with a ball mill and dried. Each of the dried products was heated in a firing furnace at a temperature shown in Table 2 for each 2 hours.
It was kept for a while and calcined to obtain a synthetic powder.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】表1において、試料No.1はBaTiO
3 からなる従来の例で、Clを含まない場合である。試
料No.2〜6はClを0.02mol%〜3mol%
まで変化させた例を示す。なお、試料No.2及び試料
No.6は、表2及び後述する表3から明らかなように
本発明の範囲外である。また試料No.7、試料No.
8は(Ba0.7 Ca0.2 Sr0.1 )TiO3 において、
試料No.7はClを含まない本発明の範囲外の例、試
料No.8はClを含む例である。一方、試料No.
9、試料No.10はBa(Ti0.8 Zr0.2 )O3
おいて、試料No.9はClを含まない本発明の範囲外
の例、試料No.10はClを含む例である。また、試
料No.11は、Clの供給をNH4 Clに代えてBa
Cl2 とした例である。この場合BaCO3 の値が9
9.75molとなっているが、BaCl2 が0.25
mol加わったからである。
In Table 1, sample no. 1 is BaTiO
In the conventional example of No. 3, no Cl is included. Sample No. 2 to 6 are 0.02 mol% to 3 mol% of Cl
The following shows an example in which the value has been changed. The sample No. 2 and sample no. 6 is out of the scope of the present invention as is clear from Table 2 and Table 3 described later. Sample No. 7, sample no.
8 is (Ba 0.7 Ca 0.2 Sr 0.1 ) TiO 3 ,
Sample No. 7 is an example out of the scope of the present invention containing no Cl, and sample No. 7 8 is an example containing Cl. On the other hand, sample No.
9, sample no. Sample No. 10 was made of Ba (Ti 0.8 Zr 0.2 ) O 3 , 9 is an example out of the scope of the present invention containing no Cl, sample no. 10 is an example containing Cl. In addition, the sample No. 11 is Ba instead of Cl supply of NH 4 Cl.
This is an example in which Cl 2 is used. In this case, the value of BaCO 3 is 9
9.75 mol, but BaCl 2 is 0.25 mol
This is because mol was added.

【0017】表2は仮焼温度とその温度で得られた粉体
の平均粒径を示すものである。粉体の粒径は、それぞれ
の仮焼材を5点抜き取りSEMを用い、10000〜3
0000倍で撮影した各写真により100個の一次粒子
の直径を測定し、その平均値とした。通常使用される粒
子の平均粒径は前記のとおり0.2μm〜1.0μm程
度であるので試料の組成により、適用温度範囲が広がっ
ているのが判る。すなわち仮焼温度の変動に対して粒径
の変動が鈍くなっていることが理解される。
Table 2 shows the calcining temperature and the average particle size of the powder obtained at that temperature. The particle size of the powder was determined at 10,000 to 3 using a 5-point sampling SEM for each calcined material.
The diameter of 100 primary particles was measured from each photograph taken at a magnification of 0000, and the average value was determined. As described above, the average particle size of the commonly used particles is about 0.2 μm to 1.0 μm, so it can be seen that the application temperature range is broadened depending on the composition of the sample. That is, it is understood that the variation of the particle size becomes slow with respect to the variation of the calcination temperature.

【0018】表2についてさらに説明すると、試料N
o.1〜6を比較した場合、Cl量の増加によって温度
範囲が広がることが理解される。但し試料No.6は誘
電率が低下し、誘電損失(tanδ)が悪化するので好
ましくない。また試料No.8からBaの一部を置換
し、あるいは試料No.10からTiの一部を置換して
も、その効果が変わらないことが判る。一方試料No.
9及び試料No.10からTiの一部をZrで置換する
と、仮焼温度が高くなるが、この場合も同様の効果を示
すことが判る。
Referring further to Table 2, the sample N
o. When comparing 1 to 6, it is understood that the temperature range is widened by increasing the Cl amount. However, sample No. No. 6 is not preferable because the dielectric constant is lowered and the dielectric loss (tan δ) is deteriorated. Sample No. Part of Ba was replaced from Sample No. 8 or Sample No. 8 was replaced. It can be seen from FIG. 10 that the effect does not change even if a part of Ti is replaced. On the other hand, sample No.
9 and sample no. It can be seen from FIG. 10 that when part of Ti is replaced with Zr, the calcination temperature increases, but in this case also, the same effect is exhibited.

