JPS6241737A - Production of optical fiber preform - Google Patents

Production of optical fiber preform

Info

Publication number
JPS6241737A
JPS6241737A JP60179141A JP17914185A JPS6241737A JP S6241737 A JPS6241737 A JP S6241737A JP 60179141 A JP60179141 A JP 60179141A JP 17914185 A JP17914185 A JP 17914185A JP S6241737 A JPS6241737 A JP S6241737A
Authority
JP
Japan
Prior art keywords
optical fiber
rays
base material
ray
fiber preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60179141A
Other languages
Japanese (ja)
Other versions
JPH0566327B2 (en
Inventor
Yukio Komura
幸夫 香村
Hisashi Koaizawa
小相沢 久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP60179141A priority Critical patent/JPS6241737A/en
Publication of JPS6241737A publication Critical patent/JPS6241737A/en
Publication of JPH0566327B2 publication Critical patent/JPH0566327B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To produce an optical fiber preform having desired refractive index distribution, stably, by radiating white X-ray to the core part and the circumferential part of a growing optical fiber preform under rotation, separating the transmitted ray into plural monochromatic X-rays, and controlling the preform- producing system according to the result of the spectrometry. CONSTITUTION:The white X-ray radiated from the X-ray source 5 is separated into X1 and X2 with the collimator 6 and radiated to the core part and the circumferential part of the growing optical fiber preform 4 under rotation. The white X-rays X1 and X2 transmitted through the core part and the circumferential part of the optical fiber preform 4 are passed through the collimators 9, 10, separated into monochromatic X-rays having specific energy levels E1, E2 by single crystals 11, 12, 13 and 14 and introduced into each X-ray detection system 7, 8. The energy E1, E2 of the incident X-rays are measured by the detection systems and the signal is inputted to a computer 15. The computer 15 analyzes the composition of the growing preform based on the inputted signal and controls the preform-production system to the optimum state according to the result of analysis. An optical fiber preform 4 having desired refractive index can be produced stably by this process.

Description

【発明の詳細な説明】 r産業上の利用分野1 本発明は光ファイバミツ材を製造する方法に関する。[Detailed description of the invention] r Industrial application field 1 The present invention relates to a method of manufacturing optical fiber material.

「従来の技術1 不透明な物体の組成濃度、組成分布等を放射線照射によ
り非破壊的に測定するとき、その線源としてアイソトー
プ(Ga、 Ir、 Co)などのγ線、あるいあはX
線を用い、放射線照射系から出射した放射線を被測定物
に照射し、その透過線の強度を検出系で測定解析するよ
うにしており、光ファイバat材の製造分野でも、これ
らの技術を応用することが検討されている。
``Prior art 1 When non-destructively measuring the composition concentration, composition distribution, etc. of an opaque object by irradiating it with radiation, γ-rays such as isotopes (Ga, Ir, Co), or X-rays are used as the radiation source.
The object to be measured is irradiated with radiation emitted from a radiation irradiation system, and the intensity of the transmitted radiation is measured and analyzed by a detection system.These technologies are also being applied in the field of manufacturing optical fiber AT materials. It is being considered to do so.

ところで、アイソトープによる非破壊測定法の場合、ア
イソトープの人手が困難であること、その強度が弱いか
または強すさること、さらに半減期が短いこと等の理由
により工業化がむずかしいとされており、そのためX線
を用いる方法が普及している。
By the way, in the case of non-destructive measurement methods using isotopes, it is said that it is difficult to industrialize the isotopes because it is difficult to obtain them manually, their strength is weak or strong, and their half-life is short. Methods using X-rays are popular.

