JPS60210818A - Winding of induction electric apparatus - Google Patents

Winding of induction electric apparatus

Info

Publication number
JPS60210818A
JPS60210818A JP6586384A JP6586384A JPS60210818A JP S60210818 A JPS60210818 A JP S60210818A JP 6586384 A JP6586384 A JP 6586384A JP 6586384 A JP6586384 A JP 6586384A JP S60210818 A JPS60210818 A JP S60210818A
Authority
JP
Japan
Prior art keywords
winding
coil part
coil
parallel
interleaved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6586384A
Other languages
Japanese (ja)
Inventor
Tsuneji Teranishi
常治 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6586384A priority Critical patent/JPS60210818A/en
Publication of JPS60210818A publication Critical patent/JPS60210818A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2871Pancake coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/343Preventing or reducing surge voltages; oscillations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F2027/348Preventing eddy currents

Abstract

PURPOSE:To obtain a winding having excellent distribution of potential, small eddy current and high occupatation rate by connecting in series an interleaved winding coil consisting of a plurality of parallel conductors and a continuous disk winding coil by a composite flat angled wire. CONSTITUTION:The part A indicates a first coil having interleaved winding of parallel conductors 2a, 2b. The part B indicates a second coil having interleaved winding of a single composite flat angled wire where the flat angled copper wires obtained by covering the parallel conductors 6a, 6b with insulator are arranged and the external circumference of them is covered with the insulator 7. The part C indicates a third coil continuously disk wound using a single dislocation cable where a plurality of Formar covered copper wires are twisted and these are insulated at a time. The portions A-C are stacked in the axial direction of winding, connected in series, and the other end of part A is connected to the line terminal of winding while the other end of part C is connected to the neutral point terminal of winding. With such structure, potential distribution characteristic is improved, loss of part C is lowered and occuparation rate of part B can be improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は高電圧、大容量の変圧器あるいはりアクドルC
二用いるJlj−hk−誘導電器巻線の改良に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a high voltage, large capacity transformer or accelerator C.
2. Jlj-hk - Concerning improvements in induction electric windings.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

変圧器、リアクトル等に用いられる誘導電器巻線、特(
:円板巻線のうちで、導体を外側から内側に巻回したコ
イルセクションと、内側から外側へ巻回したコイルセク
ションとをJljJ次内側渡りおよび外側渡りにより連
続的に又互に接続して積み上げた巻線は一般(二連続円
板巻線と呼ばれ、最も製作工数の少ない巻°線である。
Induction electric windings used in transformers, reactors, etc.
:In a disc winding, a coil section in which the conductor is wound from the outside to the inside and a coil section in which the conductor is wound from the inside to the outside are connected continuously and to each other by an inside transition and an outside transition. Stacked windings are generally called bicontinuous disk windings, and are the windings that require the least number of man-hours to manufacture.

しかし、この連続円板巻線は衝撃電圧特性が悪く、線路
端子に衝撃電圧が侵入したとき、特に線路端近くのコイ
ルセクション間に大きな電圧が加わる。これを小さくす
る(二は、巻線の直列静電容量と隣接巻線間あるいは対
地との静゛醸容量で決まる初期電位分布を均等にする必
要があり、直列静電容量を大きくすればよいことがわか
っている。
However, this continuous disk winding has poor impulse voltage characteristics, and when an impulse voltage enters the line terminals, a large voltage is applied between the coil sections, especially near the line ends. Reduce this (Secondly, it is necessary to equalize the initial potential distribution determined by the series capacitance of the windings and the static capacitance between adjacent windings or with the ground, so it is necessary to make the series capacitance larger. I know that.

そこで従来、導体の各巻回を入組んで巻いたインターリ
ーブ巻線や、導体間にシールド導体を巻込んだ制振しゃ
へいを有する巻線などの高匣列容鼠巻線が考えられてき
た。第1図にインタージープ巻線の構成図を示す。これ
は、図に示すようζ二等体lの各巻面を入組んで巻き、
隣接巻回間の電位差を大きくすることによって、直列静
電容量を大きくしたものである。
Therefore, conventionally, interleaved windings in which each turn of a conductor is intricately wound, and high-casing rat windings, such as windings with damping shielding in which a shield conductor is wound between conductors, have been considered. Figure 1 shows a configuration diagram of the interjeep winding. This is done by intricately winding each winding surface of the ζ isobody l as shown in the figure.
The series capacitance is increased by increasing the potential difference between adjacent turns.

