JPS5857372B2 - Optical fiber glass manufacturing equipment - Google Patents
Optical fiber glass manufacturing equipmentInfo
- Publication number
- JPS5857372B2 JPS5857372B2 JP51096233A JP9623376A JPS5857372B2 JP S5857372 B2 JPS5857372 B2 JP S5857372B2 JP 51096233 A JP51096233 A JP 51096233A JP 9623376 A JP9623376 A JP 9623376A JP S5857372 B2 JPS5857372 B2 JP S5857372B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- optical fiber
- fiber glass
- liquid raw
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
- C03B37/01807—Reactant delivery systems, e.g. reactant deposition burners
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【発明の詳細な説明】
本発明は高品質な光ファイバを得ることができる光フア
イバガラスを製造する装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for manufacturing optical fiber glass capable of producing high quality optical fibers.
光ファイバに要求される最も重要な特性として低損失性
と広帯域性が挙げられる。The most important properties required of optical fibers are low loss and wideband performance.
このような特性を満たす光ファイバはガラス管の内壁に
ガラス膜を化学蒸着したり、中心素材の外壁に光フアイ
バガラスを化学蒸着したりして得られる光フアイバ素材
を紡糸することによって得られている。Optical fibers that meet these characteristics are obtained by spinning optical fiber materials obtained by chemical vapor deposition of a glass film on the inner wall of a glass tube or chemical vapor deposition of optical fiber glass on the outer wall of a core material. There is.
しかしながら、化学蒸着法で得られる光ファイバは一般
に高性能ではあるが、その特性は大きくばらつき、安定
に再現性よく製造することが困難である。However, although optical fibers obtained by chemical vapor deposition generally have high performance, their properties vary widely and it is difficult to manufacture them stably and with good reproducibility.
これは化学蒸着法の制御性の困難さに依存している。This relies on the difficulty of controlling chemical vapor deposition methods.
本発明の目的は、光フアイバガラスを化学蒸着法によっ
て形成する際の不安定性を改善し、所望の高品質光フア
イバガラスを安定にかつ再現性よく製造できる装置を提
供することにある。An object of the present invention is to improve instability when forming optical fiber glass by chemical vapor deposition, and to provide an apparatus that can stably and reproducibly produce desired high-quality optical fiber glass.
本発明によれば、キャリヤガスの供給源と、光フアイバ
ガラスの液体原料を収納することができかつ内部に前記
キャリヤガスを流すことができる原料容器と、前記液体
原料の温度を制御する温度制御手段と、前記光フアイバ
ガラスを化学反応によって形成するため前記キャリヤガ
スと前記液体原料から気化した気体との混合気体を励起
する手段とを含む光フアイバガラスの製造装置において
、前記原料容器に、収納された前記液体原料の容量の減
少量を検知することができる減少量検知手段を設けた光
フアイバガラスの製造装置が得られる。According to the present invention, there is provided a carrier gas supply source, a raw material container capable of housing a liquid raw material for optical fiber glass and into which the carrier gas can flow, and a temperature control for controlling the temperature of the liquid raw material. and means for exciting a gas mixture of the carrier gas and a gas vaporized from the liquid raw material to form the optical fiber glass by a chemical reaction, wherein the raw material container contains: An apparatus for producing optical fiber glass is obtained, which is provided with a reduction amount detection means capable of detecting the amount of reduction in the volume of the liquid raw material.
また本発明によれば、前記減少量検知手段として指向性
の鋭い光ビームを原料容器内の液体原料の液面に照射し
て、液面からの反射光ビームの変位量を光検出器によっ
て検出して液体原料の減少量を検知する先ファイバガラ
スの製造装置が得られる。Further, according to the present invention, the reduction amount detection means irradiates the surface of the liquid raw material in the raw material container with a sharply directional light beam, and detects the amount of displacement of the reflected light beam from the liquid surface with a photodetector. Thus, an apparatus for manufacturing tip fiber glass that detects the amount of decrease in the liquid raw material is obtained.