X線には白色X線、単色X線があり、例えば被測定物が
二つの元素からなる場合、通常、X線照射系と被測定物
とを相対移動させるスキャンニングにより白色X線また
は単色X線を被測定物に照射し、二重上の特定波長また
はエネルギに関する透過線強度をその検出系により求め
た後、当該測定データをもとにした多層分割法、アベー
ル変換法等の計算法により、被測定物の組成分布先求め
ている。
There are two types of X-rays: white X-rays and monochromatic X-rays. For example, when the object to be measured consists of two elements, white X-rays or monochromatic A beam is irradiated onto the object to be measured, and the intensity of the transmitted beam at a specific wavelength or energy on the duplex is determined by the detection system, and then calculated using calculation methods such as the multilayer splitting method and the Aber transformation method based on the measurement data. , the composition distribution of the object to be measured is determined.

この際、xy;j源のエネルギは50keV以1−とし
ており、X線管の電流値は測定時間を短くする観点から
lOmA以上としている。
At this time, the energy of the xy;

「発明が解決しようとする問題点」 所望の11材製造系、例えばVAD法を介して製造中の
光ファイバ母材(多孔質母材)において、そのIt材の
組Ik、濃度、組成分布等を」二連した非破壊測定丁段
により測定し、その測定結果に基づいて上記母材製造系
をオンライン制御するとき、非破壊測定7段を光ファイ
バ母材に沿って走査するとか、または非破壊測定7段を
定位置に保持して1”J材製造系を走査する、いずれか
の方法がとられるが、前者の場合はX線源が不安定とな
るほか、測定光学系の軸合わせもむずかしくなり、後者
の場合は、母材製造系の安定性が阻害される。
"Problems to be Solved by the Invention" In the optical fiber preform (porous preform) being manufactured using a desired 11 material manufacturing system, for example, the VAD method, the set Ik, concentration, composition distribution, etc. of the It material. When measuring with two consecutive non-destructive measurement stages and controlling the above base material manufacturing system online based on the measurement results, the seven non-destructive measurement stages are scanned along the optical fiber base material, or the non-destructive measurement stage is One of two methods is used: holding the 7 stages of destructive measurement in place and scanning the 1"J material manufacturing system, but in the former case, the X-ray source becomes unstable and the alignment of the measurement optical system becomes difficult. In the latter case, the stability of the base material manufacturing system is hindered.

ちなみに、光ファイバat材に対してX線源側を走査す
る特開昭58−18033!3号の発明では、上記前者
の理由により非現実的な方法といえる。
Incidentally, the invention of JP-A-58-18033!3, which scans the X-ray source side with respect to the optical fiber AT material, can be said to be an unrealistic method due to the former reason.

本発明はI−記の問題点に鑑み、[1材製造系、非破壊
測定r段笠を走査せずとも光ファイバ母材のM1成濃度
、組成分71等が測定でき、その測定結果に基づいてl
’4h材製造材製晶系できる方法を提供しようとするも
のである。
In view of the problems described in I-, the present invention is based on the following: [1] Material manufacturing system, non-destructive measurement R The M1 concentration, composition 71, etc. of the optical fiber base material can be measured without scanning the step cap, and the measurement results are Based on l
The purpose of this invention is to provide a method for producing 4H material.

f問題点を解決するだめのf段1 本発明は、母材製造系を介して光ファイバ母材を製造す
るとき、その光ファイバ母材を挟むようにX線照射系と
X線検出系とを配置しておき、上記丹材製造系を介して
製造中の回転状態にある光ファイバ母材には、その中心
部と外周部とに向けて上記X線照射系からの白色X線を
照射し、該光ファイバ母材の−F記所定部を透過した透
過線を二種以トの中色xvjに分光した後、これら中色
X線を1−記X線検出系により検出し1その検出結果に
基づいて上記母材製造系を制御することを特徴としてい
る。
F step 1 to solve the problem f When manufacturing an optical fiber preform through a preform production system, the present invention provides an X-ray irradiation system and an X-ray detection system that sandwich the optical fiber preform. is placed, and the optical fiber preform in a rotating state during manufacture is irradiated with white X-rays from the X-ray irradiation system toward its center and outer periphery through the tanzai manufacturing system. After the transmitted rays transmitted through the predetermined portion -F of the optical fiber base material are separated into two or more types of medium colors xvj, these medium color X-rays are detected by the X-ray detection system described in 1-1. The present invention is characterized in that the base material manufacturing system is controlled based on the detection results.

