JPS6241405B2 - - Google Patents
Info
- Publication number
- JPS6241405B2 JPS6241405B2 JP13775679A JP13775679A JPS6241405B2 JP S6241405 B2 JPS6241405 B2 JP S6241405B2 JP 13775679 A JP13775679 A JP 13775679A JP 13775679 A JP13775679 A JP 13775679A JP S6241405 B2 JPS6241405 B2 JP S6241405B2
- Authority
- JP
- Japan
- Prior art keywords
- winding
- strands
- dislocation
- helical
- helical winding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000004804 winding Methods 0.000 claims description 96
- 230000006698 induction Effects 0.000 claims description 5
- 230000007704 transition Effects 0.000 claims description 4
- 230000004907 flux Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 230000017105 transposition Effects 0.000 description 9
- 230000005684 electric field Effects 0.000 description 8
- 239000004020 conductor Substances 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2823—Wires
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Coils Of Transformers For General Uses (AREA)
- Insulated Conductors (AREA)
Description
【発明の詳細な説明】
本発明は、変圧器やリアクトルなどの誘導電器
に用いる巻線に係り、特に転位が効果的に行える
ヘリカル巻線に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a winding used in an induction appliance such as a transformer or a reactor, and particularly to a helical winding in which transposition can be effectively performed.
特に大容量の誘導電器用巻線では、その導体の
漏洩磁束に対する直角方向の有効断面積が大きい
と、1本の導体の両側で鎖交磁束数が相違するこ
とから渦電流が誘起されて、それによる損失があ
る。そのため導体は互に絶縁された複数の素線か
らなり、それを並列にして用いている。変圧器の
低圧側巻線などでは巻回数が少ないので、複数本
の素線を巻線の半径方向に配列して螺線状に巻回
したヘリカル巻線を内側と外側に2段に配置し
て、それらのヘリカル巻線を直列に接続してい
た。ところが、多数の素線が並列して巻回された
巻線においては、各素線が磁束に対して平衡して
鎖交しないから、素線間に循環電流が流れて損失
が増大する。そのため、通常、各素線は適宜転位
を行なつて各素線の磁束鎖交数を平均化させるこ
とが行なわれている。 Especially in windings for large-capacity induction appliances, if the effective cross-sectional area of the conductor in the direction perpendicular to the leakage magnetic flux is large, eddy currents will be induced due to the difference in the number of flux linkages on both sides of one conductor. There is a loss due to this. Therefore, the conductor consists of a plurality of mutually insulated strands, which are used in parallel. Since the number of turns is small in the low-voltage side winding of a transformer, a helical winding in which multiple strands of wire are arranged in the radial direction of the winding and wound in a spiral is arranged in two stages on the inside and outside. These helical windings were connected in series. However, in a winding in which a large number of strands are wound in parallel, each strand does not interlink with the magnetic flux in a balanced manner, so that a circulating current flows between the strands, increasing loss. Therefore, each strand is usually transposed appropriately to average the number of magnetic flux linkages of each strand.
第1図ないし第3図は、従来のヘリカル巻線の
転位状態を説明するための図である。この例の場
合、7本の素線(素線1〜素線7)を巻線の半径
方向に配列し、それを螺旋状に巻回して内側ヘリ
カル巻線8と外側ヘリカル巻線9とを作り、それ
らのヘリカル巻線8,9を2段に配置して、両者
を直列に接続する。各段のヘリカル巻線8,9に
おいて、素線数−1の数に相当する転位個所(こ
の例では7本の素線を用いているから転位個所は
6個所)でそれぞれ素線の転位が行なわれる。 1 to 3 are diagrams for explaining the dislocation state of a conventional helical winding. In this example, seven strands (strand 1 to strand 7) are arranged in the radial direction of the winding, and are spirally wound to form an inner helical winding 8 and an outer helical winding 9. The helical windings 8 and 9 are arranged in two stages and connected in series. In the helical windings 8 and 9 of each stage, the dislocations of the strands occur at the dislocation locations corresponding to the number of strands minus 1 (in this example, there are 6 dislocation locations since 7 strands are used). It is done.