尚、因の導体l中の数字は二つの巻線単位の導体の巻回
順序を示している。
Note that the numbers in the conductor 1 indicate the winding order of the conductors in two winding units.

更に、大容置(二なると、導体を複数本並列にしてイン
ターリーブ巻きとすることがある。第2図に並列導体が
2本の場合を示すが、この図のように各導体2m、2b
を並列導体間ζ:も入組ませて巻けば、すべての導体間
にほぼ1セクシヨンあたりの巻回数差に相当する電位差
が長えられるので、直列静電容量な一段と大きくするこ
とができる。
Furthermore, in the case of large capacity (2), multiple conductors may be arranged in parallel and interleaved winding is performed. Figure 2 shows a case where there are two parallel conductors.
If ζ is also wound between parallel conductors, the potential difference corresponding to the difference in the number of turns per section can be increased between all the conductors, so the series capacitance can be further increased.

しかし、インターリーブ巻ムはa成が複雑なので製作工
数が多くなる欠点がある。この製作工数は並列導体が多
くなると一層多くなる。また、大容置化が進むと、並列
導体を多くするのにも限度があるので、平角銅線一本あ
たりの断面積な大きくせざるを得なくなり、ひいては渦
電流損の増加を招く。
However, interleaved windings have a disadvantage in that they require a large number of man-hours to manufacture because they have a complicated structure. The number of manufacturing steps increases as the number of parallel conductors increases. Furthermore, as the capacity increases, there is a limit to the number of parallel conductors, so the cross-sectional area of each rectangular copper wire must be increased, which in turn leads to an increase in eddy current loss.

製作工数を低減するために、従来、第3図に示すような
構成の巻線が考えられている。即ち、インパルス電圧が
侵入したとき最も電位傾度の高くなる線路端4=近いコ
イル部分(A)をインターリーブ巻線構成とし、これに
続(コイル部分LB)を連続円板巻線構成とするもので
ある。これによって巻線全体の製作工数を下げることが
できる。
In order to reduce manufacturing man-hours, a winding wire having a configuration as shown in FIG. 3 has conventionally been considered. That is, the coil portion (A) near the line end 4, where the potential gradient is highest when the impulse voltage enters, has an interleaved winding configuration, and the following (coil portion LB) has a continuous disk winding configuration. be. This makes it possible to reduce the number of man-hours required to manufacture the entire winding.

また、特に大容置巻線の場合は渦電流損を低減するため
に、第4図に示すように前記第3図の構成において、連
続円板巻線構成とするコイル部分CB)を、小断面積の
平角銅線をより合わせた転位ケーブル3を用いて巻いた
コイルとすることが考えられている。転位ケーブル3の
断面積を85図に示す。渦電流損は、磁束の向きに垂直
な面の平角銅線4の寸法の2乗に比例する。転位ケーブ
ル3を用いることによって巻線内の磁束の上方同成分で
ある軸方向に対して垂直な面となる銅線の厚みを一般の
平角銅線のL/2〜l/3 にできるので渦電流損を数
分の−にできる。
In addition, in order to reduce eddy current loss especially in the case of a large capacity winding, as shown in FIG. 4, in the configuration of FIG. It is considered that a coil is wound using a transposed cable 3 which is made by twisting rectangular copper wires with a cross-sectional area. The cross-sectional area of the transposition cable 3 is shown in Figure 85. Eddy current loss is proportional to the square of the dimension of the rectangular copper wire 4 in a plane perpendicular to the direction of magnetic flux. By using the transposed cable 3, the thickness of the copper wire, which is the plane perpendicular to the axial direction, which is the upper component of the magnetic flux in the winding, can be made L/2 to l/3 that of a general rectangular copper wire. Current loss can be reduced to a few minutes.