【0019】[0019]

【表3】 [Table 3]

【0020】さらに、表3は表2に対応する粒径の標準
偏差σ/平均値を示すものである。この表3からも、本
発明の効果がみられる。すなわち試料No.1〜6にお
いて、Clの量によりばらつきが小さくなっていること
が理解される。またBaの一部、Tiの一部を置換した
ものでも同様の効果を示すことが判る。
Further, Table 3 shows the standard deviation σ / average value of the particle size corresponding to Table 2. Table 3 also shows the effect of the present invention. That is, the sample No. It is understood that the dispersion was smaller in Nos. 1 to 6 depending on the amount of Cl. It can also be seen that the same effect can be obtained by substituting a part of Ba and a part of Ti.

【0021】次に、表1における試料No.1、試料N
o.4及び試料No.6の試料を用い積層コンデンサを
作成し評価を行った。いずれも粒径が0.45μmにな
るように、No.1は1066℃、No.4は1080
℃、No.6は1090℃で仮焼を行った。さらに各材
料の安定性を確認するためにClを含まない例として試
料No.1を、Clを含む例としてNo.4をそれぞれ
10ロット作成し、個別に仮焼を行った。これらの各材
料の仮焼後の粒径及び標準偏差/平均値を表4に示す。
Clを含む試料No.4の組成は、Clを含まない試料
No.1の組成と比較してロット間のばらつきが少なく
安定していることが判る。
Next, the sample No. in Table 1 was used. 1. Sample N
o. 4 and sample no. A multilayer capacitor was prepared using the sample No. 6 and evaluated. In each case, the particle size was 0.45 μm. No. 1 was 1066 ° C .; 4 is 1080
° C, No. 6 was calcined at 1090 ° C. Further, in order to confirm the stability of each material, Sample No. No. 1 as an example including Cl. 4 were prepared in 10 lots and calcined individually. Table 4 shows the particle size and the standard deviation / average value of each of these materials after calcination.
Cl containing Sample No. The composition of Sample No. 4 containing no Cl was It can be seen that there is little variation between lots compared to the composition of No. 1 and the composition is stable.

【0022】[0022]

【表4】 [Table 4]

【0023】さらに、これらの仮焼材に対して、MnO
=0.1mol%、MgO=0.3mol%、Dy2
3 =1.0mol%、とLi2 O−SiO2 −BaO
(各々20、60、20mol%)のガラス組成物を
1.0wt%秤量して添加する。この混合物をウレタン
ボールを用い湿式分散し、乾燥後1000℃で熱処理を
行った。
Further, MnO was added to these calcined materials.
= 0.1 mol%, MgO = 0.3 mol%, Dy 2 O
3 = 1.0 mol%, and Li 2 O—SiO 2 —BaO
1.0 wt% (20, 60, and 20 mol% each) of the glass composition is weighed and added. This mixture was wet-dispersed using urethane balls, dried, and then heat-treated at 1000 ° C.

【0024】これに、有機バインダー及び可塑剤を添加
し、ウレタンボールを用い、ボールミルで分散した後ド
クターブレード法によりシート化してセラミックグリー
ンシートを得た。さらに得られたグリーンシートの一面
に内部Ni電極形成用導電ペーストを長さ14mm、幅7
mmのパターンを50個有するスクリーンを介して印刷
し、乾燥後10層になるように積層した。この際、隣接
する上下のシートにおいて印刷面が長手方向に半分ずれ
るように配置した。さらにこの積層物の上下両面にそれ
ぞれ印刷されていないグリーンシートを50枚づつ積層
し、これを圧着した後、格子状に裁断し積層チップを得
た。
An organic binder and a plasticizer were added thereto, and the mixture was dispersed by a ball mill using urethane balls, and then formed into sheets by a doctor blade method to obtain ceramic green sheets. Further, a conductive paste for forming an internal Ni electrode is coated on one surface of the obtained green sheet with a length of 14 mm and a width of 7 mm.
Printing was carried out through a screen having 50 mm patterns, and after drying, 10 layers were laminated. At this time, the printing surfaces of the adjacent upper and lower sheets were arranged so as to be shifted by half in the longitudinal direction. Further, 50 sheets of unprinted green sheets were laminated on both the upper and lower surfaces of the laminate, and the laminate was pressed and then cut into a lattice to obtain a laminated chip.