第1図は、内側ヘリカル巻線8における素線の
転位順序を示すもので、同図イのように巻始めの
時点では素線1が最内周に配置され、それから半
径方向外側に向けて素線2〜7が順次配列され
て、素線7が最外周にある。第1回目の転位は同
図ロに示すように、最外周にあつた素線7が移転
されて最内周に配置され、それによつて他の素線
1〜6が半径方向外側へずらされ、素線6が最外
周にある。第3図は、その第1回目の転位におけ
る素線7の移転状態を示す斜視図である。第2回
目の転位は第1図ハに示すように、最外周にあつ
た素線6が移転されて最内周に配置され、それに
よつて他の素線1〜5,7が半径方向外側へずら
され、素線5が最外周にある。このように最外周
にある素線を最外周に順次移転させることによ
り、第3回目の転移〔同図ニ〕、第4回目の転位
〔同図ホ〕、第5回目の転位〔同図ヘ〕、第6回目
の転位〔同図ト〕が行なわれる。第1図における
矢印は、素線の移転方向を示す。なお、外側ヘリ
カル巻線9においても同様に順次各素線1〜7の
転位が行なわれる。 Figure 1 shows the transposition order of the wires in the inner helical winding 8. As shown in Figure A, at the beginning of winding, the wire 1 is placed at the innermost circumference, and then radially outward. The strands 2 to 7 are arranged in sequence, with the strand 7 being at the outermost periphery. In the first dislocation, as shown in FIG. , the wire 6 is located at the outermost periphery. FIG. 3 is a perspective view showing the transferred state of the strands 7 in the first dislocation. In the second dislocation, as shown in FIG. The strands 5 are at the outermost periphery. By sequentially transferring the strands on the outermost periphery to the outermost periphery in this way, the third dislocation [D], the fourth dislocation [E], and the fifth dislocation [FIG. ], the sixth dislocation [see figure G] is carried out. The arrows in FIG. 1 indicate the direction of transfer of the strands. Incidentally, in the outer helical winding 9 as well, the respective strands 1 to 7 are similarly transposed in sequence.
第2図は、内側ヘリカル巻線8と外側ヘリカル
巻線9の接続図で、両者は直列に接続されてい
る。そして内側ヘリカル巻線8では10A〜10
Fで示す位置で第1回目から第6回目までの6回
の転位が、外側ヘリカル巻線9では10G〜10
Fで示む位置で第7回目から第12回目までの6回
の転位がそれぞれ行なわれている。なお図中の1
1は鉄心、xは巻線の巻き始め端、uは巻線の巻
き終り端を示す。 FIG. 2 is a connection diagram of the inner helical winding 8 and the outer helical winding 9, both of which are connected in series. And for inner helical winding 8 it is 10A~10
Six dislocations from the first to the sixth at the position indicated by F are 10G to 10 in the outer helical winding 9.
Six dislocations from the 7th to the 12th are performed at the positions indicated by F. Note that 1 in the diagram
1 indicates the iron core, x indicates the starting end of the winding, and u indicates the ending end of the winding.
第4図は、このヘリカル巻線を用いた変圧器の
巻線配置図である。ヘリカル巻線8,9は低圧巻
線12として用いられ、この低圧巻線12の外側
には高圧巻線13が配置されている。図中のXお
よびUは、高圧巻線13の巻き始め端および巻き
終り端である。 FIG. 4 is a winding layout diagram of a transformer using this helical winding. The helical windings 8 and 9 are used as a low voltage winding 12, and a high voltage winding 13 is arranged outside the low voltage winding 12. X and U in the figure are the winding start end and winding end of the high voltage winding 13.
この従来の転位方法では、第3図に示すように
移転素線がその素線の幅分だけ出張る。そしてこ
の出張り部分において、高圧巻線などの対向電極
との間に電界集中が発生するから、それぞれの素
線の移転部分に補強絶縁が必要となる。また転位
個所が巻線の全体に均等に分布しているため、な
かには高圧巻線の最大電位である線路端と対向す
る転位個所も出てくる。この線路端に近い部分に
あたる例えば外側ヘリカル巻線の第9回目の転位
個所(第2図において符号10Iで示す位置)に
おける移転素線の合成電界Eは、下式で求まる。 In this conventional transposition method, the transferred strand protrudes by the width of the strand, as shown in FIG. Since electric field concentration occurs between the projecting portion and the opposing electrode of the high voltage winding, reinforcing insulation is required at the transfer portion of each strand. Furthermore, since the dislocation points are evenly distributed throughout the winding, some of the dislocation points appear opposite to the line end, which is the maximum potential of the high voltage winding. The composite electric field E of the transferred wire at, for example, the ninth dislocation point of the outer helical winding (the position indicated by reference numeral 10I in FIG. 2), which is close to the line end, is determined by the following formula.