「作用1 本発明方法において1例えばVAD法による母材製造系
を介して光ファイバfij材(多孔質母材)を製造する
とき、多重管構造のバーナにガラス原ネ1カス(SiC
14)、1・−ブ原料ガス (例えばGeC:Ia)、
酸素(02)、水素(H2)、不活性ガス(Ar)等を
供給して当該/ヘーナを燃焼状態に保持し、これにより
生成されたガラス微粒子を、回転状態で引き上げられる
ターゲ−/1・の−ド端に堆積成長させて棒状の光ファ
イバRj材を作製する。
Effect 1 In the method of the present invention, for example, when manufacturing an optical fiber fij material (porous base material) through a base material manufacturing system using the VAD method, one glass raw material (SiC
14), 1-B raw material gas (e.g. GeC:Ia),
Oxygen (02), hydrogen (H2), inert gas (Ar), etc. are supplied to keep the /Hena in a combustion state, and the glass particles generated thereby are pulled up into a target /1. A rod-shaped optical fiber Rj material is produced by depositing and growing the material at the end of the fiber.

こうして光ファイバ母材(多孔質母材)を製造するとき
、X線照射系から光ファイバ母材の中心部、外周部に白
色X線を照射し、これら中心部、外周部を透過した透過
線を、二種以にの単色X線に分光し、該各?U色X線の
エネルギ強度をX線検出系により測定する。
When manufacturing the optical fiber base material (porous base material) in this way, white X-rays are irradiated from the X-ray irradiation system to the center and outer periphery of the optical fiber base material, and the transmitted rays transmitted through the center and outer periphery. is divided into two or more types of monochromatic X-rays, and each of the ? The energy intensity of U color X-rays is measured by an X-ray detection system.

この際の分光では中結晶が用いられるが、この弔結晶は
下記の式にしたがい、透過線の入射角に応じて特定のエ
ネルギを分光する。
In this case, a medium crystal is used for spectroscopy, and this crystal spectrally spectra specifies a specific energy according to the incident angle of the transmitted light according to the following formula.

n@he/E=2d 5jnO ただしn−1、hニブランク定数、C:光速、E:エネ
ルギ、d:格子定数、0:入射角。
n@he/E=2d 5jnO where n-1, h blank constant, C: speed of light, E: energy, d: lattice constant, 0: angle of incidence.

したがって、1−、記検出系により各単色X線のエネル
ギ強度を測定することにより、光ファイバ母材の組成に
関する゛[9項、例えばSiO;+におけるGe07の
分布状況がr1明する。
Therefore, by measuring the energy intensity of each monochromatic X-ray using the detection system 1-, the distribution situation of Ge07 in the ``[9 terms, for example, SiO;

な−お、光ファイバ母材に対するX線照射は、ITL材
中心部、母材外周部のみとしているが、この際の光ファ
イバ11材が回転状態にあるため、母材中心部に照射し
たX線については、光ファイバの全周から中心部に向け
てX線照射した場合と同等になり、 C7材外周部に照
射したxlaについても、その母材の全外周部に照射し
ていることになる。
Note that the optical fiber base material is irradiated with X-rays only at the center of the ITL material and the outer periphery of the base material, but since the optical fiber 11 material is in a rotating state at this time, the X-rays irradiated onto the center of the base material Regarding the X-rays, it is equivalent to when X-rays are irradiated from the entire circumference to the center of the optical fiber, and the XLA irradiated to the outer circumference of the C7 material is also irradiated to the entire outer circumference of the base material. Become.

