JPS6241095B2 - - Google Patents

Info

Publication number
JPS6241095B2
JPS6241095B2 JP53091117A JP9111778A JPS6241095B2 JP S6241095 B2 JPS6241095 B2 JP S6241095B2 JP 53091117 A JP53091117 A JP 53091117A JP 9111778 A JP9111778 A JP 9111778A JP S6241095 B2 JPS6241095 B2 JP S6241095B2
Authority
JP
Japan
Prior art keywords
sheet
polyamide
cooling body
cooling
corona
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53091117A
Other languages
Japanese (ja)
Other versions
JPS5517559A (en
Inventor
Yasuomi Yoshino
Fumio Nishimura
Haruhiko Watanabe
Masahiro Kobayashi
Kunio Takeuchi
Haruo Okudaira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP9111778A priority Critical patent/JPS5517559A/en
Publication of JPS5517559A publication Critical patent/JPS5517559A/en
Publication of JPS6241095B2 publication Critical patent/JPS6241095B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、厚み均一性、透明性に優れ、結晶化
度が低くかつ結晶化斑の少ないポリアミド系重合
体シートを高能率で製造する方法に関するもので
ある。 重合体シートの製造方法としては、押出機から
ダイを通して溶融押出されるシートを冷却ロール
等の移動冷却体上で冷却固化する方法が一般に行
なわれているが、この方法においては溶融状態の
シートと移動冷却体との間に薄層の空気を捲き込
むために熱伝達が悪くなり、溶融シートは徐冷さ
れながら固化し結晶化が進むため結晶化度の高い
透明性の悪いシートが得られる。更にポリアミド
系重合体の溶融シートから発生するポリアミド重
合体のオリゴマーが薄層空気を通して移動冷却体
上に付着しながら堆積し溶融シートの冷却効果を
より悪くするとともに不均一に付着したオリゴマ
ー層により冷却斑を生じ、得られたシートに結晶
化斑を生じる。これに対し、溶融状態の重合体シ
ートが空気の薄層を介さず直接に移動冷却体上に
密着すれば急冷されて結晶化度の低いポリアミド
系重合体シートが得られる。この押出された溶融
シートの冷却体面への付着をより確かなものとす
るために従来から種々の静電的圧着装置が使用さ
れている。例えばこの目的のためにダイスと移動
冷却体との間に針金あるいはナイフエツジ状の電
極を設けて未固化シート面上に静電荷を析出させ
て該シート状物を冷却体面に密着急冷させる方法
(以下静電印加成型法と略称する)は特公昭37−
6142号公報等により公知である。しかし、このよ
うな静電印加成型法においてはシートの引取速度
が遅い場合にはシート表面に析出した静電荷によ
る密着は可能であるが、引取速度を上げると静電
気力による密着は不可能となり、空気の薄層が溶
融状態のシートと移動冷却体面との間に入り込
み、シートの厚み変動が大きくなり溶融シートの
冷却が遅れ冷却斑を生じ、結晶化の進んだ、又、
結晶化斑のある透明性不良のシートが得られる。
更に移動冷却体面上にポリアミド系重合体のオリ
ゴマーの堆積がおこる。このためシート状物表面
上に析出される静電荷量を多くすべくダイスと移
動冷却体表面との間に配置した電極に印加する電
圧を高めると、電極と冷却体表面との間に非連続
的なアーク放電が生じ冷却体表面のシート状物が
破壊されはなはだしい場合には冷却体の表面被覆
が破壊される。従つて電極に印加する電圧をある
限度以上に高めることができず、従来の静電印加
成型法では製膜速度を十分高めて高品質のフイル
ムを製膜することが不可能である。 本発明者はかかる従来技術の改良について鋭意
検討し、フイルム形成性のポリアミド系熱可塑性
重合体物質を移動冷却体面へシート状に溶融押出
し冷却するに際し電極と溶融状態のシートとの間
に、ストリーマコロナ状態のコロナ放電を行な
い、溶融状態の重合体シートに移動冷却体面と密
着するに充分な電荷を付与せしめ、アーク放電せ
ずに低電圧で高電流を付与させる事に成功し、前
記従来法の静電印加成型法における諸欠点を一挙
に解決し、移動冷却体にオリゴマーが堆積せず厚
み均一性、透明性に優れ、結晶化度が低くかつ結
晶化斑の少ないポリアミド系重合体シートを高速
度で製膜し得ることを見出し本発明に到達したも
のである。 本発明におけるポリアミド系熱可塑性重合体物
質の主要成分であるポリアミドとは、ナイロン
6、ナイロン66が代表的なものであるが、その他
に、ナイロン11、ナイロン12等脂肪族ポリアミ
ド、シクロヘキサン環等を有する脂環族ポリアミ
ド、脂肪族ジアミンとテレフタル酸および/また
はイソフタル酸との縮合物あるいは脂肪族ジカル
ボン酸とキシリレンジアミンとの縮合物である芳
香族ポリアミドなども使用可能であり、これらの
ポリアミド同士の混合物や共重合体等も使用する
ことができる。 該ポリアミドには重合体シートの滑性、耐ブロ
ツキング性、延伸性、耐熱性、制電性を向上させ
るために滑材、酸化防止剤、紫外線吸収剤、静電
防止剤、顔料、着色剤等有機および/または無機
物質が添加されていても良い。更にポリアミドの
他に他の重合体が混合されていても良いがポリア
ミド以外の重合体添加の割合は50重量%未満が好
ましい。本発明におけるポリアミドに添加される
滑剤としてはエチレンビスステロアミド、ステア
リン酸モノグリセリド、1,5―ソルビタン脂肪
酸エステルの如き有機滑剤、炭酸カルシウム、カ
オリン、タルク、クレー、二酸化ケイ素、硫酸カ
ルシウムの如き無機粒子滑剤を示すことができ
る。無機粒子滑剤の粒子の大きさは、平均粒径
0.01〜10μ程度が好ましい。滑剤の添加量は、ポ
リアミドに対し通常0.01〜10重量%が好ましい。 本発明におけるポリアミドに混合されてよい他
の重合体としてはポリカーボネート、ポリエチレ
ンテレフタレートやポリテトラメチレンテレフタ
レート、ポリ1,4シクロヘキサンテレフタレー
ト、ポリエチレン―2,6―ジナフタレート、テ
レフタル酸とネオペンチルグリコールを主成分と
する共重合物の如きポリエステル、ポリプロピレ
ンやポリエチレン、イオノマー、エチレン酢酸ビ
ニル共重合体、エチレン酢酸ビニル共重合体の部
分ケン化物、エチレンエチルアクリレート、ポリ
ビニルアルコールの如きポリオレフイン、前記ポ
リオレフインに無水マレイン酸等をグラフト重合
せしめた変性ポリオレフイン、平均分子量200〜
10000のポリアルキレングリコール等を示すこと
ができる。かかる添加剤を各々配合したもしくは
配合しないポリアミドは溶融し膜状に押出成型す
る。押出はTダイ、Iダイの如きフラツトダイに
より平板にて行なわれる。押出されたシートは冷
却ロール、冷却ベルト等の移動冷却体面上で冷却
し、実質的に無配向シートとして得られる。押出
シートの結晶化をおされるために押出シートの冷
却温度は露点以上結晶化最大温度−20℃以下の温
度範囲が好ましい。上記において結晶化最大温度
(Tc)とは、走査型差動熱量計(D.S.C)により
求められ、ナイロン6の場合は通常180〜200℃で
あるが、ポリマーの種類、各種添加剤の添加によ
つて異なる。押出シートの冷却温度がTg+10℃
以上の場合は冷却されたシートは変形しやすい
為、Tg+10℃以下で冷却する為、更に2段目の
冷却を行う事が好ましい。押出シートの冷却は移
動冷却体面と反対側より、冷却液の塗布や冷却ガ
スの噴霧、冷却液槽への浸せきなどによる冷却手
段を併用する事もできる。 移動冷却体の表面は鏡面仕上げ、粗面仕上げの
いずれでも良い。表面材質は、長期の使用に耐え
るものが好ましいが特に限定するものではない。
硬質クロムメツキ、セラミツクコート、テフロン
コート等が表面材質として例示できる。 本発明で用いる高圧直流には多少の交流成分が
重畳されていても良いが、できるだけ電圧又は電
流を安定化された直流電源、好ましくはダミー抵
抗を出力端とアース端につないで測定したときの
リツプルが1.0%(peak to peak)以下である直
流電源を用いる事が好ましい。電極の極性は限定
するものではないが負電位が特に好ましい。 本発明の特徴は、ストリーマコロナ状態のコロ
ナ放電を電極と溶融押出されたポリアミド系重合
体シートとの間に生成させる事により低圧で高電
流を付与することにあり、前記静電印加成型法に
比し数10倍以上の電流が付与できる。ここでスト
リーマコロナ状態のコロナ放電とは例えば朝倉書
店発行坂本三郎、田頭博昭共著の「新高電圧工
学」(昭和49年8月30日刊行)73頁の図2,4に
示されている如く、電極とアース平板(本発明で
は溶融ポリアミドシート)橋絡した安定したコロ
