JPH09300456A - Polyamide sheet and its production - Google Patents

Polyamide sheet and its production

Info

Publication number
JPH09300456A
JPH09300456A JP8114997A JP11499796A JPH09300456A JP H09300456 A JPH09300456 A JP H09300456A JP 8114997 A JP8114997 A JP 8114997A JP 11499796 A JP11499796 A JP 11499796A JP H09300456 A JPH09300456 A JP H09300456A
Authority
JP
Japan
Prior art keywords
sheet
polyamide
temperature
casting
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8114997A
Other languages
Japanese (ja)
Inventor
Mika Aeba
美加 饗場
Minoru Yoshida
実 吉田
Kenji Tsunashima
研二 綱島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP8114997A priority Critical patent/JPH09300456A/en
Publication of JPH09300456A publication Critical patent/JPH09300456A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking

Abstract

PROBLEM TO BE SOLVED: To provide a polyamide sheet capable of being cast at a high speed, having good flexibility and impact resistance and easy to stretch suppressing the crystallization of a non-stretched sheet. SOLUTION: A stretched molding polyamide sheet is characterized by that the total crystallization degree of a non-stretched sheet is below 30% and the γ-type crystallization thereof is 20% or less and produced by extruding a polyamide resin molten at temp. equal to or high than its m.p. (Tm) from a cap and closely bringing the extrudate into contact with a casting drum to cool and solidify the same to form a sheet. In this case, the molten resin is cooled to a temp. range from temp. falling crystallization start temp. (Tcb) to Tm+30 deg.C to be extruded from a cap and electrostatic force is applied to the molten body to bring it into close contact with the casting drum to cool and solidify the same. By this constitution, the crystallization of the non-stretched sheet is suppressed and high speed casting is possible and stretching becomes easy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はポリアミドシートお
よびその製造法に関し、更に詳しくは、未延伸ポリアミ
ドシートの結晶化を抑制し、高速キャストが可能であ
り、また二軸延伸が容易なポリアミドシートとその製造
方法に関するものである。
TECHNICAL FIELD The present invention relates to a polyamide sheet and a method for producing the same, and more specifically, to a polyamide sheet which suppresses crystallization of an unstretched polyamide sheet, enables high speed casting, and is easily biaxially stretched. The present invention relates to a manufacturing method thereof.

【0002】[0002]

【従来の技術】ポリε−カプロラクタム、ポリヘキサメ
チレンアジパミドなどからなる延伸ポリアミドシート
は、柔軟性、耐衝撃性、引張強度、耐ピンホール強度、
耐熱、耐寒性、酸素などのガスバリア性に優れているた
め、食品包装などの用途に広範に使用されている。ま
た、これらのシートの延伸方法としては、ポリアミド特
有の結晶配向性からチューブラー法、同時二軸延伸法、
あるいは特殊な条件下における逐次二軸延伸法(特開昭
61−283527号公報、特開昭61−17729号
公報等)などによって製造されている。
2. Description of the Related Art Stretched polyamide sheets made of poly ε-caprolactam, polyhexamethylene adipamide, etc., have flexibility, impact resistance, tensile strength, pinhole resistance,
It is widely used for food packaging because it has excellent heat and cold resistance and oxygen and other gas barrier properties. Further, as a stretching method of these sheets, a tubular method, a simultaneous biaxial stretching method from a crystal orientation characteristic of polyamide,
Alternatively, it is produced by a sequential biaxial stretching method under special conditions (Japanese Patent Laid-Open No. 61-283527, Japanese Patent Laid-Open No. 61-17729, etc.) and the like.

【0003】しかしながら、チューブラー法においては
厚みむらが発生しやすく、同時二軸延伸法では装置が高
価であることや高速化が困難であるため生産性が低下す
るという問題が生じる。また、特殊な逐次二軸延伸法、
すなわち、前記公開特許で開示された発明方法などでは
延伸条件が極めて規制されるため生産性の点で劣るとい
う問題が生じる。そのため、従来、ポリアミドシートの
延伸方法としては、長手方向に延伸し、次いで横方向へ
延伸するという逐次二軸延伸法が多く用いられている。
However, in the tubular method, uneven thickness is likely to occur, and in the simultaneous biaxial stretching method, there is a problem that productivity is lowered because the apparatus is expensive and it is difficult to increase the speed. Also, a special sequential biaxial stretching method,
That is, in the method of the invention disclosed in the above-mentioned published patent, the stretching conditions are extremely regulated, which causes a problem of inferior productivity. Therefore, as a stretching method of a polyamide sheet, a sequential biaxial stretching method of stretching in the longitudinal direction and then stretching in the transverse direction is often used.

【0004】また、この逐次二軸延伸を行うための未延
伸ポリアミドシートを得るキャスト方法としては、キャ
スティングドラムの表面温度を100〜140℃の温度
に保ち、口金から押出したポリアミド溶融体とキャステ
ィングドラムとの密着性を向上させる高温キャスト法
(特開昭53−16067号公報)や、空気の動圧の力
によりキャスト位置を固定し、溶融体をキャスティング
ドラムと密着させるエアーナイフによるキャスト法や、
また、静電気力により溶融体とキャスティングドラムと
を密着させる静電印加法(SIキャスト法)が用いられ
ている。
Further, as a casting method for obtaining an unstretched polyamide sheet for carrying out this sequential biaxial stretching, the surface temperature of the casting drum is kept at 100 to 140 ° C., the polyamide melt extruded from the die and the casting drum. High temperature casting method (JP-A-53-16067) for improving the adhesion with the casting method, or a casting method with an air knife for fixing the casting position by the dynamic pressure of air to bring the melt into close contact with the casting drum,
Further, an electrostatic application method (SI cast method) is used in which the melt and the casting drum are brought into close contact with each other by electrostatic force.

