JPS6311539A - Production of base material for optical fiber - Google Patents

Production of base material for optical fiber

Info

Publication number
JPS6311539A
JPS6311539A JP15148186A JP15148186A JPS6311539A JP S6311539 A JPS6311539 A JP S6311539A JP 15148186 A JP15148186 A JP 15148186A JP 15148186 A JP15148186 A JP 15148186A JP S6311539 A JPS6311539 A JP S6311539A
Authority
JP
Japan
Prior art keywords
flame
glass particles
flow rate
light
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15148186A
Other languages
Japanese (ja)
Inventor
Masumi Ito
真澄 伊藤
Toshio Danzuka
弾塚 俊雄
Hiroshi Yokota
弘 横田
Minoru Watanabe
稔 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP15148186A priority Critical patent/JPS6311539A/en
Publication of JPS6311539A publication Critical patent/JPS6311539A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/36Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/70Control measures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To produce a base material for an optical fiber at a high yield and high speed by projecting laser light into the flame of a combustion burner for flame hydrolysis of a gaseous glass raw material, detecting the scattered light of fine glass particles and controlling the flow rate of a combustion gas. CONSTITUTION:The gaseous glass raw material is ejected from the combustion burner and is subjected to flame hydrolysis. The fine glass particles formed in such a manner is deposited on a rotating starting material, etc., and is grown in the rotating axis direction to form the porous glass base material. The laser light from an He-Ne laser is projected through a chopper into the flame where said fine glass particles are formed. The incident light is scattered by the fine glass particles and the scattered light is received by a photodetector. Said light is then detected by a lock-in amplifier. The flow rate of the combustion gas is so controlled as to maximize the intensity of the scattered light detected in such a manner.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、火炎加水分解反応を用いて光ファイバ用多孔
質ガラス母材を製造する新規な方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a novel method for producing a porous glass preform for optical fibers using a flame hydrolysis reaction.

〔従来の技術〕[Conventional technology]

一般に、火炎加水分解反応を用いた多孔質ガラス母材の
製造においては、バーナから燃焼ガス、ガラス原料を混
合、噴出し、酸水素火炎中において、上記ガラス原料の
加水分解反応により生じたガラス微粒子を、回転する出
発材または心棒の上に堆積させる方法が用いられる。こ
の方法において燃焼ガスの流量条件は、火炎内でのガラ
ス化反応を支配しており、生成するガラス微粒子の大き
さや数密度に決定的な影響力?持つ。そして、生成され
るガラス微粒子が大きいほど、堆積効率が良いことが分
っている〔文献:スダ他、エレクトロニクスレターズザ
サード、ジャニュアリイ、1985.21巻、−1、p
29〜30〕。
Generally, in the production of porous glass base material using flame hydrolysis reaction, combustion gas and glass raw materials are mixed and ejected from a burner, and glass fine particles generated by the hydrolysis reaction of the glass raw materials in an oxyhydrogen flame are produced. is deposited on a rotating starting material or mandrel. In this method, the flow rate conditions of the combustion gas govern the vitrification reaction within the flame, and do they have a decisive influence on the size and number density of the glass particles produced? have It has been found that the larger the glass particles produced, the better the deposition efficiency [Reference: Suda et al., Electronics Letters the Third, January, 1985.21, vol.-1, p.
29-30].

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら従来、上記の製造方法において火炎内で、
生成されるガラス微粒子の大きさを観測しながら、燃焼
ガスの流量を制御する方法は行なわれておらず、経験に
より、試行錯誤的に決めていた。
However, conventionally, in the above manufacturing method, in the flame,
There was no method to control the flow rate of combustion gas while observing the size of the glass particles produced, and the method was determined by trial and error based on experience.

こhは、火炎内で生成されるガラス微粒子の大きさが、
大きいほど堆積効率が良いということが分っていても、
直接に火炎内の微粒子の大きさを測定することができな
かったからである。
h is the size of the glass particles generated within the flame.
Even though it is known that the larger the size, the better the deposition efficiency,
This is because it was not possible to directly measure the size of particles within the flame.