さらに、本発明によれば、前記減少量検知手段として、
単色性の良い第一の光を原料容器内の液体原料の液面に
ほぼ垂直に照射し、その反射光の一部を単色性の良い第
二の光と干渉させて得られる干渉光の強度を光検出器で
検出して液体原料の減少量を検知する光フアイバガラス
の製造装置が得られる。Furthermore, according to the present invention, as the reduction amount detection means,
The intensity of interference light obtained by irradiating a first light with good monochromaticity almost perpendicularly to the liquid surface of the liquid raw material in a raw material container and making a part of the reflected light interfere with a second light with good monochromaticity. An optical fiber glass manufacturing apparatus is obtained that detects the amount of decrease in the liquid raw material by detecting the amount using a photodetector.
次に図面を用いて本発明を説明する。Next, the present invention will be explained using the drawings.
第1図は本発明の第一の実施例を示し、1および2はキ
ャリヤガス兼反応ガスの酸素を供給する酸素供給源、3
および4はガラス容器、5および6は光フアイバガラス
の液体原料でそれぞれ5iCl、およびGeCl4.1
および8は液体原料の5iC745およびGeCA46
の温度を制御する温度制御装置、9および10は指向
性の鋭い光ビームの光源、11および12は光検出器、
13は内壁に光フアイバガラスが堆積させられる管、そ
して14は加熱体である。FIG. 1 shows a first embodiment of the present invention, in which 1 and 2 are oxygen supply sources that supply oxygen which also serves as a carrier gas and a reaction gas;
and 4 are glass containers, and 5 and 6 are liquid raw materials for optical fiber glass, 5iCl and GeCl4.1, respectively.
and 8 are liquid raw materials 5iC745 and GeCA46
9 and 10 are light sources of sharply directional light beams; 11 and 12 are photodetectors;
13 is a tube on which an optical fiber glass is deposited, and 14 is a heating element.
以上の構成において、酸素供給源1および2の酸素はガ
ラス容器3および4にそれぞれ進み、この中から5iC
1!+5およびGeCA、6の気体をそれぞれ運び出す
。In the above configuration, oxygen from oxygen supply sources 1 and 2 goes to glass containers 3 and 4, respectively, and 5iC
1! +5 and GeCA,6 gases are carried away, respectively.
運び出された5ick4のGeC74の気体は途中で混
合されて管13の内部に送られる。The 5ick4 GeC74 gas carried out is mixed on the way and sent into the tube 13.
管13め内部の酸素5iC74、GeCA4の混合気体
は加熱体14で加熱されて化学反応を起こし管13の内
壁に光フアイバガラスとして堆積される。The mixed gas of oxygen 5iC74 and GeCA4 inside the tube 13 is heated by the heating element 14 to cause a chemical reaction and is deposited on the inner wall of the tube 13 as optical fiber glass.
加熱体14を管13の長さ方向に移動させると、管13
の内壁にその長さ方向にそって一様に光フアイバガラス
が堆積される。When the heating element 14 is moved in the length direction of the tube 13, the tube 13
Optical fiber glass is deposited uniformly along its length on the inner wall of the optical fiber.
酸素供給源1および2からの酸素の供給量を変えてやれ
ば成分比の異なる多層の光フアイバガラス膜が形成され
る。By changing the amount of oxygen supplied from the oxygen supply sources 1 and 2, a multilayer optical fiber glass film having different component ratios can be formed.
ところでこのような化学蒸着を行なっている間、5iC
145とGeCl46は減少していくが、この減少量は
光源9および10からの光ビームを利用して検出される
。By the way, while performing such chemical vapor deposition, 5iC
145 and GeCl 46 decrease, and this decrease is detected using the light beams from light sources 9 and 10.
すなわち光ビームは5iCl。5とGe Cl! 46
の液面で反射されてそれぞれ光検出器11および12に
到達する。That is, the light beam is 5iCl. 5 and GeCl! 46
are reflected from the liquid surface and reach photodetectors 11 and 12, respectively.
5iC745とGeC7,6の液面の変化は光検出器1
1および12にそれぞれ入射する光ビームの位置の変化
に対応している。Changes in the liquid levels of 5iC745 and GeC7,6 are detected by photodetector 1.