更に巻線内の磁束は、フリンジングと呼はれる現象によ
って巻線の上下端部で内外巻線の中央から拡がるような
分布をし、半径方向成分が大きくなる。従って、線路端
を巻線の中央c#tき、上下に並列(二巻いて巻線の上
下端部を中性点端とする巻き方、即ち上下振分1:巻く
場合、第4図の転位ケーブル3を用いたコイル部分が巻
線の上下端部に配置されることになるので、平角銅線の
幅もほぼl/2 となっている転位ケーブル3に対して
は、磁束の半径方向成分による渦電流損も一般の平角銅
線に比べほばl/4となる。
Furthermore, the magnetic flux within the winding is distributed in such a way that it spreads from the center of the inner and outer windings at the upper and lower ends of the winding due to a phenomenon called fringing, and the radial component becomes large. Therefore, if the line end is placed at the center c#t of the winding, and the winding is wound vertically in parallel (two windings with the upper and lower ends of the winding as the neutral point ends, that is, vertical distribution 1: winding, Since the coil parts using the transposed cable 3 are arranged at the upper and lower ends of the winding, the width of the rectangular copper wire is also approximately 1/2. The eddy current loss due to these components is also about 1/4 compared to ordinary rectangular copper wire.

ところが第3図または第4図に示す巻線構成において線
路端にインパルス電圧が侵入した場合には、巻線全体を
インターリーブ巻線で構成したときの対地初期電位分布
が第61i!3の曲線人のようになるのに対して、この
巻線の対地初期′電位分布は曲線Bのようになり、線路
端に近いインターリーブ巻線部分(A)の電位傾度は低
く抑えられるけれども、インターリーブ巻線部分(A)
と連続円板巻線部分(B)の接続点P(二近い連続円板
巻線部分(B)の電位傾度が高くなってしまうという欠
点があった。
However, when an impulse voltage enters the line end in the winding configuration shown in FIG. 3 or 4, the initial potential distribution to ground when the entire winding is constructed of interleaved windings becomes 61i! 3, the initial potential distribution to the ground of this winding becomes like curve B, and although the potential gradient of the interleaved winding part (A) near the line end is kept low, Interleaved winding part (A)
There was a drawback that the potential gradient at the connection point P between the continuous disk winding section (B) and the continuous disk winding section (B) which was close to the point P became high.

これは、直列静電容量の大きなインターリーブ巻線に、
インターリーブ巻線のl/lo 程度の大きさの直列静
電容量しかない連続円板巻線を直接接続したにめ、接続
点Pで、直列静電容量の不連続が大きくなりすぎた結果
生じる。従って両者の間に直列静電容量の値が両者の中
間の値をもつ巻線単位を介在させ、線路端から中性点に
進むに従かい巻線単位の直列静電容量を順次減少させる
ことができれば巻線の初期電位分布は清らかになり、上
記の欠点が改善される。
This results in interleaved windings with large series capacitance,
This occurs as a result of the discontinuity in the series capacitance becoming too large at the connection point P, since continuous disk windings having a series capacitance only as large as l/lo of the interleaved winding are directly connected. Therefore, a winding unit having a series capacitance value intermediate between the two is interposed between the two, and the series capacitance of the winding unit is gradually decreased as the line progresses from the line end to the neutral point. If this is possible, the initial potential distribution of the winding will become clearer, and the above-mentioned drawbacks will be improved.

そこで並列複導体で、インターリーブ巻線を構成する場
合第7図のような構成の巻線が考えられている。これは
並列導体2”+2b相互を入組ませてインターリーブ巻
きした第1のコイル部分(ム)に続いて、並列導体2m
 、 2bを入組ませないでインターリーブ巻きした第
2のコイル部分(B)を配置し、更(=、転位ケーブル
3を用いた連続円板巻きの第3のコイル部分(C)を第
2のコイル部分(B)C二縦けて配置したものである。
Therefore, when constructing an interleaved winding using parallel double conductors, a winding having a configuration as shown in FIG. 7 is considered. This is followed by a first coil section (mu) in which parallel conductors 2"+2b are interleaved and wound, followed by 2m parallel conductors.
, 2b is not interleaved, the second coil part (B) is interleaved, and further (=, the third coil part (C) of continuous disk winding using the transposed cable 3 is placed in the second coil part (B). The coil portions (B) and C are arranged vertically.

この構成C二よれば、第2のコイル部分(B)(二おい
ては、並列導体2a。
According to this configuration C2, the second coil portion (B) (in the second case, the parallel conductor 2a).