ナ状態を云う。電極が正電位の場合は電極先端か
ら溶融シートに棒状に集中したコロナを形成し、
負電位の場合は電極先端から溶融シートに吊鐘状
に広がつたコロナを形成するが本発明ではどちら
の状態もストリーマコロナ状態のコロナ放電とい
う。 本発明のストリーマコロナ状態のコロナ放電を
安定して生成させるためには放電点を非連続的に
配置する事が必要である。このためには通常針状
電極、鋸刃状電極が好ましいが本発明では特に限
定するものではない。放電点の数や配列方法は任
意である。 放電体の材質は電気伝導性のものであれば何で
も良く、金属、炭素等が例示できる。 本発明方法においてストリーマコロナ状態のコ
ロナ放電を安定して生成させるためには電極の放
電点と溶融状態のシートとの間隙を0〜20mmにす
ることが好ましく、特に好ましくは0.1〜10mmの
範囲が選ばれる。この様に放電点を配置する事に
より電極と溶融状態のポリアミドシートとの間に
は光彩を伴つた安定したストリーマコロナ放電が
生成し、同時に高電流が流れる。本発明方法はポ
リアミド系熱可塑性重合体物質シートに対し適用
され、他の樹脂、例えばポリプロピレンやポリエ
チレンテレフタレートシートなどでは安定したス
トリーマコロナ放電が生成せず電圧を上げていく
とブラシコロナ(前出の引用文献に記載されてい
る)から一気に火花放電に移つてしまう。この原
因については明確ではない。しかしながら従来の
静電印加成型法においてはポリアミド系重合体の
場合も安定したストリーマコロナが生成せず、電
圧を上げていくと一気に火花放電が移動冷却体に
対して発生する。本発明にて成型されるシートの
厚みは特に限定するものではないが10μ以上、好
ましくは50μ以上である。本発明にて成型される
シートの引取速度は特に限定するものではない。
従来の静電印加成型法による最高可能引取速度は
通常10〜20m/minであるが、本発明方法ではこ
の引取速度以上、例えば100〜200m/minにおい
ても密着冷却可能であるが、この引取速度以下で
本発明を実施しても何らさしつかえない。 移動冷却体面へ接着する際の重合体シートの自
然流下速度と移動冷却体面の表面速度の比は1.0
以上、好ましくは1.0〜120である。 本発明方法によつて、厚みが均一で、結晶化度
が低く透明性に優れ、更に結晶化斑が少ないポリ
アミド系重合体シートが高速で製膜でき、移動冷
却体のオリゴマーによる汚れは発生しない。 次に図面により本発明方法について説明する。
第1図は本発明方法に係るシートの製造工程の一
実施態様を示す図である。第1図においてダイス
1からシート状溶融体2が押出されて、冷却ドラ
ム3により冷却固化されて未延伸シート4とな
る。直流高圧電源5より電極6に電圧が印加さ
れ、電極6よりシート状溶融体にストリーマコロ
ナ放電7を発生させる。 本発明方法における特性値の測定法は次の通り
である。 (1) ヘイズ:ASTM D1003―61による。 (2) 厚み変動率:安立電機製連続接触式厚み計に
より5m長、長手方向に測定し次式より求め
た。 厚み変動率=最大厚み−最小厚み/平均厚み×100〔
%〕 (3) 比重:ASTM D1505―63Tによる。 (4) 結晶化度: d:フイルムの密度 da:非晶部の密度=1.113gr/cm3 dc:結晶部の密度=1.212gr/cm3 α:結晶化度 とした場合次式により求めた。 α=da−d/da−dc×dc/d×100〔%〕 次に実施例により本発明を説明する。 実施例 1 25℃硫酸溶液で測定した相対粘度が2.80のナイ
ロン6(Tc=185℃)に滑剤として平均粒径3μ
の2酸化ケイ素を0.2重量%をその重合中に加
え、100℃で真空乾燥し、水分率を0.10重量%に
調整した後90mmφのスクリユー押出機で265℃に
加熱溶融させ、第1図の装置にて製膜を行い、30
m/minの引取速度で30℃の冷却ロールにて引取
り約200μのシートを得た。比較の為に電荷を付
与しない場合と従来の静電印加成型法を行いそれ
ぞれ約200μのシートを得た。直流高圧電源はリ
ツプルが0.5%以下の電源を用いた。上記シート
について冷却ロールへの密着状態、シートの厚み
均一性、ヘイズ、結晶化度などにつき比較した結
果を表1に示す。
The present invention relates to a method for producing a polyamide polymer sheet with high efficiency, which has excellent thickness uniformity and transparency, low crystallinity, and few crystallization spots. A commonly used method for producing polymer sheets is to cool and solidify the sheet melt-extruded from an extruder through a die on a moving cooling body such as a cooling roll, but in this method, the molten sheet and Heat transfer is poor because a thin layer of air is drawn between the molten sheet and the moving cooling body, and the molten sheet solidifies while being slowly cooled and crystallization progresses, resulting in a sheet with a high degree of crystallinity and poor transparency. Furthermore, oligomers of the polyamide polymer generated from the molten polyamide sheet pass through a thin layer of air and accumulate on the moving cooling body, worsening the cooling effect of the molten sheet and causing cooling due to the non-uniformly adhered oligomer layer. This results in crystallization spots on the resulting sheet. On the other hand, if the molten polymer sheet is directly brought into close contact with the moving cooling body without intervening a thin layer of air, it will be rapidly cooled and a polyamide-based polymer sheet with a low degree of crystallinity will be obtained. Conventionally, various electrostatic pressure bonding devices have been used to ensure the adhesion of the extruded molten sheet to the cooling body surface. For example, for this purpose, a wire or knife edge-shaped electrode is provided between the die and the moving cooling body, and an electrostatic charge is deposited on the surface of the unsolidified sheet, so that the sheet is brought into close contact with the surface of the cooling body and rapidly cooled (hereinafter referred to as (abbreviated as electrostatic application molding method) was developed by the Special Publication Act in 1978.
It is publicly known from Publication No. 6142 and the like. However, in such an electrostatic application molding method, if the drawing speed of the sheet is slow, adhesion is possible due to the electrostatic charge deposited on the sheet surface, but as the drawing speed is increased, adhesion due to electrostatic force becomes impossible. A thin layer of air enters between the molten sheet and the surface of the moving cooling body, causing large variations in the thickness of the sheet, slowing the cooling of the molten sheet, causing cooling spots, and increasing crystallization.