1−述したように光ファイバHi材は製造され、その組
成に関する・バイ;が非破壊測定F段により測定される
が、当該母材の製造中、−1−記測定結果に基づいては
材製造系のバーナと母材との距離、燃焼カス−41−1
原料ガス供給量等を制御し、製造目標を満足させる光フ
ァイバLjI材を!A造する。
1- As mentioned above, the optical fiber Hi material is manufactured, and its composition is measured by the non-destructive measurement F-stage. Distance between manufacturing burner and base material, combustion residue -41-1
Optical fiber LjI material that controls raw material gas supply amount, etc. and satisfies manufacturing targets! Build A.

r実 施 例j 以下木文明方法の実施例につき、図面を参照して説明す
る。
Embodiment j An embodiment of the tree civilization method will be described below with reference to the drawings.

第1図、第2図に示す未発明方法おいて、既知のVAD
法を実施すべきムI材製造系としては、ガス供給系1に
接続された多重管構造のバーナ2、ターゲフト3などが
図示しない反応容器内にセツティングされる。
In the uninvented method shown in FIGS. 1 and 2, the known VAD
As a system for producing the muI material in which the method is to be carried out, a burner 2 having a multi-tube structure connected to a gas supply system 1, a target lift 3, etc. are set in a reaction vessel (not shown).

上記母材製造系を介して棒状の光ファイバ母材(多孔質
母材)4を製造するとき、周知の通り、バーナ2に5i
Cla 、 GeCl4.07. H2、Ar等を供給
して当該バーナ2を燃焼状態に保持し、これにより生成
されたガラス微粒子を、回転状態で引き一ヒげられるタ
ーゲット3の下端に堆積成長させる。
When producing the rod-shaped optical fiber preform (porous preform) 4 through the above preform production system, as is well known, the burner 2 is
Cla, GeCl4.07. The burner 2 is maintained in a combustion state by supplying H2, Ar, etc., and the glass particles thus generated are deposited and grown on the lower end of the target 3, which is pulled in the rotating state.

お記製造時の光ファイバ母材4に白色X線を照射するた
めのX線照射系5は白色X線源を備え、1該X線照射系
5は白色X線を適当な形状に絞って分光するコリメータ
6を介在して光ファイバ母材4の左側に配置される。
Note: The X-ray irradiation system 5 for irradiating white X-rays onto the optical fiber base material 4 during manufacturing is equipped with a white X-ray source. It is arranged on the left side of the optical fiber preform 4 with a collimator 6 interposed therebetween.

このX線照射系5から出射された白色X線はコリメータ
6によりXl、X2に分光され、Xlは光ファイバ母材
4の中心部に、x2は光ファイバ母材4の外周部にそれ
ぞれ照射される。
The white X-rays emitted from this X-ray irradiation system 5 are separated into Xl and X2 by a collimator 6, and Xl is irradiated to the center of the optical fiber base material 4, and x2 is irradiated to the outer peripheral part of the optical fiber base material 4. Ru.

上記白色X線X1.X2の透過線を検出するX線検出系
7.8はシンチレーション管等からなり、光ファイバ母
材4の右側に配置されるが、これらX線検出系7.8と
光ファイバ1;l材4との間には。
The above white X-ray X1. The X-ray detection system 7.8 that detects the transmitted radiation of X2 is composed of a scintillation tube, etc., and is placed on the right side of the optical fiber base material 4. Between.

コリメータ9.10、単結晶11.12.13.14が
介在される。
A collimator 9.10 and a single crystal 11.12.13.14 are interposed.

に記において光ファイバ母材4の中心部、外周部を透過
した透過線は、それぞれコリメータ9.10を通り、I
n結晶ll、12.13.14ヲ介1.テ特定エネルキ
E1.E2の単色X線に分光された後、各X線検出系7
.8へ入射する。
In the above, the transmitted rays transmitted through the center and outer periphery of the optical fiber preform 4 pass through collimators 9 and 10, respectively, and
n crystal ll, 12.13.14wosuke1. Te specific energy E1. After being separated into monochromatic X-rays of E2, each X-ray detection system 7
.. 8.