2b 間には電位差が加わらず、はばlセクションあた
りの巻回数差(二相当する電位差が加わる個所は、第1
のコイル部分(A)の約172となり、直列静電容量も
約1/2 となる。従って、直列静電容量の大きな第1
のコイル部分(A)と直列静電容量の小さな第3のコイ
ル部分(C)の間に両゛者の中間の直列静電容量なもつ
第2のコイル部分CB)が配置される形となり、巻線の
初期電位分布は、1m6図の曲線Cのよう(ニなって電
位分布特性が改善される。
2b, no potential difference is applied between them, and the difference in the number of turns per section (the point where a potential difference corresponding to 2
172 of the coil portion (A), and the series capacitance is also approximately 1/2. Therefore, the first capacitor with large series capacitance
A second coil portion CB) having a series capacitance intermediate between the two coil portions (CB) is arranged between the coil portion (A) and the third coil portion (C) having a small series capacitance. The initial potential distribution of the winding is as shown by curve C in the 1m6 diagram (thus, the potential distribution characteristics are improved.

−1、複数の平角銅線4を並列にして、これらを一括し
て巻回する場合並列導体間シニは電位差が主じないので
、この間の絶縁は薄くてもよい。そこで、第8図ζ二2
導体の例で示すよう(二、それぞれに絶縁ひふ< 5m
、5bを施した2本の導体6 m + 6 bを並べて
、それらの外周を一括して絶縁ひふく7を施した構造の
複合平角線を用いることが特開昭56−58214号公
報により提案されている。複合平角線の利点は不要な部
分の絶縁を少くして巻線の占積率を向上させること(:
ある。
-1. When a plurality of rectangular copper wires 4 are arranged in parallel and wound together, there is no major potential difference between the parallel conductors, so the insulation between them may be thin. Therefore, Fig. 8 ζ22
As shown in the example of conductors (2, each insulation cable < 5 m
, 5b is proposed in Japanese Patent Laid-Open No. 56-58214 to use a composite rectangular wire with a structure in which two conductors 6 m + 6 b are lined up and an insulating layer 7 is applied to their outer peripheries. has been done. The advantage of composite rectangular wire is that it reduces insulation in unnecessary parts and improves the space factor of the winding (:
be.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、電位分布特性がよく、損失がが少な
く、かつ、占積率の高い誘導電器巻線を得ること(;あ
る。
An object of the present invention is to obtain an induction electric appliance winding having good potential distribution characteristics, low loss, and high space factor.

〔発明の概要〕[Summary of the invention]

本発明は以上の目的を達成するために少くとも2本の平
角銅線を並列(ニジて、インターリーブ巻きとし、丁べ
てめ導体間C二はばlセクションあたりの巻回数差に相
当する電位差を与えるように入組んで巻いた入組インタ
ーリーブ巻き構成の第1のコイル部分と上記第1のコイ
ル部分の並列導体数と同じ本数のそれぞれC:絶縁ひふ
くを施した平角銅線を並べてそれらの外周を一括して絶
縁した1本の複合平角線を用いてインターリーブ巻き構
成とした第2のコイル部分と、全、断面積が上記第1の
コイル部分の並列等体の全断面積とほぼ等しくなる多数
本のホルマルひふく平角銅線をより合わせ、これを一括
して絶縁した転位ケーブルを用いて連続円板巻き構成と
した第3のコイル部分とを軸方向C=積み重ねて、直列
接続し、第1のコイル部分を線路端側に第3のコイル部
分Cと中性点側に配置したことを特徴とする。
In order to achieve the above object, the present invention employs at least two rectangular copper wires in parallel (or interleaved winding), with a potential difference between the conductors equivalent to the difference in the number of turns per section. The first coil part has an intricately interleaved winding configuration, and the number of parallel conductors in the first coil part is the same as the number of parallel conductors C: Insulated rectangular copper wires are arranged side by side. A second coil part has an interleaved winding structure using a single composite rectangular wire whose outer periphery is insulated all at once, and the total cross-sectional area is approximately the same as the total cross-sectional area of the parallel isometric body of the first coil part. A large number of equal formal rectangular copper wires are twisted together, and the third coil part is made into a continuous disk-wound structure using a transposed cable insulated all together, stacked in the axial direction C = and connected in series. However, it is characterized in that the first coil portion is arranged on the line end side and the third coil portion C on the neutral point side.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図面1二もとづいて説明す
る。
Hereinafter, one embodiment of the present invention will be described based on FIG. 12.