A sheet with poor transparency and crystallization spots is obtained.
Furthermore, oligomers of polyamide polymers are deposited on the surface of the moving cooling body. Therefore, if the voltage applied to the electrode placed between the die and the surface of the moving cooling body is increased in order to increase the amount of static charge deposited on the surface of the sheet-like object, there will be a discontinuity between the electrode and the surface of the cooling body. The sheet-like material on the surface of the cooling body is destroyed due to the arc discharge, and in severe cases, the surface coating of the cooling body is destroyed. Therefore, it is not possible to increase the voltage applied to the electrodes beyond a certain limit, and it is impossible to sufficiently increase the film forming speed and form a high quality film using the conventional electrostatic application forming method. The inventors of the present invention have made extensive studies on improvements to the prior art, and have created a streamer between the electrode and the molten sheet when melt-extruding and cooling a film-forming polyamide-based thermoplastic polymer material in the form of a sheet onto the surface of a moving cooling body. By performing a corona discharge in a corona state, the polymer sheet in a molten state was given sufficient electric charge to come into close contact with the surface of a moving cooling body, and it was possible to apply a high current at a low voltage without arc discharge, and the conventional method described above was successfully applied. We solved the various drawbacks of the electrostatic molding method at once, and created a polyamide polymer sheet that does not deposit oligomers on the moving cooling body, has excellent thickness uniformity and transparency, has a low degree of crystallinity, and has few crystallization spots. The present invention was achieved by discovering that it is possible to form a film at high speed. Polyamide, which is the main component of the polyamide thermoplastic polymer material in the present invention, is typically nylon 6 and nylon 66, but it also includes aliphatic polyamides such as nylon 11 and nylon 12, cyclohexane rings, etc. It is also possible to use alicyclic polyamides, which are condensates of aliphatic diamines and terephthalic acid and/or isophthalic acids, or aromatic polyamides, which are condensates of aliphatic dicarboxylic acids and xylylene diamine. Mixtures and copolymers of these can also be used. The polyamide contains lubricants, antioxidants, ultraviolet absorbers, antistatic agents, pigments, colorants, etc. to improve the lubricity, blocking resistance, stretchability, heat resistance, and antistatic properties of the polymer sheet. Organic and/or inorganic substances may also be added. Furthermore, other polymers may be mixed in addition to polyamide, but the proportion of polymers other than polyamide added is preferably less than 50% by weight. Examples of the lubricant added to the polyamide in the present invention include organic lubricants such as ethylene bissteramide, stearic acid monoglyceride, and 1,5-sorbitan fatty acid ester, and inorganic particles such as calcium carbonate, kaolin, talc, clay, silicon dioxide, and calcium sulfate. Can indicate lubricant. The particle size of inorganic particle lubricant is the average particle size.
It is preferably about 0.01 to 10μ. The amount of lubricant added is usually preferably 0.01 to 10% by weight based on the polyamide. Other polymers that may be mixed with the polyamide in the present invention include polycarbonate, polyethylene terephthalate, polytetramethylene terephthalate, poly1,4 cyclohexane terephthalate, polyethylene-2,6-dinaphthalate, and terephthalic acid and neopentyl glycol as main components. Polyesters such as copolymers such as polypropylene and polyethylene, ionomers, ethylene vinyl acetate copolymers, partially saponified products of ethylene vinyl acetate copolymers, polyolefins such as ethylene ethyl acrylate and polyvinyl alcohol, maleic anhydride, etc. Modified polyolefin obtained by graft polymerization, average molecular weight 200~