This corresponds to changes in the positions of the light beams incident on 1 and 12, respectively.
すなわち反射光ビームの変化量を検出して、この量が一
定になるように温度制御装置7および8を動作させて均
一な光フアイバガラス膜を得る。That is, a uniform optical fiber glass film is obtained by detecting the amount of change in the reflected light beam and operating the temperature control devices 7 and 8 so that this amount remains constant.
予め変化量を設定しておくことにより各層の成分比が異
なる均一な多層の光フアイバガラスを形成することがで
きる。By setting the amount of change in advance, it is possible to form a uniform multilayer optical fiber glass in which each layer has a different component ratio.
第2図は本発明の第二の実施例を示し、1および2は酸
素供給源、3および4はガラス容器、5および6はそれ
ぞれ5iCA とGe C13、,7および8は温度制
御装置、21および22は単色性のよい光を発する第一
光源、23および24は単色性のよい光を発する第二光
源、25および26は光強度検出器、13は管、そして
14は加熱体である。FIG. 2 shows a second embodiment of the present invention, 1 and 2 are oxygen supply sources, 3 and 4 are glass containers, 5 and 6 are respectively 5iCA and Ge C13, 7 and 8 are temperature control devices, 21 22 is a first light source that emits light with good monochromaticity; 23 and 24 are second light sources that emit light with good monochromaticity; 25 and 26 are light intensity detectors; 13 is a tube; and 14 is a heating element.
以上の構成において、第一の実施例の場合と同様に酸素
、5ic14.GeCl、の混合気体は管13の内部で
化学反応してその内壁に堆積される。In the above configuration, as in the case of the first embodiment, oxygen, 5ic14. A gas mixture of GeCl undergoes a chemical reaction inside the tube 13 and is deposited on its inner wall.
この時、液体原料の5iC145とGeCl46の減少
量は第一光源21および22から発せられた光の、それ
ぞれ5iC145とGeC,g46の液面からの反射光
と、第二光源23および24の光とのそれぞれの干渉光
を検出器25および26でそれぞれ受光し、それらの光
強度を検知する。At this time, the amount of decrease in the liquid raw materials 5iC145 and GeCl46 is determined by the amount of light emitted from the first light sources 21 and 22 reflected from the liquid surface of 5iC145, GeC, and g46, respectively, and the light from the second light sources 23 and 24. The respective interference lights are received by detectors 25 and 26, and their light intensities are detected.
液体原料の減少量はその液面の低下量に対応するので干
渉光の光強度も同時に変化する。Since the amount of decrease in the liquid raw material corresponds to the amount of decrease in the liquid level, the light intensity of the interference light also changes at the same time.
すなわち光強度の変化量を検出して、この量が一定にな
るように温度制御装置7および8を動作させて均一な光
フアイバガラス膜を得ることができる。That is, a uniform optical fiber glass film can be obtained by detecting the amount of change in light intensity and operating the temperature control devices 7 and 8 so that this amount remains constant.
さらに前もって変化量を設定しておくことにより成分比
の異なる均一な多量の光フアイバガラス膜をも形成させ
ることができる。Furthermore, by setting the amount of change in advance, it is possible to form a large amount of uniform optical fiber glass films with different component ratios.
第一、第二の実施例において、光フアイバガラスを管の
内壁に堆積させたが、中心素材の外壁に光フアイバガラ
スを形成させたり、単に粉末状の光フアイバガラスを得
ることもできることは明らかである。In the first and second embodiments, the optical fiber glass was deposited on the inner wall of the tube, but it is clear that it is also possible to form the optical fiber glass on the outer wall of the core material or simply obtain a powdered optical fiber glass. It is.
また上記実施例では、キャリヤガスの酸素は液体原料の
表面を通過する方式について説明したが、キャリヤガス
を液体原料の内部から押し出す方式の気体原料の発生シ
ステムを用いてもよいことは当然である。Further, in the above embodiment, a method was explained in which the oxygen of the carrier gas passes through the surface of the liquid raw material, but it is of course possible to use a system for generating a gaseous raw material in which the carrier gas is pushed out from inside the liquid raw material. .