ガラス微粒子の太きさけ、堆積させた後、SEM。After thinning and depositing glass fine particles, SEM.

BET法によシ測定しているため、ガラス微粒子の大き
さを根拠にガス流量条件を決めるということは、実@栄
の膨大さと連続作業性に欠けるため非実用的である。
Since the BET method is used for measurement, it is impractical to determine the gas flow conditions based on the size of the glass particles because of the large size and lack of continuous workability.

本発明はこのような現状に鑑み、従来は実現されていな
かった火炎内で生成されつつあるガラス微粒子の大きさ
に直接対応して燃焼ガス流量を制御できる光ファイバ用
母材の製造方法を提供するものである。
In view of the current situation, the present invention provides a method for manufacturing an optical fiber base material that can control the combustion gas flow rate in direct response to the size of glass particles being generated in a flame, which has not been realized in the past. It is something to do.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は気体のガラス原料を燃焼バーナから噴出させて
火炎加水分解し、これにより生成するガラス微粒子を回
転する出発材または心棒に堆積させて回転軸方向に成長
させ、多孔質ガラス母材を製造する方法において、ガラ
ス微粒子が生成している火炎流中にレーザ光全入射し、
該入射光がガラス微粒子により散乱された散乱光を検出
し、該散乱光の強度が最大になるように燃焼ガスの流量
を制御しつつ行うことを特徴とする光ファイバ用母材の
製造方法である。
The present invention produces a porous glass base material by ejecting gaseous glass raw materials from a combustion burner and subjecting them to flame hydrolysis, depositing the resulting glass fine particles on a rotating starting material or mandrel and growing them in the direction of the rotation axis. In this method, the laser beam is totally incident on the flame flow where glass particles are generated
A method for manufacturing an optical fiber base material, characterized in that the incident light is scattered by glass particles and the scattered light is detected, and the flow rate of combustion gas is controlled so that the intensity of the scattered light is maximized. be.

まず本発明の基本とする考え方から説明する。First, the basic idea of the present invention will be explained.

本発明者らは火炎内で生成されるガラス徹粒子全直接、
観測しながら、ガス流量を::j’制御するに最適な方
法として、光散乱法を利用すること?考えついた。この
光散乱法とは、微粒子による散乱光強度が、その粒子径
の関数であることを利用するものであって、レイリー散
乱の理論によれば、粒径dp 、  屈折率mの球形粒
子に波長λ、強度工・ の光を照射した時の散乱光強度
工は(1)式で与えられる。
The present inventors have discovered that the glass particles produced in the flame are directly
Is the use of light scattering the best way to control the gas flow rate while observing? I got an idea. This light scattering method utilizes the fact that the intensity of light scattered by fine particles is a function of the particle diameter.According to Rayleigh scattering theory, a spherical particle with a particle size dp and a refractive index m has a wavelength The scattered light intensity when irradiated with light with λ and intensity is given by equation (1).

但しL:粒子から受光部までの距離 θ:散乱角度 したがって、火炎内の粒子径dp  が大きくなれば散
乱光強度は強くなる。
However, L: Distance θ from the particle to the light receiving part: Scattering angle Therefore, as the particle diameter dp within the flame increases, the intensity of the scattered light increases.

本発明はこの原理を利用し、WAD法においてガラス微
粒子が生成しつつある火炎流中にレーザ光を入射し、入
射光がガラス微粒子により散乱された散乱光強度を測定
し、散乱光強度が最大となるように燃焼ガス流量を制御
することで、大きなガラス微粒子を堆積し、ガラス微粒
子の堆積効率を大巾に向上するものである。
The present invention utilizes this principle, and in the WAD method, a laser beam is incident into a flame flow where glass particles are being generated, and the intensity of the scattered light when the incident light is scattered by the glass particles is measured, and the scattered light intensity is the maximum. By controlling the flow rate of combustion gas so that the following is achieved, large glass particles can be deposited and the deposition efficiency of glass particles can be greatly improved.