こうして中色X線が入射されたX線検出系7.8はエネ
ルギE1、E2の強度を測定し7、その測定信号が電子
計算機15へ入力する。
The X-ray detection system 7.8 into which the medium-color X-rays are thus incident measures the intensities of energies E1 and E2 7, and the measurement signals are input to the electronic computer 15.

電子計算機15は上記膓定信号に基づき、製造中のけ材
組成を分析し、その分析結果に基づいてL;I材製造系
を適切に制御する。
The electronic computer 15 analyzes the composition of the material being manufactured based on the above-mentioned determination signal, and appropriately controls the L;I material manufacturing system based on the analysis result.

第3図は、本発明方法により製造中のシングルモード型
光ファイバ母材の屈折率分布を示したものである。
FIG. 3 shows the refractive index distribution of a single mode optical fiber preform being manufactured by the method of the present invention.

もちろん、Gl型屈折(1分布をもつ光ファイバ母材の
製造に際しても、本発明方法は有効である。
Of course, the method of the present invention is also effective in manufacturing an optical fiber preform having a Gl-type refraction (one distribution).

なお、上述した実施例では、VAD法により光ファイバ
母材を製造する際の組成分析について説明したが1例え
ば既知のMCVD法により光ファイバR1材を製造する
場合も、上記と同様に組成分析し、その母材製造系を制
御することができる。
In addition, in the above-mentioned example, composition analysis was explained when manufacturing an optical fiber base material by the VAD method.1 For example, when manufacturing an optical fiber R1 material by the known MCVD method, the composition analysis is performed in the same manner as above. , the base material manufacturing system can be controlled.

N’9明の効果J 以1−説明した通り、本発明方法によるときは、母材!
A造系、非破壊測定丁段等を走査することなく光ファイ
バ母材の組成C度、組成分1rj等が測定でき、その測
定結果に基づいて母材製造系が制御できるから、所望屈
折率分布の光ファイバ母材を安定して製造することがで
きる。
Effect of N'9 Light J As explained below, when using the method of the present invention, the base material!
The composition C degree, composition 1rj, etc. of the optical fiber base material can be measured without scanning the A system, non-destructive measurement device, etc., and the base material manufacturing system can be controlled based on the measurement results, so the desired refractive index can be determined. It is possible to stably manufacture a distributed optical fiber preform.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例を略示した正面[4、:
B2図は同上のfim図、第3図はSN型光ファイバ母
材の屈折率分布図である。 IIIII・・・・・バ、す 2・・・会・・・ガス供給系 3・・・・・0・ターゲット 4・・・・・・・光ファイバ11材 5・・・・・・・X線照射系 811111111$l111コリメータ7.8・・・
・・X線検出系 9.10−−−−−コリメータ 11〜14・−争・e単結晶 15・・・−・・・電子計算機 E1〜E2φ・・・−単色X線のエネルギX1〜Xン・
・φ・・白色X線
FIG. 1 is a front view schematically showing an embodiment of the method of the present invention [4,:
Figure B2 is a fim diagram of the same as above, and Figure 3 is a refractive index distribution diagram of the SN type optical fiber preform. III...B, S2...Meeting...Gas supply system 3...0, Target 4...Optical fiber 11 material 5...X Line irradiation system 811111111$l111 Collimator 7.8...
...X-ray detection system 9.10--Collimator 11-14--Dispute e Single crystal 15...-Electronic computer E1-E2φ...-Energy of monochromatic X-rays X1-X hmm·
・φ・・White X-ray

Claims (1)