また本実施例では説明を簡単にするために、5iC14
とGe C114の2種類の液体原料を用いたが、さら
に異なる多数の液体原料を用いてもよいことは明らかで
ある。In addition, in this example, in order to simplify the explanation, 5iC14
Although two types of liquid raw materials were used, namely, and Ge C114, it is clear that a number of different liquid raw materials may be used.
また光フアイバガラスを形成するための混合気体の励起
手段に加熱体を用いたが、電界励起などの他の励起手段
を利用してもよいことは当然である。Further, although a heating body is used as a means for exciting the gas mixture for forming the optical fiber glass, it is of course possible to use other excitation means such as electric field excitation.
最後に本発明が有する特徴を挙げれば、光ファイバガラ
スの原料となる気体の発生量を常に制御するので高品質
な光フアイバガラスを均一にかつ安定に形成することが
できる。Finally, a feature of the present invention is that since the amount of gas generated as a raw material for optical fiber glass is constantly controlled, high quality optical fiber glass can be formed uniformly and stably.
また原料気体の発生量の精密な設定が可能であるので均
一な光フアイバガラスを再現性よく製造することができ
ることである。Furthermore, since the amount of raw material gas generated can be precisely set, uniform optical fiber glass can be manufactured with good reproducibility.
第1図および第2図はそれぞれ本発明の第一および第二
の実施例を示す図であって、1および2は酸素供給源、
3および4はガラス容器、5はS i C14,6はG
e C14,7および8は温度制御装置、9および10
は光源、11および12は光検出器、13は管、14は
加熱体、21および22は単色光を発する第一の光源、
23および24は単色光を発する第二の光源、25およ
び26は光強度検出器である。FIG. 1 and FIG. 2 are diagrams showing the first and second embodiments of the present invention, respectively, in which 1 and 2 are oxygen supply sources;
3 and 4 are glass containers, 5 is S i C14, 6 is G
e C14, 7 and 8 are temperature control devices, 9 and 10
is a light source, 11 and 12 are photodetectors, 13 is a tube, 14 is a heating element, 21 and 22 are a first light source that emits monochromatic light,
23 and 24 are second light sources that emit monochromatic light, and 25 and 26 are light intensity detectors.
Claims (1)
原料を収納することができかつ内部に前記キャリヤガス
を流すことができる原料容器と、前記液体原料の温度を
制御する温度制御手段と、前記光フアイバガラスを化学
反応によって形成するため前記キャリヤガスと前記液体
原料から気化した気体の混合気体を励起する手段とを含
む光フアイバガラスの製造装置において、前記原料容器
に収納される前記液体原料の容量の減少量を検知するこ
とができる手段を設けたことを特徴とする光フアイバガ
ラスの製造装置。 2 指向性の鋭い光ビームを原料容器内の液体原料の液
面に照射して、この液面から反射された光ビームの変位
量を光検出器により検出して液体原料の減少量を検知す
る特許請求の範囲第1項記載の光フアイバガラスの製造
装置。 3 単色性の良い第一の光を原料容器内の液体原料の液
面にほぼ垂直に照射し、その反射光と単色性の良い第二
の光と干渉させて得られる干渉光の強度を光検出器によ
り検出して液体原料の減少量を検知する特許請求の範囲
第1項記載の光フアイバガラスの製造装置。[Scope of Claims] 1. A supply source of carrier gas, a raw material container capable of storing a liquid raw material for optical fiber glass and into which the carrier gas can flow, and a temperature for controlling the temperature of the liquid raw material. An apparatus for producing optical fiber glass comprising a control means and a means for exciting a gas mixture of the carrier gas and a gas vaporized from the liquid raw material in order to form the optical fiber glass by a chemical reaction, wherein the optical fiber glass is housed in the raw material container. An apparatus for manufacturing optical fiber glass, characterized in that the apparatus is provided with means capable of detecting a decrease in the volume of the liquid raw material. 2. A sharply directional light beam is irradiated onto the surface of the liquid raw material in the raw material container, and a photodetector detects the amount of displacement of the light beam reflected from the liquid surface to detect the amount of decrease in the liquid raw material. An apparatus for manufacturing optical fiber glass according to claim 1. 3 The intensity of the interference light obtained by irradiating the first light with good monochromaticity almost perpendicularly to the surface of the liquid raw material in the raw material container and interfering with the reflected light and the second light with good monochromaticity is calculated. 