149図において人の部分は、2本の並列導体2 ” 
a2bを入組ませてインターリーブ巻きした第1のコイ
ル部分であり、Bの部分は2本の並列導体5m 。
In Figure 149, the human part is made up of two parallel conductors 2”
The first coil part is interleaved winding of A2B, and part B is two parallel conductors 5 m long.

6b にそれぞれに絶縁ひふくを施こした平角銅線を並
べてそれらの外周を一括して絶縁ひふく7を施こしm1
本の複合平角線によってインターリーブ巻きした第2の
コイル部分であり、Cの部分は多数本のホルマルひふく
平角銅線4をより合わせこれを一括して絶縁した【本の
転位ケーブル3(断面図を第5図ζ二示す)を用いて連
続円板巻きした第3のコイル部分である。このとき、第
1゜第2、第3のコイル部分囚、 (B) 、 (Qの
並列等体のそれぞれの全断rkJNはほぼ等しくなるよ
うに導体寸法は選ばれる。そして第1.第2.第3のコ
イル部分(5)、 (Bl 、 (Qは巻線軸方向に積
み重ねて配置され、直列に接続され、*1のコイル部分
囚の他端は巻線の線路端子シニ第3のコイル部分(qの
他端は巻線の中性点端子に接続される。
6b, line up rectangular copper wires each with an insulation layer, and apply insulation layer 7 around their outer circumferences m1.
This is the second coil part which is interleaved wound with a composite rectangular wire, and the part C is made by twisting a large number of formal rectangular copper wires 4 and insulating them all together. This is the third coil portion that was continuously wound into a disk using a coil (as shown in Fig. 5). At this time, the conductor dimensions are selected so that the total cross sections rkJN of the parallel isobodies of the first, second, and third coil portions, (B), and (Q) are approximately equal. .Third coil part (5), (Bl, (Q is stacked in the direction of the winding axis and connected in series, the other end of the *1 coil part is connected to the line terminal of the winding) The other end of part (q) is connected to the neutral terminal of the winding.

このようC:巻線を構成すれば、第2のコイル部分は第
7図の例の第2のコイル部分(Blと同じ直列静電容量
をもち、第7図の例で説明したよう(:電位分布特性が
改善される。また、転位ケーブルを用いることによって
第3のコイル部分(Qの損失が低減される。更に、第7
図の例C二比べ、第2のコイル部分子B)の占積率が向
上するため巻線全体の・ンパクト化に寄与する。
By configuring the C: winding like this, the second coil part has the same series capacitance as the second coil part (Bl) in the example of FIG. 7, and as described in the example of FIG. 7 (: The potential distribution characteristics are improved. Also, by using the transposed cable, the loss of the third coil portion (Q) is reduced.
Compared to example C2 in the figure, the space factor of the second coil molecule B) is improved, contributing to the compactness of the entire winding.

この発明の他の実施例として、第10図に示すように第
9B!!、lの例において第3のコイル部分(qを第l
のコイル部分(Nの並列導体数2a * 26の2倍の
本数からなる4本の平角銅線ga、gb、gc、gdζ
二それぞれ絶縁ひふ< 9al19b19C19dを施
し、これらを軸方向に2段C二重ね、半径方向に2本づ
つ並べてこれらの外周を一括して絶縁10を施した1本
の複合平角線を用いて連続円板巻きとしてもよい。
As another embodiment of the present invention, as shown in FIG. 10, 9B! ! , l in the example of the third coil part (q is the l-th
Coil part (four rectangular copper wires ga, gb, gc, gdζ consisting of twice the number of N parallel conductors 2a * 26)
Two insulated fibers < 9al19b19c19d are applied to each of them, and these are double-layered in two stages in the axial direction, two wires are lined up in the radial direction, and the outer periphery of these wires is continuous using one composite rectangular wire with insulation 10 applied. It may also be rolled into a disc.