本発明において入射光としてレーザ光を用いるのは、レ
ーザーが単色性、偏光性、指向性、高エネルギー密度な
どの点で、他の光源より優れており、微小粒子による散
乱光を測定するのに適しているからである。
The reason why laser light is used as the incident light in the present invention is that laser light is superior to other light sources in terms of monochromaticity, polarization, directivity, high energy density, etc., and is suitable for measuring light scattered by microparticles. This is because it is suitable.

本発明において用いられるレーザ光としては。The laser beam used in the present invention is as follows.

し11えばHe N eレーザー、Ar  レーザによ
るもの等が挙げらハるが、勿論これに限定されろもので
はなく、以下に述べるようにガラス微粒子の粒径に適し
た波長域のレーザ光を用いればよい。
For example, a HeNe laser or an Ar laser can be used, but the invention is not limited to these, and as described below, a laser beam in a wavelength range suitable for the particle size of the glass particles can be used. Bye.

波長域の限定としては、Mie散乱の理論より、粒径に
より決まる。入射光の波長をλ、粒径をDp  とし、
粒径パラメータをα==ト定fiλ すれば、αく2ならば、散乱光強度はα6 に比例して
単調増加する。He−Nθレーザけλ=α6328μm
であるから、条件を満たす粒径はDp (a 4μmと
なり、本特許の目的は満たしている。
The limitation of the wavelength range is determined by the particle size according to the theory of Mie scattering. Let the wavelength of the incident light be λ, the particle size be Dp,
If the particle size parameter is α==to constant fiλ, then if α×2, the scattered light intensity increases monotonically in proportion to α6. He-Nθ laser λ=α6328μm
Therefore, the particle size that satisfies the condition is Dp (a) 4 μm, which satisfies the purpose of this patent.

WAD法により生成するガラス粒子は一般に(LO1〜
(L2μm程度と言われており、条件を満たす波長λは
C1016μ1以上となる。
Glass particles produced by the WAD method are generally (LO1~
(It is said that L is about 2 μm, and the wavelength λ that satisfies the condition is C1016μ1 or more.

以下図面を参照して具体的に説明する。A detailed explanation will be given below with reference to the drawings.

第1図は本発明の一実施態様【おける火炎中の散乱光分
布測定方法を説明する図である。光源は、He−Weレ
ーザで、225 Hz にチョップしたものを用い、火
炎内のガラス微粒子による散乱光を90°側方において
、sl  フォトダイオード【より受光し、ロック・イ
ン・アンプで同期検波した。
FIG. 1 is a diagram illustrating a method for measuring the distribution of scattered light in a flame in one embodiment of the present invention. The light source was a He-We laser chopped to 225 Hz, and the light scattered by glass particles in the flame was received by an SL photodiode at 90° to the side, and synchronously detected by a lock-in amplifier. .

バーナとして4重管バーナを用い、中心層に51cta
 、vg2層H!、第3層Ar %第4層0!ヲ流し、
火炎中にガラス微粒子を生成させた。
A quadruple tube burner is used as a burner, and the center layer has a 51 cta
, vg2 layer H! , 3rd layer Ar % 4th layer 0! Flow away,
Glass particles were generated in the flame.

このとき原料5iC24流世を一定に保ち、H8゜Ar
、O!の流量を変化させ、第1図のように火炎中にレー
ザ光を入射し、その散乱光強度を測定した結果、Hl 
、 Ar 、 0!の流量変化と散乱光強度の関係Fi
第2図、第3図、第4図にそれぞれ示すとおりであった
At this time, the flow rate of the raw material 5iC24 was kept constant, and H8°Ar
,O! As a result of changing the flow rate of Hl and injecting a laser beam into the flame as shown in Figure 1, and measuring the intensity of the scattered light, Hl
, Ar, 0! Relationship between flow rate change and scattered light intensity Fi
It was as shown in FIG. 2, FIG. 3, and FIG. 4, respectively.

これらの結果より、原料S i Ct4流景一定の場合
sH1流量には、適切値(この場合40t/分)が存在
し、Ar、02は流量が少いほど散乱光強度が大きくな
ることが分る。
From these results, it can be seen that when the raw material S i Ct4 flow rate is constant, there is an appropriate value for the sH1 flow rate (40 t/min in this case), and for Ar, 02, the smaller the flow rate, the greater the scattered light intensity. Ru.