2. The optical fiber glass manufacturing apparatus according to claim 1, wherein the amount of decrease in the liquid raw material is detected by a detector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51096233A JPS5857372B2 (en) | 1976-08-12 | 1976-08-12 | Optical fiber glass manufacturing equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP51096233A JPS5857372B2 (en) | 1976-08-12 | 1976-08-12 | Optical fiber glass manufacturing equipment |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18418384A Division JPS6077140A (en) | 1984-09-03 | 1984-09-03 | Production unit for glass for optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5321935A JPS5321935A (en) | 1978-02-28 |
JPS5857372B2 true JPS5857372B2 (en) | 1983-12-20 |
Family
ID=14159500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP51096233A Expired JPS5857372B2 (en) | 1976-08-12 | 1976-08-12 | Optical fiber glass manufacturing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5857372B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5823726U (en) * | 1981-08-10 | 1983-02-15 | トヨタ自動車株式会社 | Axle in four-wheel drive vehicles |
JPS5844226U (en) * | 1981-09-04 | 1983-03-24 | トヨタ自動車株式会社 | Freewheel hub mechanism for axle for four-wheel drive vehicles |
JPH0545865Y2 (en) * | 1986-03-04 | 1993-11-29 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4873523A (en) * | 1972-01-03 | 1973-10-04 |
-
1976
- 1976-08-12 JP JP51096233A patent/JPS5857372B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4873523A (en) * | 1972-01-03 | 1973-10-04 |
Also Published As
Publication number | Publication date |
---|---|
JPS5321935A (en) | 1978-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1194385A (en) | Device fabrication using gas-solid processes | |
US4341441A (en) | Method of making solid preforms and optical fibers drawn therefrom | |
KR840000429B1 (en) | Method of controlling the index profile of optical fiber preforms | |
Lombardi et al. | Spectroscopic diagnostics and modeling of Ar∕ H2∕ CH4 microwave discharges used for nanocrystalline diamond deposition | |
ATE350679T1 (en) | METHOD AND APPARATUS FOR PRODUCING THIN LAYERS | |
Goulay et al. | The reaction of anthracene with OH radicals: An experimental study of the kinetics between 58 and 470K | |
US6366353B1 (en) | Method to determine the identity of a material in an object | |
CA2042593A1 (en) | Process for fabricating an optical fiber preform | |
US5652431A (en) | In-situ monitoring and feedback control of metalorganic precursor delivery | |
JPS5857372B2 (en) | Optical fiber glass manufacturing equipment | |
JP2000294372A (en) | Formation of organic material film, manufacture of organic el element and device therefor | |
JPS623101B2 (en) | ||
JP2728199B2 (en) | Method for producing nickel-cobalt composite oxide film for carbon monoxide gas sensor | |
JPS61213376A (en) | Photochemical film forming device | |
JPH0832572B2 (en) | Method for manufacturing base material for optical fiber | |
JPS61170022A (en) | Manufacture of compound semiconductor thin film | |
JPS59139929A (en) | Membrane preparing apparatus | |
JPS60151241A (en) | Manufacture of base material for optical fiber | |
RU2117071C1 (en) | Process of laser application of film | |
JPH01203297A (en) | Method for synthesizing diamond with combustion flame | |
JPH1096690A (en) | Apparatus for measuring concentration of carbon monoxide gas | |
JPS6041010B2 (en) | Manufacturing method of optical fiber material | |
JPS5742552A (en) | Preparation of base material for optical fiber | |
JPS61261227A (en) | Production of base material for optical fiber and apparatus therefor | |
JPS5759146A (en) | Apparatus of emission spectroscopic analysis |