【0025】次に、この積層チップを300℃で2時間
熱処理して有機バインダーを燃焼させ、N2 +H2 (H
2 体積2%)の還元雰囲気中で1200℃で2時間焼成
し、さらに600℃で30分間酸化処理を行い、積層焼
結体チップを得た。
Next, the laminated chip is heat-treated at 300 ° C. for 2 hours to burn out the organic binder, and the N 2 + H 2 (H
(2 % 2%) in a reducing atmosphere at 1200 ° C. for 2 hours, and further oxidized at 600 ° C. for 30 minutes to obtain a laminated sintered body chip.

【0026】次に、電極が露出する焼結体チップの側面
に、亜鉛とガラスフリットとビヒクルとからなる導電性
ペーストを塗布して乾燥し、これを大気中で550℃で
15分間焼き付けて亜鉛電極を形成し、さらにその上に
銅を無電解メッキにより被着させ、その上に電気メッキ
法によりPb−Sn半田層を設けて、一対の外部電極を
形成して積層コンデンサを得た。
Next, a conductive paste composed of zinc, glass frit and a vehicle is applied to the side surface of the sintered chip where the electrodes are exposed, dried and baked at 550 ° C. for 15 minutes in the air to obtain a zinc paste. Electrodes were formed, copper was deposited thereon by electroless plating, and a Pb-Sn solder layer was provided thereon by electroplating to form a pair of external electrodes, thereby obtaining a multilayer capacitor.

【0027】次いで、各条件毎に得られた積層コンデン
サについて、各20個ずつ比誘電率εs及び誘電損失t
anδを求めた。比誘電率εsは、温度20℃、周波数
1KHz、電圧1Vで静電容量及び誘電損失tanδを
測定し、この静電容量と電極を有する積層数と内部電極
の対向面積と内部電極間の誘電体磁器層の厚みから計算
で求めた。得られた値の個々の平均値及び比誘電率の標
準偏差/平均値を表5に示す。この表5に示されたデー
タは、表4の原料粉末で得られた結果と同様の結果が得
られていることを示している。すなわちBaTiO3
料粉末のばらつきの少なさが、製品の特性のばらつきの
少なさをもたらしていることを示している。またClを
含有する試料No.4の組成は、Clを含有しない試料
No.1の組成に比べ、ロット間のばらつきが少なく安
定していることが判る。またClを3mol%含有する
試料No.6は、誘電率が低下し、誘電損失tanδが
悪化していることから、Clの添加量としては好ましく
ない。
Next, with respect to the multilayer capacitors obtained under each condition, the relative dielectric constant εs and the dielectric loss t
anδ was determined. The relative dielectric constant εs is measured by measuring the capacitance and the dielectric loss tan δ at a temperature of 20 ° C., a frequency of 1 KHz, and a voltage of 1 V, and measuring the capacitance, the number of layers having electrodes, the facing area of the internal electrodes, and the dielectric between the internal electrodes. It was calculated from the thickness of the porcelain layer. Table 5 shows the average value of the obtained values and the standard deviation / average value of the relative permittivity. The data shown in Table 5 shows that the same results as those obtained with the raw material powders in Table 4 were obtained. That is, it is shown that the small variation in the BaTiO 3 raw material powder causes the small variation in the characteristics of the product. Sample No. containing Cl. The composition of Sample No. 4 containing no Cl was It can be seen that lot-to-lot variation is small and stable compared to the composition of No. 1. Sample No. 3 containing 3 mol% of Cl was used. No. 6 is not preferable as an added amount of Cl because the dielectric constant is lowered and the dielectric loss tan δ is deteriorated.