10,000 polyalkylene glycols etc. can be shown. Polyamides with or without such additives are melted and extruded into a film. Extrusion is carried out on a flat plate using a flat die such as a T die or an I die. The extruded sheet is cooled on a moving cooling body such as a cooling roll or a cooling belt to obtain a substantially non-oriented sheet. In order to prevent crystallization of the extruded sheet, the temperature at which the extruded sheet is cooled is preferably in the range from the dew point to the maximum crystallization temperature - 20°C or less. In the above, the maximum crystallization temperature (Tc) is determined by a scanning differential calorimeter (DSC), and is usually 180 to 200°C for nylon 6, but it depends on the type of polymer and the addition of various additives. It's different. Cooling temperature of extruded sheet is Tg + 10℃
In the above case, since the cooled sheet is easily deformed, it is preferable to further perform a second cooling step to cool the sheet at Tg+10°C or lower. The extruded sheet can be cooled by applying cooling liquid, spraying cooling gas, dipping into a cooling liquid tank, etc. from the side opposite to the surface of the moving cooling body. The surface of the moving cooling body may have either a mirror finish or a rough finish. The surface material is preferably one that can withstand long-term use, but is not particularly limited.
Examples of surface materials include hard chrome plating, ceramic coat, and Teflon coat. Although some alternating current components may be superimposed on the high voltage direct current used in the present invention, the voltage or current is as much as possible when measured by connecting a stabilized direct current power source, preferably a dummy resistor to the output terminal and the ground terminal. It is preferable to use a DC power supply with ripple of 1.0% (peak to peak) or less. Although the polarity of the electrode is not limited, a negative potential is particularly preferred. A feature of the present invention is that a high current is applied at low pressure by generating corona discharge in a streamer corona state between an electrode and a melt-extruded polyamide polymer sheet. A current several ten times higher can be applied. Corona discharge in the streamer corona state is, for example, as shown in Figures 2 and 4 on page 73 of "New High Voltage Engineering" co-authored by Saburo Sakamoto and Hiroaki Tagashira, published by Asakura Shoten (published on August 30, 1972). This refers to a stable corona state in which the electrode and the ground plate (in the present invention, a molten polyamide sheet) are bridged. When the electrode has a positive potential, a rod-shaped concentrated corona is formed from the tip of the electrode to the molten sheet.
In the case of a negative potential, a bell-shaped corona is formed that spreads from the tip of the electrode to the molten sheet, but in the present invention, both states are referred to as streamer corona state corona discharge. In order to stably generate corona discharge in the streamer corona state of the present invention, it is necessary to arrange discharge points discontinuously. For this purpose, needle-like electrodes and sawtooth-like electrodes are generally preferred, but are not particularly limited in the present invention. The number and arrangement method of discharge points are arbitrary. The material of the discharge body may be any electrically conductive material, and examples include metal and carbon. In order to stably generate corona discharge in a streamer corona state in the method of the present invention, the gap between the discharge point of the electrode and the molten sheet is preferably 0 to 20 mm, particularly preferably 0.1 to 10 mm. To be