次(、散乱光強度と原料収率(多孔質母材/原料投入量
)の関係を調べ九。適当なガス流量条件を幾つか選びそ
の散乱光強度を側、定し、実際に多孔質母材を製造して
みた。その結果を第7図に示す。先に推測したように散
乱光強度が大きいガス流量条件の方が収率が大きいこと
が分った。
Next, investigate the relationship between scattered light intensity and raw material yield (porous base material/raw material input amount). Select some appropriate gas flow conditions, set the scattered light intensity, and actually The results are shown in Fig. 7. As predicted earlier, it was found that the yield was higher under gas flow conditions where the scattered light intensity was higher.

以上の実験、検討から散乱光強度が最大になるようにガ
ス流量条件を制御する本発明の方法は、収率向上に対し
て非常に有効であることが確認できた。
From the above experiments and studies, it has been confirmed that the method of the present invention, which controls the gas flow rate conditions so that the intensity of scattered light is maximized, is very effective in improving yield.

〔実施列〕[Implementation row]

実施例 従来、原料供給量が2000cc/分において、堆積速
度が2.5 y/分、収率50壬程度で多孔質母材の製
造を行っていた。この時の燃焼ガスitは、H,:54
t/分、Ar:14t/分、0! =52t/分であっ
た。この製造条件における火炎内の8102 粒子によ
る散乱光強度を測定した所、200(任意目盛)程度で
あった。
EXAMPLE Conventionally, a porous base material was produced at a raw material supply rate of 2000 cc/min, a deposition rate of 2.5 y/min, and a yield of about 50 y/min. The combustion gas it at this time is H, :54
t/min, Ar: 14t/min, 0! =52t/min. The intensity of scattered light by the 8102 particles in the flame under these manufacturing conditions was measured and was approximately 200 (arbitrary scale).

これに対し、原料投入量を固定して、燃焼ガス流量(H
l、Ar、0りを変化させたところH2流[41t/分
で散乱光強度は最大310(任意目盛)になった。O@
 、 Arは減量すればするほど、散乱光強度は増大し
たが、バーナーの構造上、o、s2t/分、Ar11t
/分よシ減らすことはできなかった。このガス流量条件
、H,: a 1t 7分、Ar  : 1117分、
0!:52t/分における散乱光強度は、300(任意
目盛)であった。この条件において、多孔質母材を製造
したところ、上記従来法に比し収率が15%向上し、堆
積速度も五252/分と向上した。
On the other hand, if the raw material input amount is fixed, the combustion gas flow rate (H
When l, Ar, and 0 were varied, the scattered light intensity reached a maximum of 310 (arbitrary scale) at a H2 flow of 41 t/min. O@
, The more the amount of Ar was reduced, the more the scattered light intensity increased, but due to the structure of the burner, o, s2t/min, Ar11t
/ It was not possible to reduce the number of minutes. These gas flow conditions: H: a 1t 7 minutes, Ar: 1117 minutes,
0! : The scattered light intensity at 52 t/min was 300 (arbitrary scale). When a porous base material was produced under these conditions, the yield was improved by 15% compared to the conventional method, and the deposition rate was also improved to 5,252/min.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は火炎加水分解反応を利用
して、ガラス微粒子を生成し、それを堆積させることに
より、多孔質母材を形成する場合、火炎内粒子の大きさ
に対応する散乱光強度を直接観測して該散乱光強度が最
大になるよう燃焼ガス流量を決めるので、最適流量条件
を短時間で容易に決めることができ、大巾な収率向上と
堆積速度の向上という効果を奏する。
As explained above, the present invention utilizes a flame hydrolysis reaction to generate glass fine particles and deposit them to form a porous matrix. Since the combustion gas flow rate is determined by directly observing the light intensity to maximize the scattered light intensity, the optimum flow rate conditions can be easily determined in a short time, resulting in a significant improvement in yield and deposition rate. play.