E=K√a2+r2
ただし、式中Kは電界集中係数、Eaは軸方向
電界、Erは半径方向電界である。このように素
線の転位個所が高圧巻線側の線路端と対向して電
界集中が発生することがあるから、第4図に示す
低圧巻線12と高圧巻線13との間隙dを十分に
とる必要があり、そのため誘導電器の小型化に支
障をきたす。また従来の方法では、素線を螺旋状
に巻き付ける作業と素線の移転作業とを繰り返し
て行なつており、この繰り返しは素線数が増せば
それに従つて増え、作業能率が非常に悪いなどの
諸種の欠点を有している。 E=K√ a2 + r2 where K is the electric field concentration coefficient, E a is the axial electric field, and E r is the radial electric field. In this way, electric field concentration may occur when the dislocation point of the strands faces the line end on the high-voltage winding side, so the gap d between the low-voltage winding 12 and the high-voltage winding 13 shown in FIG. This poses a problem in the miniaturization of induction electric appliances. In addition, in the conventional method, the work of spirally winding the strands and the work of transferring the strands are repeated, and this repetition increases as the number of strands increases, resulting in very poor work efficiency. It has various drawbacks.
本発明の目的は、前記従来技術の欠点を除去
し、電界集中がなく電気的に安定し、しかも組立
作業が簡単な誘導電器用ヘリカル巻線を提供する
にある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a helical winding for an induction electric appliance that eliminates the drawbacks of the prior art, is electrically stable without electric field concentration, and is easy to assemble.
この目的を達成するため、本発明は、複数本の
素線を巻線の半径方向に配列して螺旋状に巻回し
たヘリカル巻線を内側と外側に2段に配置して、
それらのヘリカル巻線を直列接続するものにおい
て、前記外側ヘリカル巻線で、かつその外側ヘリ
カル巻線の総ターン数をnとしたとき、内側ヘリ
カル巻線との接続点側から1/3nターン位置付近
に、巻線軸方向に向けて長く延びた転移空間を設
け、その転移空間内において素線を巻線軸方向に
沿つて順次転移したことを特徴とするものであ
る。 In order to achieve this object, the present invention arranges a helical winding in which a plurality of wires are arranged in the radial direction of the winding and wound spirally in two stages inside and outside,
In the case where these helical windings are connected in series, the outer helical winding is located at 1/3n turn position from the connection point side with the inner helical winding, where n is the total number of turns of the outer helical winding. It is characterized in that a transition space extending long toward the winding axis is provided nearby, and the strands are sequentially transferred along the winding axis within the transition space.
第5図に示すように、内側ヘリカル巻線8と外
側ヘリカル巻線9とを備えた2段巻線において
は、1段目に相当する内側ヘリカル巻線8の漏洩
磁束は全漏洩磁束Φの1/4、2段目に相当する外
側ヘリカル巻線9の漏洩磁束は全漏洩磁束の3/4
ある。従つて巻線全体の鎖交磁束を均一化するに
は、
となる位置で転位すればよい。すなわち、ヘリカ
ル巻線の高さをhとした場合、外側ヘリカル巻線
9の内側ヘリカル巻線8との接続点側から1/3h
の位置付近で転位すれば、巻線全体の鎖交磁束を
均一にすることができる。第5図の場合転位位置
を巻線の高さhを基準にして説明したが、巻線の
ターン数で特定することができる。すなわち、外
側ヘリカル巻線9の総ターン数をnとするとき、
内側ヘリカル巻線8との接続点側から1/3nター
ンの位置付近が転位位置となる。 As shown in FIG. 5, in a two-stage winding including an inner helical winding 8 and an outer helical winding 9, the leakage magnetic flux of the inner helical winding 8 corresponding to the first stage is equal to the total leakage magnetic flux Φ. 1/4, the leakage magnetic flux of the outer helical winding 9 corresponding to the second stage is 3/4 of the total leakage magnetic flux.
be. Therefore, in order to equalize the flux linkage of the entire winding, It is sufficient to transpose at a position where . In other words, if the height of the helical winding is h, then 1/3 h from the connection point side of the outer helical winding 9 with the inner helical winding 8.
If the dislocation occurs near the position of , the interlinkage flux of the entire winding can be made uniform. In the case of FIG. 5, the dislocation position was explained based on the height h of the winding, but it can be specified by the number of turns of the winding. That is, when the total number of turns of the outer helical winding 9 is n,
The position near the 1/3n turn from the connection point side with the inner helical winding 8 is the transposition position.
この転位位置に第6図に示すように、巻線軸方
向に延びる転位空間14を設け、この転位空間1
4内で一括して素線1〜7を順次転位する。第7
図はこの転位状態を示すもので、矢印は各素線1
〜7の転位方向をそれぞれ表わしている。第6図
における15〜19は素線単位を示し、この素線単位
15〜19は素線を並設したものから構成されてい
る。 As shown in FIG. 6, a dislocation space 14 extending in the winding axis direction is provided at this dislocation position, and this dislocation space 1
4, the strands 1 to 7 are sequentially transposed at once. 7th
The figure shows this dislocation state, and the arrows indicate each strand 1
~7 dislocation directions are shown, respectively. 15 to 19 in Figure 6 indicate the strand units, and this strand unit
15 to 19 are composed of wires arranged in parallel.
第8図は、各巻線の素線電流分布図である。な
お、各巻線とも7本の素線を巻線の半径方向に配
列して螺旋状に巻回したヘリカル巻線を内側と外
側に2段に配置して、両方のヘリカル巻線を直列
接続したものである。図中において2点鎖線で描
いた曲線は全く転位しない巻線、破線で描いた曲
線は前述した従来の方法で均等に転位した巻線、
実線で描いた曲線は本発明の巻線の特性曲線であ
る。なお、図中の1点鎖線で描いた直線は、素線
平均電流を示す。この図から明らかなように、本
発明による巻線は従来のものに比べて素線電流の
分布が均一化されている。 FIG. 8 is a wire current distribution diagram of each winding. In addition, for each winding, seven strands of wire were arranged in the radial direction of the winding and wound spirally, and the helical winding was arranged in two stages on the inside and outside, and both helical windings were connected in series. It is something. In the figure, the curve drawn with a two-dot chain line is a winding that has no dislocation at all, and the curve drawn with a broken line is a winding that has been evenly transposed using the conventional method described above.
The curve drawn with a solid line is a characteristic curve of the winding wire of the present invention. In addition, the straight line drawn with a dashed-dotted line in the figure indicates the average current of the strands. As is clear from this figure, the winding according to the present invention has a more uniform distribution of strand current than the conventional winding.
以上説明したように、本発明によれば、巻線全
体の鎖交磁束が均一になる位置付近の1個所で転
位するから、高圧巻線の線路端より離れた位置で
転位でき、電気的により安定し、高圧巻線との間
隙が従来よりも狭くすることが可能である。また
転位空間を設けてその中で転位するから、素線が
外側へ出張ることがなく、電界集中の緩和が図れ
補強絶縁が不要となり、さらに転位が一括して行
なわれるから作業効率の大幅向上が図れる。 As explained above, according to the present invention, the transposition occurs at one location near the position where the flux linkage of the entire winding becomes uniform, so the transposition can occur at a location away from the line end of the high-voltage winding, making it electrically more efficient. It is stable, and the gap with the high voltage winding can be made narrower than before. In addition, since a dislocation space is created and dislocation takes place within the space, the strands do not protrude outward, reducing electric field concentration and eliminating the need for reinforcing insulation.Furthermore, since the dislocation takes place all at once, work efficiency is greatly improved. can be achieved.
第1図イ〜トは従来の巻線の転位にともなう素
線の配列状態を説明するための配列図、第2図は
その巻線の転位位置を付した接続図、第3図はそ
の巻線における素線の移転状態を示す斜視図、第
4図はその巻線を用いた変圧器の巻線配置図、第
5図は本発明の巻線の転位位置と漏洩磁束の割合
を示した説明図、第6図はその巻線の転位状態を
示す側面図、第7図イは第6図−線上で視た
素線の配列状態を示す配列図、第7図ロは第6図
−線上で視た素線の配列状態を示す配列図、
第8図は各巻線の素線電流分布図である。
1〜7……素線、8……内側ヘリカル巻線、9
……外側ヘリカル巻線、14……転位空間。
Figures 1 to 3 are arrangement diagrams for explaining the arrangement of strands due to transposition in conventional windings, Figure 2 is a connection diagram with the transposition positions of the winding, and Figure 3 is the winding. A perspective view showing the transfer state of the strands in the wire, Fig. 4 is a winding arrangement diagram of a transformer using the winding, and Fig. 5 shows the transposition position and leakage magnetic flux ratio of the winding of the present invention. Explanatory drawings, FIG. 6 is a side view showing the dislocation state of the winding, FIG. Arrangement diagram showing the arrangement state of the strands as seen on the line,
FIG. 8 is a strand current distribution diagram of each winding. 1 to 7...Element wire, 8...Inner helical winding, 9
...outer helical winding, 14...dislocation space.
Claims (1)
旋状に巻回したヘリカル巻線を内側と外側に2段
に配置して、それらのヘリカル巻線を直列接続す
るものにおいて、前記外側ヘリカル巻線で、かつ
その外側ヘリカル巻線の総ターン数をnとすると
き、内側ヘリカル巻線との接続点側から1/3nタ
ーン位置付近に、巻線軸方向に向けて長く延びた
転移空間を設け、その転移空間内において素線を
巻線軸方向に沿つて順次転移したことを特徴とす
る誘導電器用ヘリカル巻線。1 A helical winding in which a plurality of wires are arranged in the radial direction of the winding and wound spirally is arranged in two stages on the inside and outside, and these helical windings are connected in series, In an outer helical winding, and when the total number of turns of the outer helical winding is n, a transition that extends long toward the winding axis near the 1/3n turn position from the connection point side with the inner helical winding. A helical winding wire for an induction electric appliance, characterized in that a space is provided, and the strands are sequentially transferred along the winding axis direction within the transition space.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13775679A JPS5662304A (en) | 1979-10-26 | 1979-10-26 | Helical winding for induction apparatus |
IN1199/CAL/80A IN152531B (en) | 1979-10-26 | 1980-10-23 | |
AR28299180A AR223398A1 (en) | 1979-10-26 | 1980-10-24 | HELICAL WINDING ASSEMBLY FOR AN INDUCTOR |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13775679A JPS5662304A (en) | 1979-10-26 | 1979-10-26 | Helical winding for induction apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5662304A JPS5662304A (en) | 1981-05-28 |
JPS6241405B2 true JPS6241405B2 (en) | 1987-09-02 |
Family
ID=15206092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13775679A Granted JPS5662304A (en) | 1979-10-26 | 1979-10-26 | Helical winding for induction apparatus |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPS5662304A (en) |
AR (1) | AR223398A1 (en) |
IN (1) | IN152531B (en) |
-
1979
- 1979-10-26 JP JP13775679A patent/JPS5662304A/en active Granted
-
1980
- 1980-10-23 IN IN1199/CAL/80A patent/IN152531B/en unknown
- 1980-10-24 AR AR28299180A patent/AR223398A1/en active
Also Published As
Publication number | Publication date |
---|---|
AR223398A1 (en) | 1981-08-14 |
IN152531B (en) | 1984-02-04 |
JPS5662304A (en) | 1981-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3766504A (en) | Interleaved transformer winding having three parallel connected conductors | |
JPS6241405B2 (en) | ||
US4460885A (en) | Power transformer | |
JP3013506B2 (en) | Helical coil | |
JPS5936123Y2 (en) | Lebel transition coil for rotating electrical machines | |
JPS6214656Y2 (en) | ||
EP0632924A4 (en) | Improved core-form transformer. | |
JP3248283B2 (en) | Transformer winding | |
JP2695224B2 (en) | High frequency transformer for welding | |
JPS629693Y2 (en) | ||
JPS6022490B2 (en) | electromagnetic induction winding | |
JPH06151213A (en) | Twist thin type voltage converter and its use | |
KR830002550B1 (en) | Inductive electric helical winding | |
JPS59149014A (en) | Winding for induction electric apparatus | |
JP3006258B2 (en) | Dislocation conductor helical coil | |
JP2829508B2 (en) | Single-phase three-wire single-turn transformer | |
JPH054265Y2 (en) | ||
JPS6326526B2 (en) | ||
JPS6157689B2 (en) | ||
JPH067218U (en) | Winding for transformer | |
JPH043093B2 (en) | ||
JPH01313914A (en) | Winding for transformer | |
JPH0572086B2 (en) | ||
JPS60210818A (en) | Winding of induction electric apparatus | |
JPH04263406A (en) | Molded transformer winding |