elected. By arranging the discharge points in this manner, a stable streamer corona discharge with a glow is generated between the electrode and the molten polyamide sheet, and at the same time, a high current flows. The method of the present invention is applied to sheets of polyamide-based thermoplastic polymer materials; other resins, such as polypropylene and polyethylene terephthalate sheets, do not produce stable streamer corona discharges and when the voltage is increased, the brush corona (described in the cited document), it quickly shifts to spark discharge. The cause of this is not clear. However, in the conventional electrostatic application molding method, a stable streamer corona is not generated even in the case of polyamide-based polymers, and as the voltage is increased, spark discharge suddenly occurs against the moving cooling body. The thickness of the sheet molded in the present invention is not particularly limited, but is 10μ or more, preferably 50μ or more. There is no particular limitation on the take-up speed of the sheet molded in the present invention.
The maximum possible take-up speed with the conventional electrostatic application molding method is usually 10 to 20 m/min, but with the method of the present invention, contact cooling is possible even at a take-up speed higher than this, for example, 100 to 200 m/min. There is no problem even if the present invention is implemented in the following manner. The ratio of the gravity flow velocity of the polymer sheet to the surface velocity of the moving cooling body when bonded to the moving cooling body surface is 1.0.
Above, preferably 1.0 to 120. By the method of the present invention, a polyamide polymer sheet with uniform thickness, low crystallinity, excellent transparency, and few crystallization spots can be formed at high speed, and the moving cooling body is not contaminated by oligomers. . Next, the method of the present invention will be explained with reference to the drawings.
FIG. 1 is a diagram showing one embodiment of the sheet manufacturing process according to the method of the present invention. In FIG. 1, a sheet-like melt 2 is extruded from a die 1, cooled and solidified by a cooling drum 3, and becomes an unstretched sheet 4. A voltage is applied to the electrode 6 from the DC high voltage power supply 5, and a streamer corona discharge 7 is generated from the electrode 6 in the sheet-like melt. The method for measuring characteristic values in the method of the present invention is as follows. (1) Haze: According to ASTM D1003-61. (2) Thickness variation rate: Measured in the longitudinal direction over a length of 5 m using a continuous contact thickness gauge made by Anritsu Denki, and calculated from the following formula. Thickness variation rate = maximum thickness - minimum thickness / average thickness x 100 [
%] (3) Specific gravity: According to ASTM D1505-63T. (4) Crystallinity: d: Density of film da: Density of amorphous portion = 1.113gr/cm 3 dc: Density of crystalline portion = 1.212gr/cm 3 α: Degree of crystallinity Calculated using the following formula. . α=da−d/da−dc×dc/d×100 [%] Next, the present invention will be explained with reference to Examples. Example 1 Nylon 6 (Tc = 185°C) with a relative viscosity of 2.80 measured in a 25°C sulfuric acid solution was coated with an average particle size of 3μ as a lubricant.
During the polymerization, 0.2% by weight of silicon dioxide was added, vacuum dried at 100°C, the moisture content was adjusted to 0.10% by weight, and then heated and melted at 265°C in a 90mmφ screw extruder. The film was formed at 30
A sheet of about 200 μm was obtained by taking it off with a cooling roll at 30° C. at a taking speed of m/min. For comparison, sheets of approximately 200 μm were obtained using the conventional electrostatic application molding method and when no charge was applied. A DC high-voltage power supply with ripple of 0.5% or less was used. Table 1 shows the results of a comparison of the above sheets in terms of adhesion to the cooling roll, sheet thickness uniformity, haze, crystallinity, etc.