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【発明の効果】以上説明したように、BaTiO3 系原
料粉末にClを含有させることにより、粉体を製造する
際、仮焼温度の変動に対して粒成長が鈍感になるので、
仮焼温度の許容幅が広くなり、従ってばらつきが少な
く、常に安定して同一粒径の粉体を製造することが可能
となり、また仮焼温度を制御することにより粉末の粒径
を所望の大きさに制御することができる。従って、該原
料粉末を使用することにより誘電体磁器組成物を安定し
て製造することができるので、実用上極めて効果的であ
る。
As described above, by adding Cl to the BaTiO 3 -based raw material powder, the grain growth becomes insensitive to fluctuations in the calcination temperature during the production of the powder.
The allowable range of the calcining temperature is widened, so that the dispersion is small and the powder having the same particle size can always be produced stably. By controlling the calcining temperature, the particle size of the powder can be increased to a desired size. Can be controlled. Therefore, by using the raw material powder, a dielectric ceramic composition can be stably manufactured, which is extremely effective in practical use.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 一般式A・B・O3 で表されるBaTi
3 系原料粉末1molに対して、Clを0.05〜
2.0mol%含有することを特徴とする誘電体原料粉
末。
1. BaTi represented by the general formula A.B.O 3
0.05 to 0.1 mol of O 3 -based raw material powder
A dielectric material powder containing 2.0 mol%.
【請求項2】 Baの一部をSr及び/又はCaで置換
したことを特徴とする請求項1記載の誘電体原料粉末。
2. The dielectric material powder according to claim 1, wherein a part of Ba is replaced with Sr and / or Ca.
【請求項3】 Tiの一部をZrで置換したことを特徴
とする請求項1又は請求項2記載の誘電体原料粉末。
3. The dielectric raw material powder according to claim 1, wherein a part of Ti is replaced by Zr.
【請求項4】 請求項1乃至請求項3記載の誘電体原料
粉末の仮焼温度を変化させることにより粉末の粒径を制
御することを特徴とする誘電体原料粉末の粒径制御方
法。
4. A method for controlling the particle size of a dielectric raw material powder, the method comprising controlling the particle size of the dielectric raw material powder by changing the calcination temperature of the dielectric raw material powder according to claim 1.
【請求項5】 請求項1乃至3記載の誘電体原料粉末を
用いることを特徴とする誘電体磁器コンデンサ。
5. A dielectric ceramic capacitor using the dielectric raw material powder according to claim 1.
【請求項6】 請求項4記載の誘電体原料粉末の粒径制
御方法により製造した誘電体原料粉末を用いることを特
徴とする誘電体磁器コンデンサ。
6. A dielectric ceramic capacitor using a dielectric raw material powder produced by the method for controlling a particle diameter of a dielectric raw material powder according to claim 4.
JP9155938A 1997-05-28 1997-05-28 Dielectric raw material powder, particle diameter control of the raw material powder, and dielectric ceramic capacitor obtained by using the raw material powder Pending JPH10330158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9155938A JPH10330158A (en) 1997-05-28 1997-05-28 Dielectric raw material powder, particle diameter control of the raw material powder, and dielectric ceramic capacitor obtained by using the raw material powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9155938A JPH10330158A (en) 1997-05-28 1997-05-28 Dielectric raw material powder, particle diameter control of the raw material powder, and dielectric ceramic capacitor obtained by using the raw material powder

Publications (1)

Publication Number Publication Date
JPH10330158A true JPH10330158A (en) 1998-12-15

Family

ID=15616809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9155938A Pending JPH10330158A (en) 1997-05-28 1997-05-28 Dielectric raw material powder, particle diameter control of the raw material powder, and dielectric ceramic capacitor obtained by using the raw material powder

Country Status (1)