またこのように直接観測によるガラス微粒子の大きさ制
御、流量制御は本発明によりはじめて実現されたもので
ある。
Furthermore, the size control and flow rate control of glass particles through direct observation has been realized for the first time by the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様を説明する図である。 第2図ないし第4図はMAD法(おける只、。 Ar、01の各ガス流量変化と散乱光強度の関係を示す
図。 第5図は散乱光強度とガラス微粒子の堆積収率の関係を
示す図である。
FIG. 1 is a diagram illustrating an embodiment of the present invention. Figures 2 to 4 are diagrams showing the relationship between the scattered light intensity and the change in each gas flow rate for the MAD method (Ar, 01). Figure 5 shows the relationship between the scattered light intensity and the deposition yield of glass particles. FIG.

Claims (1)

【特許請求の範囲】[Claims] (1)気体のガラス原料を燃焼バーナから噴出させて火
炎加水分解し、これにより生成するガラス微粒子を回転
する出発材または心棒に堆積させて回転軸方向に成長さ
せ、多孔質ガラス母材を製造する方法において、ガラス
微粒子が生成している火炎流中にレーザ光を入射し、該
入射光がガラス微粒子により散乱された散乱光を検出し
、該散乱光の強度が最大になるように燃焼ガスの流量を
制御しつつ行うことを特徴とする光ファイバ用母材の製
造方法。
(1) A gaseous glass raw material is ejected from a combustion burner and subjected to flame hydrolysis, and the resulting glass fine particles are deposited on a rotating starting material or mandrel and grown in the direction of the rotation axis to produce a porous glass base material. In the method of 1. A method for manufacturing an optical fiber base material, the method comprising controlling the flow rate of the fiber.
JP15148186A 1986-06-30 1986-06-30 Production of base material for optical fiber Pending JPS6311539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15148186A JPS6311539A (en) 1986-06-30 1986-06-30 Production of base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15148186A JPS6311539A (en) 1986-06-30 1986-06-30 Production of base material for optical fiber

Publications (1)

Publication Number Publication Date
JPS6311539A true JPS6311539A (en) 1988-01-19

Family

ID=15519443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15148186A Pending JPS6311539A (en) 1986-06-30 1986-06-30 Production of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS6311539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044679A1 (en) * 1999-01-27 2000-08-03 Man Soo Choi Methods for manufacturing and depositing fine particles combining flame and laser beam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044679A1 (en) * 1999-01-27 2000-08-03 Man Soo Choi Methods for manufacturing and depositing fine particles combining flame and laser beam

Similar Documents

Publication Publication Date Title
JP2003514225A (en) How to determine the substance in an object
CA1233080A (en) Method of fabricating optical fiber preforms
JPS6311539A (en) Production of base material for optical fiber
JPH0310204A (en) Nonlinear optical fiber and its manufacture
JP6431349B2 (en) Optical fiber preform manufacturing method
JP3843780B2 (en) Method for producing glass particulate deposit
JPS63176327A (en) Production of porous glass preform for optical fiber
JP2945660B1 (en) Method for producing porous glass preform for optical fiber
JPS6081035A (en) Manufacture of base material for optical fiber
JP2003137585A (en) Method for manufacturing core glass preform for optical fiber
JPS6011241A (en) Manufacture of base material for optical fiber
JPS60260435A (en) Manufacture of base material for optical fiber
JPS6168330A (en) Formation of fine particle of optical glass
JPS60264336A (en) Manufacture of optical glass preform
JPS596819B2 (en) Method for manufacturing doped quartz glass rod
JPS6227343A (en) Production of base material for single mode optical fiber
JPH01230446A (en) Production of deposited material of glass fine particle
JPS62260729A (en) Production of preform for optical fiber
JPS61186240A (en) Production of piled material of glass fine particles
JPH03257037A (en) Production of porous glass preform for optical fiber
JP2722735B2 (en) Method for producing glass preform for optical fiber
JPS60122736A (en) Manufacture of parent material for optical fiber
JPH03141133A (en) Production of porous glass matrix for optical fiber
JP2599451B2 (en) Manufacturing method of optical fiber base material
JPH0832573B2 (en) Method for manufacturing optical fiber preform