この構成においても第9図の例と同様の効果がある。特
に線路端を巻線の中央C装置き上下振分に巻く場合には
、既(二説明したよう(二巻線端部の導体の軸方向寸法
を小さくすることが渦電流損低減に効果がある。従って
、この構成は上下振分の構造(二おいては、第8図の例
と同程度の損失低減の効果がある。
This configuration also has the same effect as the example of FIG. 9. In particular, when the line end is wound vertically using the center C device of the winding, reducing the axial dimension of the conductor at the end of the winding is effective in reducing eddy current loss, as explained in Part 2. Therefore, this configuration has an effect of reducing loss to the same extent as the example shown in FIG.

これまでの説明は、並列2導体で第1のコイルを巻く場
合を示したが並列導体が3本以上の場合も、同様な構成
の巻線を得ることができ、また同様な効果が得られるこ
とはいうまでもない。
The explanation so far has shown the case where the first coil is wound with two parallel conductors, but even if there are three or more parallel conductors, a winding with a similar configuration can be obtained and the same effect can be obtained. Needless to say.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したようC二、複数の並列導体から
なるインターリーブ巻きのコイルと、1本の複合平角線
によるインターリーブ巻きのコイルと、1本の転位ケー
ブルあるいは1本の軸方向に2段(二分割した複合平角
線による連続円板巻きのコイルとをm列接続する構成に
よって電位分布にすぐれ、渦電流損が小さく、かっ占積
率の高い誘導電器巻線を得ることができる。
As explained above, this invention consists of an interleaved coil made of a plurality of parallel conductors, an interleaved coil made of one composite rectangular wire, and one transposed cable or one axially two-stage ( By connecting m rows of continuous disk-wound coils made of bisected composite rectangular wires, it is possible to obtain an induction coil with excellent potential distribution, low eddy current loss, and high space factor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第4図までおよび第7図は従来の誘導電器巻
線の巻回配置を示す巻線構成図、第5図は第4図の第2
のコイル部分(B)(−用いる導体の断面図、第6図は
第1図、第3因または第4図、および第7図の巻線の対
地初期電位分布を示す特性図、第8図は第9図の第2の
コイル部分に用いる導体の断面図、第9図はこの発明の
一実施例による誘導電器巻線の゛巻回配置を示す巻線構
成図、第10図は第9図の第3のコイル部分C二用いる
導体の他の実施例を示す断面図である。 囚・・・第1のコイル部分 (Bl・・・第2のコイル部分 (Q・・・第3のコイル部分 l・・・導体 2a、ib・・・並列等体 3・・・転位ケーブル 4・・・平角銅線 5j1.5b、7・・・絶縁ひふく 5m、5b・・・導体 (7317)代理人 弁理士 則 近 憲 佑(ほか1
名) 第1図 第2図 第3図 第4図 第5図 第 6 回 第8図 第10図 第7図
Figures 1 to 4 and Figure 7 are winding configuration diagrams showing the winding arrangement of conventional induction electric device windings, and Figure 5 is the second diagram of Figure 4.
Coil part (B) (- Cross-sectional view of the conductor used, Figure 6 is a characteristic diagram showing the initial potential distribution to ground of the winding of Figure 1, Figure 3 or Figure 4, and Figure 7. Figure 8 9 is a sectional view of a conductor used in the second coil portion of FIG. 9, FIG. 9 is a winding configuration diagram showing the winding arrangement of an induction electric device winding according to an embodiment of the present invention, and FIG. It is a sectional view showing another example of the conductor used in the third coil portion C2 in the figure. Coil part l...Conductor 2a, ib...Parallel equal body 3...Transposition cable 4...Flat copper wire 5j1.5b, 7...Insulation cable 5m, 5b...Conductor (7317) Agent: Patent attorney Kensuke Chika (and 1 others)
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 8 Figure 10 Figure 7

Claims (1)

【特許請求の範囲】[Claims] (1)少くとも2本の平角銅線を並列(ニして、インタ
ーリーブ巻きとし、かつ、すべての導体間にほぼlセク
ションあたりの巻回数差に相当する電位差を与えるよう
に入組んで巻いた入組インターリーブ巻き構成の第1の
コイル部分と、上記第1のコイル部分の並列導体数と同
じ本数のそれぞれに絶縁ひふくを施した平角銅線を並べ
てそれらの外周を一括して絶縁しm1本の複合平角線を
用いてインターリーブ巻き構成とした第2のコイル部分
と、全断面積が上記第【のコイル部分の並列導体の全断
面積とほぼ等しくなる多数本のホルマルひふく平角銅線
をより合わせ、これを一括して絶縁した転位ケーブルを
用いて連続円板巻き構成とした第3のコイル部分とを軸
方向に積み重ねて、直列接続し、第【のコイル部分を線
路端側に第3のコイル部分と中性点側に配置した誘導電
器巻線。 121第3のコイル部分は、第1のコイル部分の並列等
体数の2倍の本数からなるそれぞれ(二絶縁ひふくを施
した平角銅線を軸方向に2段ζ二重ね、半径方向には少
くとも2本以上並べて、これらの外周を一括して絶縁し
た1本の複合平角線な用いて連続円板巻き構成とした特
許請求の範囲第1項記載の誘導電器巻線。
(1) At least two rectangular copper wires are wound in parallel (in parallel and interleaved), and wound in a convoluted manner to give a potential difference between all conductors that is approximately equivalent to the difference in the number of turns per l section. The first coil part with the interleaved winding configuration and the same number of parallel conductors in the first coil part are lined up with insulated rectangular copper wires, and their outer peripheries are collectively insulated m1 A second coil part that has an interleaved winding configuration using a composite flat wire, and a large number of formal flat copper wires whose total cross-sectional area is approximately equal to the total cross-sectional area of the parallel conductor of the second coil part. are twisted together, and the third coil part is made into a continuous disc winding structure using a transposed cable insulated all together.The third coil part is stacked in the axial direction and connected in series, and the third coil part is placed on the line end side. The third coil part and the induction electric winding placed on the neutral point side. 121 The third coil part consists of twice the number of parallel parallel coils of the first coil part (two insulated coils). A continuous disc-wound structure is created by arranging the processed flat rectangular copper wires in two stages in the axial direction and arranging at least two or more in the radial direction, and insulating the outer periphery of these as a single composite rectangular wire. An induction electric appliance winding according to claim 1.
JP6586384A 1984-04-04 1984-04-04 Winding of induction electric apparatus Pending JPS60210818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6586384A JPS60210818A (en) 1984-04-04 1984-04-04 Winding of induction electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6586384A JPS60210818A (en) 1984-04-04 1984-04-04 Winding of induction electric apparatus

Publications (1)

Publication Number Publication Date
JPS60210818A true JPS60210818A (en) 1985-10-23

Family

ID=13299264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6586384A Pending JPS60210818A (en) 1984-04-04 1984-04-04 Winding of induction electric apparatus

Country Status (1)

Country Link
JP (1) JPS60210818A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156805A (en) * 1985-12-28 1987-07-11 Toshiba Corp Winding for stationary induction electric apparatus
CN104091684A (en) * 2014-07-31 2014-10-08 广东海鸿变压器有限公司 Continuous coil for above-110kV three-dimensional wound core power transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156805A (en) * 1985-12-28 1987-07-11 Toshiba Corp Winding for stationary induction electric apparatus
CN104091684A (en) * 2014-07-31 2014-10-08 广东海鸿变压器有限公司 Continuous coil for above-110kV three-dimensional wound core power transformer

Similar Documents

Publication Publication Date Title
US4571570A (en) Winding for static induction apparatus
JPH02132809A (en) Multiplex cylindrical winding
US3713061A (en) Insulation structure transformer windings
EP0307036B1 (en) Transformer
JPS60210818A (en) Winding of induction electric apparatus
US3466584A (en) Winding for a stationary induction electrical apparatus
US4460885A (en) Power transformer
US3766504A (en) Interleaved transformer winding having three parallel connected conductors
US4270111A (en) Electrical inductive apparatus
JPH057854B2 (en)
US4317096A (en) Electrostatic shielding of nonsequential disc windings in transformers
US4243966A (en) Electrostatic shielding of nonsequential disc windings in transformers
US2958058A (en) High voltage transformer
JPS637010B2 (en)
JPS596493B2 (en) induction electric winding
JPH054265Y2 (en)
JPS6022490B2 (en) electromagnetic induction winding
US3040281A (en) Electrical apparatus
US2114186A (en) Transformer
JPH0215309Y2 (en)
JP3522290B2 (en) Disk winding
JPS6344283B2 (en)
JPS6157689B2 (en)
JPS6326526B2 (en)
JPH01313914A (en) Winding for transformer