Country Link
JP (1) JPH10330158A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068754A (en) * 1999-08-30 2001-03-16 Kyocera Corp Actuator piezoelectric member and its manufacture
JP2002226263A (en) * 2001-01-30 2002-08-14 Kyocera Corp Dielectric ceramic and laminated ceramic capacitor
JP2002274937A (en) * 2001-03-21 2002-09-25 Kyocera Corp Dielectric ceramic excellent in temperature characteristics
JP2011136849A (en) * 2009-12-25 2011-07-14 Samsung Electro-Mechanics Co Ltd Method for producing dielectric ceramic material
CN112811898A (en) * 2019-11-15 2021-05-18 太阳诱电株式会社 Ceramic raw material powder, dielectric green sheet, ceramic raw material powder, and method for producing ceramic electronic component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068754A (en) * 1999-08-30 2001-03-16 Kyocera Corp Actuator piezoelectric member and its manufacture
JP2002226263A (en) * 2001-01-30 2002-08-14 Kyocera Corp Dielectric ceramic and laminated ceramic capacitor
JP2002274937A (en) * 2001-03-21 2002-09-25 Kyocera Corp Dielectric ceramic excellent in temperature characteristics
JP2011136849A (en) * 2009-12-25 2011-07-14 Samsung Electro-Mechanics Co Ltd Method for producing dielectric ceramic material
CN112811898A (en) * 2019-11-15 2021-05-18 太阳诱电株式会社 Ceramic raw material powder, dielectric green sheet, ceramic raw material powder, and method for producing ceramic electronic component
US20210147298A1 (en) * 2019-11-15 2021-05-20 Taiyo Yuden Co., Ltd. Ceramic raw material powder, dielectric green sheet, method of making ceramic raw material powder, and method of manufacturing ceramic electronic component
JP2021080113A (en) * 2019-11-15 2021-05-27 太陽誘電株式会社 Ceramic raw material powder, dielectric green sheet, method of making ceramic raw material powder, and method of manufacturing ceramic electronic component

Similar Documents

Publication Publication Date Title
DE69928873T2 (en) Dielectric ceramic composition and ceramic multilayer capacitor
KR100414331B1 (en) Nonreducing dielectric ceramic and monolithic ceramic capacitor using the same
JPH065460A (en) Porcelain capacitor and manufacture thereof
EP2236478A1 (en) Dielectric Ceramic Composition
JP3835254B2 (en) Method for producing barium titanate powder
JPWO2008004393A1 (en) Dielectric ceramic, ceramic electronic component, and multilayer ceramic capacitor
JP4522025B2 (en) Dielectric porcelain, multilayer electronic component, and manufacturing method of multilayer electronic component
KR100466073B1 (en) Dielectric Composition Having Improved Homogeneity And Insulation Resistance, Preparing Method Thereof And Multilayer Ceramic Condenser Using The Same
US20080068778A1 (en) Multi-layer ceramic capacitor and manufacturing method thereof
JP6329236B2 (en) Dielectric material for multilayer ceramic capacitor and multilayer ceramic capacitor
JP3783678B2 (en) Method for producing raw material powder for dielectric ceramic, dielectric ceramic and multilayer ceramic capacitor
US6947276B2 (en) Process for producing laminated ceramic capacitor
JP4353183B2 (en) Dielectric ceramic composition and multilayer electronic component
JP4349007B2 (en) Multilayer electronic components
JPH10330158A (en) Dielectric raw material powder, particle diameter control of the raw material powder, and dielectric ceramic capacitor obtained by using the raw material powder
US7060144B2 (en) Ceramic capacitor and method for the manufacture thereof
KR100355933B1 (en) A method for preparing Barium Titanate powders for X7R type multilayer ceramic Chip Capacitor
JPH11219844A (en) Dielectric ceramic and laminated ceramic capacitor
JPH0521266A (en) Method of manufacturing grain boundary insulated semiconductor porcelain matter
JP3336194B2 (en) Dielectric porcelain
KR100586946B1 (en) Method for Preparing Dielectric Material Composition for Multi Layer Ceramic Condenser and the Dielectric Material Composition Having Improved Dispersibility therefrom
JPH09148180A (en) Laminated capacitor
KR100474249B1 (en) Dielectric ceramic composition and manufacture method
KR100478049B1 (en) Ceramic Composition of High-Dielectric System
JP2002246217A (en) Ferrite material and part for ceramic inductor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031104