【表】 実施例 2 25℃硫酸溶液で測定した相対粘度が3.00である
ナイロン6を90重量%と相対粘度が2.2であるポ
リメタキシレンアジパミド10重量%を混合し、更
に該混合ポリアミド樹脂100重量部に対し0.3重量
部の平均粒子径3μφの二酸化ケイ素と0.15重量
部のエチレンビスステアロアミドを混合し、90mm
φ押出機で265℃に加熱溶融させ、第1図の装置
で実施例1と同様に製膜を行い、40℃に冷却し約
150μのシートを得た。比較のために従来の静電
印加成型法も行い、それぞれ約150μのシートを
得た。上記シートについて冷却ロールへの密着状
況、シートの厚み均一性、ヘイズなどにつき比較
した結果を表2に示す。
[Table] Example 2 90% by weight of nylon 6 with a relative viscosity of 3.00 measured in a 25°C sulfuric acid solution and 10% by weight of polymethaxylene adipamide with a relative viscosity of 2.2 were mixed, and the mixed polyamide resin For 100 parts by weight, 0.3 parts by weight of silicon dioxide with an average particle diameter of 3μφ and 0.15 parts by weight of ethylene bis stearamide were mixed, and 90 mm
Melt by heating to 265°C using a φ extruder, form a film in the same manner as in Example 1 using the apparatus shown in Figure 1, cool to 40°C, and melt at about 265°C.
A 150μ sheet was obtained. For comparison, a conventional electrostatic application molding method was also performed, and each sheet was approximately 150 μm thick. Table 2 shows the results of comparing the above sheets in terms of adhesion to the cooling roll, sheet thickness uniformity, haze, etc.

【表】 上記結果の通り、ポリアミド系重合体を高速で
移動冷却体面へ密着、急冷させるためにはストリ
ーマコロナ放電を生成させ、低電圧で高電流を付
与する必要がある。
[Table] As shown in the above results, in order to bring the polyamide polymer into close contact with the surface of the moving cooling body at high speed and rapidly cool it, it is necessary to generate a streamer corona discharge and apply a high current at a low voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施する配置の一例を示
す。
FIG. 1 shows an example of an arrangement for carrying out the method of the invention.

Claims (1)

【特許請求の範囲】[Claims] 1 フイルム形成性のポリアミド系熱可塑性重合
体物質を移動冷却体面へシート状に溶融押出し冷
却するに際し、直流高圧を印加した電極と該溶融
状態の重合体シートとの間に、ストリーマコロナ
状態のコロナ放電を行ない、溶融状態の重合体シ
ートに移動冷却体面と密着するに十分な電荷を付
与せしめることを特徴とするポリアミド系熱可塑
性重合体シートの冷却方法。
1. When melt-extruding and cooling a film-forming polyamide-based thermoplastic polymer material in the form of a sheet onto the surface of a moving cooling body, a corona in a streamer-corona state is created between an electrode to which a direct current high pressure is applied and the molten polymer sheet. 1. A method for cooling a polyamide thermoplastic polymer sheet, which comprises applying electric discharge to the molten polymer sheet to bring it into close contact with the surface of a moving cooling body.
JP9111778A 1978-07-25 1978-07-25 Method of cooling polyamide polymer sheet Granted JPS5517559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9111778A JPS5517559A (en) 1978-07-25 1978-07-25 Method of cooling polyamide polymer sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9111778A JPS5517559A (en) 1978-07-25 1978-07-25 Method of cooling polyamide polymer sheet

Publications (2)

Publication Number Publication Date
JPS5517559A JPS5517559A (en) 1980-02-07
JPS6241095B2 true JPS6241095B2 (en) 1987-09-01

Family

ID=14017568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9111778A Granted JPS5517559A (en) 1978-07-25 1978-07-25 Method of cooling polyamide polymer sheet

Country Status (1)

Country Link
JP (1) JPS5517559A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100339205C (en) * 2004-06-02 2007-09-26 东洋纺织株式会社 Polyamide resin film roll, and production method therefor

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105930A (en) * 1980-01-26 1981-08-22 Toyobo Co Ltd Manufacture of thermoplastic synthetic resin sheet
JPS56105929A (en) * 1980-01-26 1981-08-22 Toyobo Co Ltd Manufacture of polymer sheet
JPS56105932A (en) * 1980-01-28 1981-08-22 Toyobo Co Ltd Manufacture of laminated polymer sheet
US4594203A (en) * 1983-03-16 1986-06-10 Toray Industries, Inc. Method for producing a thermoplastic polymeric sheet
EP0182910B1 (en) * 1984-05-22 1991-10-30 Toyo Boseki Kabushiki Kaisha Process for producing polyamide film
JPS60247540A (en) * 1984-05-22 1985-12-07 Toyobo Co Ltd Manufacture of polyamide film
JPS6131225A (en) * 1984-07-24 1986-02-13 Toyobo Co Ltd Manufacture of polyamide resin sheet or film
JPS6227129A (en) * 1985-07-26 1987-02-05 Toyobo Co Ltd Manufacture of polycoupleamide series film
JPS6227130A (en) * 1985-07-26 1987-02-05 Toyobo Co Ltd Manufacture of polyamide film
JPS6227128A (en) * 1985-07-26 1987-02-05 Toyobo Co Ltd Manufacture of polycoupleamide series film
JPS62104730A (en) * 1985-10-31 1987-05-15 Toyobo Co Ltd Manufacture of polycapramide-based film
JPS62104731A (en) * 1985-10-31 1987-05-15 Toyobo Co Ltd Manufacture of polycapramide-based film
JP2587275B2 (en) * 1988-08-01 1997-03-05 横浜ゴム株式会社 Rubber composition for tire
CN111873281B (en) * 2020-07-22 2022-11-11 常州回天新材料有限公司 High-voltage generator for width expanding and thinning of cast PVDF (polyvinylidene fluoride) fluorine film and using method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988265A (en) * 1972-12-14 1974-08-23
JPS5113496A (en) * 1974-07-25 1976-02-02 Mitsubishi Heavy Ind Ltd TSUDENKAKO SOCHI
JPS5141060A (en) * 1974-08-05 1976-04-06 Ici Ltd
JPS5141763A (en) * 1974-10-08 1976-04-08 Fuji Photo Film Co Ltd

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4988265A (en) * 1972-12-14 1974-08-23
JPS5113496A (en) * 1974-07-25 1976-02-02 Mitsubishi Heavy Ind Ltd TSUDENKAKO SOCHI
JPS5141060A (en) * 1974-08-05 1976-04-06 Ici Ltd
JPS5141763A (en) * 1974-10-08 1976-04-08 Fuji Photo Film Co Ltd

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100339205C (en) * 2004-06-02 2007-09-26 东洋纺织株式会社 Polyamide resin film roll, and production method therefor

Also Published As

Publication number Publication date
JPS5517559A (en) 1980-02-07

Similar Documents

Publication Publication Date Title
JPS6241095B2 (en)
US4997600A (en) Process for preparation of thermoplastic resin sheets
US3284331A (en) Adherability treatment of thermo-plastic film
US20090041966A1 (en) Stretched film of void-containing theremoplastic resin and process for producing the same
CN110944821B (en) Cooling roll and method for producing thermoplastic resin sheet using same
US4148851A (en) Process for producing thermoplastic polymer sheets
US4268464A (en) Electrostatic pinning of extruded polyamide film
US3888753A (en) Coruscate electrical discharge treatment of polymeric film to improve adherability thereof to gelatinous and other coatings
JPS5923270B2 (en) Manufacturing method of polyamide polymer stretched film
WO2015152193A1 (en) Anti-static polyester film and method for producing same
JPS6138012B2 (en)
JP4218156B2 (en) Method for cleaning surface of thermoplastic resin sheet and method for producing thermoplastic resin sheet
JP2003019741A (en) Method for manufacturing polyamide film
EP0008825B1 (en) Production of polyamide material sheet
JPH0483627A (en) Manufacture of thermoplastic polymer sheet
JP4437587B2 (en) Method for producing thermoplastic resin sheet
JP3870746B2 (en) Method for producing thermoplastic resin sheet
JPH09300456A (en) Polyamide sheet and its production
JP2000218690A (en) Method for producing thermoplastic resin sheet
JP4244489B2 (en) Method and apparatus for manufacturing resin sheet
JPS58163624A (en) Manufacture of polymer film or sheet
JP2000080179A (en) Method for surface-treating thermoplastic resin sheet
JPS6210820B2 (en)
JP2000301595A (en) Apparatus and method for molding molten polymer sheet
JP2001334565A (en) Method for manufacturing polyamide resin sheet