【特許請求の範囲】[Claims] 母材製造系を介して光ファイバ母材を製造するとき、そ
の光ファイバ母材を挟むようにX線照射系とX線検出系
とを配置しておき、上記母材製造系を介して製造中の回
転状態にある光ファイバ母材には、その中心部と外周部
とに向けて上記X線照射系からの白色X線を照射し、該
光ファイバ母材の上記所定部を透過した透過線を二種以
上の単色X線に分光した後、これら単色X線を上記X線
検出系により検出し、その検出結果に基づいて上記母材
製造系を制御することを特徴とする光ファイバ用多孔質
母材の製造方法。
When manufacturing an optical fiber base material through the base material manufacturing system, an X-ray irradiation system and an X-ray detection system are arranged to sandwich the optical fiber base material, and the optical fiber base material is manufactured through the base material manufacturing system. The optical fiber base material in a rotating state is irradiated with white X-rays from the X-ray irradiation system toward its center and outer periphery, and the transmitted light transmitted through the predetermined portion of the optical fiber base material is For an optical fiber, the method comprises: separating a ray into two or more types of monochromatic X-rays, detecting these monochromatic X-rays with the X-ray detection system, and controlling the base material manufacturing system based on the detection results. Method for manufacturing porous base material.
JP60179141A 1985-08-14 1985-08-14 Production of optical fiber preform Granted JPS6241737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60179141A JPS6241737A (en) 1985-08-14 1985-08-14 Production of optical fiber preform

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60179141A JPS6241737A (en) 1985-08-14 1985-08-14 Production of optical fiber preform

Publications (2)

Publication Number Publication Date
JPS6241737A true JPS6241737A (en) 1987-02-23
JPH0566327B2 JPH0566327B2 (en) 1993-09-21

Family

ID=16060692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60179141A Granted JPS6241737A (en) 1985-08-14 1985-08-14 Production of optical fiber preform

Country Status (1)

Country Link
JP (1) JPS6241737A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1147407A1 (en) * 1998-12-21 2001-10-24 Corning Incorporated X-ray fluorescent emission analysis to determine material concentration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1147407A1 (en) * 1998-12-21 2001-10-24 Corning Incorporated X-ray fluorescent emission analysis to determine material concentration
EP1147407A4 (en) * 1998-12-21 2003-01-29 Corning Inc X-ray fluorescent emission analysis to determine material concentration

Also Published As

Publication number Publication date
JPH0566327B2 (en) 1993-09-21

Similar Documents

Publication Publication Date Title
CN107589089A (en) The detecting system and its control method of raw ingredients of cement
JPH03206946A (en) Method and device for identifying jewel particularly diamond
CN1327596A (en) Integral lens for high energy particle flow, method for producing such lenses and use thereof
KR840000429B1 (en) Method of controlling the index profile of optical fiber preforms
GB1535640A (en) Optical fibres with high transmittancy in the infra-red spectral range
Rassat et al. Temperature measurement of single levitated microparticles using Stokes/anti-Stokes Raman intensity ratios
JPS6241737A (en) Production of optical fiber preform
JPS56160643A (en) Measuring method for impurity concentration and distribution thereof
CN107091820A (en) Laser scattering type water turbidity measuring instrument
GB2046898A (en) Method of measurement of particles
US6970243B2 (en) Particle size distribution measuring apparatus
JPS6325243A (en) Production of parent material for optical fiber
JPS61240146A (en) Method for analyzing composition of article to be measured by x-rays
JPS61261227A (en) Production of base material for optical fiber and apparatus therefor
JPH0680444A (en) Production of optical fiber core filament
TWI803178B (en) Systems and methods for processing materials with complex isotope vectors for use as a nuclear fuel
JPS63162600A (en) Treatment of diamond
JPH05208836A (en) Production of glass thin film and production system therefor
JP2599451B2 (en) Manufacturing method of optical fiber base material
JPS5614437A (en) Depositing method of oxide powder for optical fiber
JPH071241B2 (en) Method for analyzing composition of object to be measured by X-ray
JPS6311539A (en) Production of base material for optical fiber
JPS61240147A (en) Method for analyzing composition of article to be measured by x-rays
JP2583215B2 (en) X-ray composition analysis method for DUT
JPS62194447A (en) Method for non-destructive measurement of article to be measured by x-rays

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees