JPS6214656Y2 - - Google Patents

Info

Publication number
JPS6214656Y2
JPS6214656Y2 JP7703780U JP7703780U JPS6214656Y2 JP S6214656 Y2 JPS6214656 Y2 JP S6214656Y2 JP 7703780 U JP7703780 U JP 7703780U JP 7703780 U JP7703780 U JP 7703780U JP S6214656 Y2 JPS6214656 Y2 JP S6214656Y2
Authority
JP
Japan
Prior art keywords
winding
conductor
unit coil
unit
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7703780U
Other languages
Japanese (ja)
Other versions
JPS572623U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7703780U priority Critical patent/JPS6214656Y2/ja
Publication of JPS572623U publication Critical patent/JPS572623U/ja
Application granted granted Critical
Publication of JPS6214656Y2 publication Critical patent/JPS6214656Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Description

【考案の詳細な説明】 本考案は変圧器、リアクトルなどの誘導電器の
巻線に関するものである。
[Detailed Description of the Invention] The present invention relates to windings for induction electric appliances such as transformers and reactors.

第1〜2図は従来の変圧器の巻線の構成を示
し、1は鉄心、2,3は夫々鉄心1に巻回された
低圧巻線および高圧巻線で、高圧巻線3は巻線軸
方向に分けられた二つの巻線部3a,3bから成
り、各巻線部3a,3bはリード線4,5間に並
列に接続され、かつ各巻線部3a,3bは二本の
導体A,Bの並列巻となつている。第2図におい
て、1A〜16Aおよび1B〜16Bは各導体
A,Bの巻回を示し、又a〜dは各単位コイルを
示し、単位コイルa〜dにより一つの巻線単位を
構成し、各巻線部3a,3bは夫々複数の巻線単
位を直列に接続して構成されている。そして、各
単位コイルa〜dは導体A,Bが高直列容量巻き
で交互に配置されている。尚、巻線部3a,3b
は巻線の軸方向中心イから見て対称的に構成され
ている。
Figures 1 and 2 show the winding configuration of a conventional transformer, where 1 is an iron core, 2 and 3 are low voltage windings and high voltage windings wound around iron core 1, respectively, and high voltage winding 3 is a winding shaft. Consisting of two winding parts 3a, 3b separated in direction, each winding part 3a, 3b is connected in parallel between lead wires 4, 5, and each winding part 3a, 3b is connected to two conductors A, B. It is a parallel volume. In FIG. 2, 1A to 16A and 1B to 16B indicate the windings of each conductor A, B, and a to d indicate each unit coil, and the unit coils a to d constitute one winding unit, Each winding portion 3a, 3b is constructed by connecting a plurality of winding units in series. In each of the unit coils a to d, conductors A and B are alternately arranged with high series capacitance winding. In addition, the winding parts 3a and 3b
is constructed symmetrically when viewed from the axial center A of the winding.

しかるに上記構成の従来の変圧器巻線において
は導体Aは単位コイルa,cに、又導体Bは単位
コイルb,dに夫々位置しており、導体Aは導体
Bより巻線の端部寄りに位置している。一方、巻
線の軸方向両端部では漏れ磁束に曲がりが生じて
いる。このため、漏れ磁束と導体A,Bとの磁束
鎖交数にアンバランスが生じ、漏れリアクタンス
が異なる。従つて、並列に接続された導体A,B
間に循環電流が流れ、銅損が増大して温度上昇が
増大するので、各導体A,Bの段面積を大きくす
るとかあるいは冷却ダクトを広くするとかの必要
が生じ、変圧器の大形化を招いた。
However, in the conventional transformer winding having the above configuration, conductor A is located in unit coils a and c, and conductor B is located in unit coils b and d, respectively, and conductor A is located closer to the end of the winding than conductor B. It is located in On the other hand, the leakage magnetic flux is bent at both axial ends of the winding. For this reason, an imbalance occurs in the number of magnetic flux linkages between the leakage magnetic flux and the conductors A and B, resulting in a difference in leakage reactance. Therefore, conductors A and B connected in parallel
Circulating current flows between them, increasing copper loss and increasing temperature rise. Therefore, it becomes necessary to increase the step area of each conductor A and B or to widen the cooling duct, leading to an increase in the size of the transformer. was invited.

本考案は上記の欠点を除去して、誘導電器を小
形化することができる誘導電器巻線を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an induction wire that can reduce the size of the induction device by eliminating the above-mentioned drawbacks.

以下本考案の実施例を図面とともに説明する。
第3〜4図は本考案の実施例に係る変圧器巻線の
構成を示し、高圧巻線6は巻線軸方向に分けられ
た二つの巻線部6a,6bから成り、各巻線部6
a,6bはリード線4,5間に並列に接続される
とともに巻線6の軸方向中心イから見て対称的に
構成されている。又、各巻線部6a,6bは二本
の導体A,Bを並列に巻回して形成され、巻線6
の軸方向両端部では各導体A,Bは夫々第1単位
コイルa1,b1内において1A〜4Aおよび1B〜
4Bまで軸方向に並べて巻回し、内渡り部で導体
A,Bの軸方向位置を転位して第1単位コイルa1
からd1に、又b1からc1に接続し、第1単位コイル
c1,d1において夫々5B〜8Bおよび5A〜8A
まで巻回し、外渡り部において第1単位コイルd1
からb1に又c1からa1に接続し、第1単位コイル
b1,a1において1B〜4Bおよび1A〜4Aの間
に9A〜12Aおよび9B〜12Bを挿入巻回
し、さらに内渡り部で導体A,Bの軸方向位置を
転位して第1単位コイルb1からc1に又a1からd1
接続し、第1単位コイルc1,d1において5B〜8
Bおよび5A〜8A間に夫々13A〜16Aおよ
び13B〜16Bを挿入巻回し、第1単位コイル
a1〜d1から成る第1の巻線単位を形成する。従
つて第1の巻線単位は並列導体A,Bの高直列
容量巻きとなつている。第1の巻線単位は1〜
3個程度設け、直列に接続する。又、巻線6の中
央部では第2単位コルa2,b2から成り第1の巻線
単位に接続された第2巻線単位を複数個設け
る。第2の巻線単位では導体A,Bは断面積が
第1巻線単位におけるものとほぼ等しく径方向
寸法の小さいものとし、この導体A,Bを径方向
に重ねて巻き、第2単位コルa2では1A〜4Aお
よび1B〜4Bまで巻回し、内渡り部で導体A,
Bを径方向に転位して第2単位コルb2に接続し、
単位コイルb2では5A〜8Aおよび5B〜8Bま
で巻回し、以下同様に高直列容量巻きとなるよう
に9A〜16Aおよび9B〜16Bを巻回する。
すなわち、第2の巻線単位では同電位巻回導体
1A,1B〜16A,16Bを夫々径方向に重ね
て導体ブロツクを形成し、これらの導体ブロツク
を巻線の径方向に重ね巻きして第2単位コルa2
b2を形成する。第4図は巻線6の具体的構造を示
し、7は巻回間絶縁を示す。
Embodiments of the present invention will be described below with reference to the drawings.
3 and 4 show the structure of a transformer winding according to an embodiment of the present invention, the high voltage winding 6 is composed of two winding parts 6a and 6b divided in the winding axis direction, and each winding part 6 is divided into two winding parts 6a and 6b.
a and 6b are connected in parallel between the lead wires 4 and 5, and are configured symmetrically when viewed from the axial center A of the winding 6. Further, each winding portion 6a, 6b is formed by winding two conductors A, B in parallel.
At both ends in the axial direction, each conductor A, B is 1A~4A and 1B~ in the first unit coil a1 , b1 , respectively.
4B are wound in parallel in the axial direction, and the axial positions of conductors A and B are shifted at the inner transition part to form the first unit coil a 1
to d 1 and from b 1 to c 1 , the first unit coil
5B to 8B and 5A to 8A in c 1 and d 1 respectively
The first unit coil d 1 is wound at the outer transition part.
Connect from B 1 to C 1 to A 1 , and connect the first unit coil
9A to 12A and 9B to 12B are inserted and wound between 1B to 4B and 1A to 4A at b 1 and a 1 , and the axial positions of conductors A and B are further shifted at the inner transition part to form the first unit coil b. 1 to c 1 and from a 1 to d 1 , and 5B to 8 in the first unit coil c 1 and d 1.
13A to 16A and 13B to 16B are inserted and wound between B and 5A to 8A, respectively, and the first unit coil is
A first winding unit consisting of a 1 to d 1 is formed. Therefore, the first winding unit is a high series capacitance winding of parallel conductors A and B. The first winding unit is 1~
Provide about 3 of them and connect them in series. Further, in the central part of the winding 6, a plurality of second winding units are provided which are made up of second unit coils a 2 and b 2 and are connected to the first winding unit. In the second winding unit, conductors A and B have a cross-sectional area that is almost equal to that in the first winding unit and a small radial dimension, and these conductors A and B are wound radially overlapping each other, and the second unit coil is In a 2 , wind from 1A to 4A and from 1B to 4B, and at the inner transition part conductor A,
Transpose B radially and connect it to the second unit col b 2 ,
In the unit coil b2 , 5A to 8A and 5B to 8B are wound, and thereafter 9A to 16A and 9B to 16B are similarly wound so as to provide high series capacitance winding.
That is, in the second winding unit, the same potential winding conductors 1A, 1B to 16A, 16B are overlapped in the radial direction to form a conductor block, and these conductor blocks are overlapped in the radial direction of the winding wire to form the second winding. 2 units col a 2 ,
form b 2 . FIG. 4 shows the specific structure of the winding 6, and 7 shows the insulation between turns.

上記の巻線6においては軸方向に並べて巻回し
た並列導体A,Bを軸方向両端部(即ち巻線単位
)では内渡り部で軸方向に転位するとともに高
直列容量巻きに巻回しており、この結果導体A,
Bの各巻回は径方向および軸方向において交互に
配置されることになる。このため、漏れ磁束の径
方向成分との磁束鎖交数が導体A,Bにおいてほ
ぼ同一となり、導体A,B間の循環電流が極めて
小さくなる。従つて、巻線全体として銅損および
温度上昇が小となり、導体A,Bの断面積を大き
くしたり冷却ダクトを広くしたりする必要がなく
なり、巻線を小形にできるとともに変圧器全体も
小形にすることができる。又、巻線の軸方向両端
部以外の漏れ磁束が軸方向に通る部分(即ち巻線
単位)では導体A,Bの径方向寸法を小さくし
ているので垂直方向の漏れ磁束の影響も小さくす
ることができる。
In the above winding 6, the parallel conductors A and B are wound in parallel in the axial direction, and are transposed in the axial direction at the inner transition part at both ends in the axial direction (i.e., each winding unit), and are wound in a high series capacitance winding. , As a result, conductor A,
The turns of B will be arranged alternately in the radial and axial directions. Therefore, the number of magnetic flux linkages with the radial component of the leakage magnetic flux becomes almost the same in the conductors A and B, and the circulating current between the conductors A and B becomes extremely small. Therefore, the copper loss and temperature rise of the entire winding are small, there is no need to increase the cross-sectional area of conductors A and B or the cooling duct, and the winding can be made smaller, as well as the transformer as a whole. It can be done. In addition, the radial dimensions of conductors A and B are made small in the parts other than both axial ends of the winding where the leakage flux passes in the axial direction (i.e., each winding unit), so the influence of the leakage flux in the vertical direction is also reduced. be able to.

上記実施例においては変圧器の高圧巻線の例を
示したが、変圧器の低圧巻線やリアクトルの巻線
にも本考案は適用することができる。又、並列導
体A,Bが3本以上の場合にも本考案は適用でき
る。
In the above embodiment, an example of a high-voltage winding of a transformer is shown, but the present invention can also be applied to a low-voltage winding of a transformer or a reactor winding. The present invention can also be applied to cases where there are three or more parallel conductors A and B.

以上のように本考案においては巻線の軸方向両
端部では複数本の並列導体を軸方向に並べて巻回
するとともに内渡り部で各並列導体の軸方向位置
を転位している。このため、各並列導体は特定の
ものだけが軸方向端部側に片寄つて配置されるこ
とがなくなり、各並列導体における漏れ磁束の径
方向成分との磁束鎖交数は平均化され、並列導体
間に循環電流が流れ難くなる。従つて、銅損の増
大による温度上昇を抑制することができるので並
列導体の断面積を大きくしたり冷却ダクトを広く
したりする必要がなくなり、巻線を小形化するこ
とができ、これに伴つて誘導電器を小形化するこ
とができる。さらに本考案においては、巻線の軸
方向両端部間に位置する部位には複数の同電位巻
回導体を径方向に重ねてなる複数の導体ブロツク
を巻線の径方向に重ね巻きして複数の第2単位コ
イルを形成し、これらの第2単位コイルを巻線の
軸方向に積み重ねるとともに軸方向に転位してな
る第2の巻線単位を複数個設け、該第2の巻線単
位の各導体として第1の巻線単位の導体と断面積
がほぼ等しくかつ巻線径方向の寸法よりも小さい
寸法を有する導体を用いたものである。このた
め、垂直方向の漏れ磁束の影響の少ない巻線を得
ることができる。
As described above, in the present invention, a plurality of parallel conductors are arranged and wound in the axial direction at both axial ends of the winding, and the axial position of each parallel conductor is shifted at the inner transition portion. For this reason, each parallel conductor is no longer arranged so that only a specific one is biased toward the axial end, and the number of magnetic flux linkages with the radial component of leakage magnetic flux in each parallel conductor is averaged, and the parallel conductor Circulating current becomes difficult to flow between them. Therefore, temperature rise due to increased copper loss can be suppressed, so there is no need to increase the cross-sectional area of parallel conductors or widen cooling ducts, and the winding can be made smaller. Therefore, the induction electric appliance can be made smaller. Furthermore, in the present invention, a plurality of conductor blocks formed by overlapping a plurality of wound conductors of the same potential in the radial direction are arranged in a region located between both ends of the winding in the axial direction. A plurality of second winding units are provided by stacking these second unit coils in the axial direction of the windings and transposing them in the axial direction, and As each conductor, a conductor having a cross-sectional area approximately equal to that of the conductor of the first winding unit and smaller than the dimension in the radial direction of the winding is used. Therefore, it is possible to obtain a winding that is less affected by leakage flux in the vertical direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜2図は夫々従来の変圧器の構成図および
高圧巻線の構成図、第3〜4図は夫々本考案の実
施例に係る変圧器高圧線巻線の構成図およびより
具体的な構成図である。 4,5……リード線、6……高圧巻線、6a,
6b……巻線部、1A〜16A……導体Aの巻
回、1B〜16B……導体Bの巻回、a1,b1
c1,d1……第1単位コイル、a2,b2……第2単位
コイル、……第1の巻線単位、……第2の巻
線単位。
1 and 2 are diagrams of a conventional transformer and a diagram of a high-voltage winding, respectively, and Figs. 3 and 4 are diagrams of a transformer high-voltage winding according to an embodiment of the present invention and a more specific diagram of the winding.
6b: winding portion; 1A to 16A: winding of conductor A; 1B to 16B: winding of conductor B; a1 , b1 ,
c 1 , d 1 : first unit coil, a 2 , b 2 : second unit coil, . . . first winding unit, .

Claims (1)

【実用新案登録請求の範囲】 巻線6の軸方向に分けられた二つの巻線部6
a,6bを並列に接続するとともに、 前記各巻線部6a,6bを、前記巻線部6の両
端部において、複数本の導体A,Bを径方向に重
ね巻きして複数の第1単位コイルa1,b1,c1,d1
を形成し、これらの第1単位コイルa1,b1,c1
d1を軸方向に積み重ねかつ第1単位コイルa1の導
体Aと第1単位コイルd1の導体A、第1単位コイ
ルa1の導体Bと第1単位コイルd1の導体B、第1
単位コイルb1の導体Aと第1単位コイルC1の導
体Aおよび第1単位コイルb1の導体Bと第1単位
コイルC1の導体Bを夫々内渡り線を介して接続
し、かつ第1単位コイルd1の導体Aと第1単位コ
イルb1の導体Aおよび第1単位コイルC1の導体
Bと第1単位コイルa1の導体Bをそれぞれ戻り渡
り線を介して接続して複数の高直列容量巻き第1
の巻線単位を形成し、これらの第1の巻線単位
を前記巻線6の軸方向に重ねるとともに、 前記巻線6の両端部間に位置する部位におい
て、複数の導体ブロツクを巻線6の径方向に重ね
巻きして複数の第2単位コイルa2,b2を形成し、
これら第2単位コイルa2,b2を前記巻線6の軸方
向に積み重ねかつ第2単位コイルa2の導体Aと第
2単位コイルb2の導体Aおよび第2単位コイルa2
の導体Bと第2単位コイルb2の導体Bを夫々内渡
り線を介して接続し、かつ第2単位コイルb2の導
体Aと第2単位コイルa2の導体Aおよび第2単位
コイルb2の導体Bと第2単位コイルa2の導体Bを
夫々戻り渡り線を介して接続して複数の高直列容
量巻き第2の巻線単位を形成し、これら第2の
巻線単位を前記巻線6の軸方向に積み重ねて構
成してなる誘導電器巻線において、 前記第2の巻線単位の各導体ブロツクを複数
の同電位巻回導体A,Bを前記巻線6の径方向に
重ねて形成するとともに、前記導体ブロツクの各
導体A,Bとして前記第1の巻線単位各導体の
断面積とほぼ等しくかつ巻線径方向寸法よりも小
さい寸法を有する導体を用いて構成したことを特
徴とする誘導電器の巻線。
[Claims for Utility Model Registration] Two winding portions 6 separated in the axial direction of the winding 6
A, 6b are connected in parallel, and each of the winding portions 6a, 6b is formed into a plurality of first unit coils by winding a plurality of conductors A, B overlappingly in the radial direction at both ends of the winding portion 6. a 1 , b 1 , c 1 , d 1
and these first unit coils a 1 , b 1 , c 1 ,
d 1 are stacked in the axial direction, and the conductor A of the first unit coil a 1 , the conductor A of the first unit coil d 1 , the conductor B of the first unit coil a 1 , the conductor B of the first unit coil d 1 , the first
The conductor A of the unit coil b 1 and the conductor A of the first unit coil C 1 and the conductor B of the first unit coil b 1 and the conductor B of the first unit coil C 1 are connected via internal crossover wires, and The conductor A of 1 unit coil d 1 , the conductor A of 1st unit coil b 1 , the conductor B of 1st unit coil C 1 , and the conductor B of 1st unit coil a 1 are connected via return crossover wires, respectively. High series capacitance winding 1st
The first winding units are stacked in the axial direction of the winding 6, and a plurality of conductor blocks are connected to the winding 6 at a portion located between both ends of the winding 6. are wound overlappingly in the radial direction to form a plurality of second unit coils a 2 and b 2 ,
These second unit coils a 2 and b 2 are stacked in the axial direction of the winding 6, and the conductor A of the second unit coil a 2 , the conductor A of the second unit coil b 2 , and the second unit coil a 2
The conductor B of the second unit coil b 2 and the conductor B of the second unit coil b 2 are connected via internal crossover wires, and the conductor A of the second unit coil b 2 and the conductor A of the second unit coil a 2 and the second unit coil b The conductor B of the second unit coil a and the conductor B of the second unit coil a2 are respectively connected via return crossover wires to form a plurality of high series capacitance winding second winding units, and these second winding units are In an induction electric device winding configured by stacking the winding 6 in the axial direction, each conductor block of the second winding unit is formed by stacking a plurality of same-potential wound conductors A and B in the radial direction of the winding 6. The conductors A and B of the conductor block are formed using conductors having a cross-sectional area approximately equal to the cross-sectional area of each conductor of the first winding unit and smaller than the radial dimension of the winding. A winding wire for induction electric appliances featuring:
JP7703780U 1980-06-03 1980-06-03 Expired JPS6214656Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7703780U JPS6214656Y2 (en) 1980-06-03 1980-06-03

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7703780U JPS6214656Y2 (en) 1980-06-03 1980-06-03

Publications (2)

Publication Number Publication Date
JPS572623U JPS572623U (en) 1982-01-08
JPS6214656Y2 true JPS6214656Y2 (en) 1987-04-15

Family

ID=29439640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7703780U Expired JPS6214656Y2 (en) 1980-06-03 1980-06-03

Country Status (1)

Country Link
JP (1) JPS6214656Y2 (en)

Also Published As

Publication number Publication date
JPS572623U (en) 1982-01-08

Similar Documents

Publication Publication Date Title
US3774135A (en) Stationary induction apparatus
JPS6214656Y2 (en)
US4460885A (en) Power transformer
JP3013506B2 (en) Helical coil
EP0632924A4 (en) Improved core-form transformer.
JP3248283B2 (en) Transformer winding
US3899764A (en) Four-strand interleaved-turn transformer winding
JPS6012257Y2 (en) electromagnetic induction winding
US3644859A (en) Electrical winding of sheet conductor
JPH0534090Y2 (en)
JPH06151213A (en) Twist thin type voltage converter and its use
JPS635887B2 (en)
JPH0132731Y2 (en)
JPH0220809Y2 (en)
JPH0215309Y2 (en)
JPS6325484B2 (en)
CN114724828A (en) Multi-impedance combined transformer
JPS6241405B2 (en)
JPH0367414U (en)
JPH0992557A (en) Primary winding of transformer for meter
JPS607456Y2 (en) induction wire winding
JPS6342404B2 (en)
JPS641924B2 (en)
JPH043093B2 (en)
JPH01111314A (en) Superconducting transformer