【0005】しかしながら、前述のキャスト方法では、
高温キャスト法においては、ドラム表面上で溶融シート
の熱結晶化が生じ、その後の長手方向への延伸時にネッ
キングが生じたり、また、エアーナイフ法においては該
溶融体とキャスティングドラムとの密着性が不十分であ
ることから起る結晶化度の上昇により延伸が困難な未延
伸シートとなったり、キャスト速度の限界などの問題が
ある。さらに、SIキャスト法においては、ポリアミド
は通電性の高い樹脂であるため、キャストの高速化が困
難であるという問題があり、非常に生産性の悪い条件で
しか得られていない。
However, in the above-mentioned casting method,
In the high temperature casting method, thermal crystallization of the molten sheet occurs on the surface of the drum, necking occurs during subsequent stretching in the longitudinal direction, and in the air knife method, the adhesion between the molten material and the casting drum is increased. There are problems such as unstretched sheets that are difficult to stretch due to an increase in crystallinity caused by insufficientness, and a limit in casting speed. Further, in the SI cast method, since polyamide is a resin having a high electric conductivity, there is a problem that it is difficult to increase the casting speed, and it has been obtained only under conditions of extremely low productivity.

【0006】[0006]

【発明が解決しようとする課題】本発明は、かかる問題
を解決し、優れた柔軟性、耐衝撃性などの特性を損わず
に、逐次二軸延伸が容易であり、しかも生産性のよい未
延伸シートを提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above problems and facilitates successive biaxial stretching without impairing properties such as excellent flexibility and impact resistance, and has good productivity. The purpose is to provide an unstretched sheet.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は、未
延伸シートの全結晶化度が30%未満であり、かつ、γ
型結晶化度が20%以下であることを特徴とする逐次二
軸延伸用ポリアミドシートに関するものである。
That is, according to the present invention, the total crystallinity of the unstretched sheet is less than 30%, and γ
The present invention relates to a polyamide sheet for successive biaxial stretching, which has a mold crystallinity of 20% or less.

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.

【0009】本発明において、ポリアミドとは、分子鎖
中にアミド基を有する高分子の総称であり、脂肪族ポリ
アミドでも芳香族ポリアミドであってもよい。
In the present invention, polyamide is a general term for polymers having an amide group in the molecular chain and may be either aliphatic polyamide or aromatic polyamide.

【0010】代表的なポリアミドとしては、ナイロン
6、ナイロン66、ナイロン610、ナイロン11、ナ
イロン12、ポリエチレンイソフタラミド、ポリメタキ
シレンアジパミド、ポリ(ヘキサメチレンイソフタラミ
ド/テレフタラミド)、ポリ(ヘキサメチレンテレフタ
ラミド/モノメチルテレフタラミド)、ヘキサメチレン
イソフタラミド/テレフタラミドとε−カプロラクタム
との共重合体、ヘキサメチレンテレフタラミドとヘキサ
メチレンアジパミドとの共重合体などが使用できる。も
ちろん、これらは単独で用いてもよいし、また、2成分
以上を混合したものであってもよい。
Typical polyamides include nylon 6, nylon 66, nylon 610, nylon 11, nylon 12, polyethylene isophthalamide, polymethaxylene adipamide, poly (hexamethylene isophthalamide / terephthalamide), poly ( (Hexamethylene terephthalamide / monomethyl terephthalamide), a copolymer of hexamethylene isophthalamide / terephthalamide and ε-caprolactam, a copolymer of hexamethylene terephthalamide and hexamethylene adipamide and the like can be used. Of course, these may be used alone, or may be a mixture of two or more components.

【0011】本発明ではポリアミドの代表例としてナイ
ロン6を用いた場合について例をとって、説明を進め
る。なお、本発明に用いるポリアミドの粘度はシートの
成形性、機械的強度の点から98%硫酸中での相対粘度
[ηr]が2〜7、好ましくは3〜6のものが好適であ
る。相対粘度がこの範囲より高いもであると製膜性の悪
化、フィッシュアイの増加、あるいは寸法安定性の低下
などが生じるので好ましくない。
In the present invention, a case where nylon 6 is used as a typical example of polyamide will be described by taking an example. As for the viscosity of the polyamide used in the present invention, the relative viscosity [ηr] in 98% sulfuric acid of 2 to 7, preferably 3 to 6, is suitable from the viewpoint of sheet formability and mechanical strength. If the relative viscosity is higher than this range, film-forming property is deteriorated, fish eyes are increased, or dimensional stability is deteriorated, which is not preferable.

【0012】また、このポリアミド中には、本発明の効
果を阻害しない範囲内で公知の各種添加剤、例えば、耐
熱安定剤、耐酸化安定剤、耐侯安定剤、紫外線吸収剤、
帯電防止剤、有機または無機の微粒子、顔料、染料、核
剤などを添加してもよい。
Further, in the polyamide, various known additives within a range that does not impair the effects of the present invention, such as a heat resistance stabilizer, an oxidation resistance stabilizer, an weather resistance stabilizer, an ultraviolet absorber,
Antistatic agents, organic or inorganic fine particles, pigments, dyes, nucleating agents and the like may be added.

【0013】本発明においては、未延伸シートの全結晶
化度が30%未満であり、かつ、γ型結晶化度が20%
以下である必要があり、好ましくは、全結晶化度が25
%以下であり、かつ、γ型結晶化度が15%以下である
ことが望ましい。全結晶化度が30%以上であると、分
子間力が非常に大きくなり、延伸に際して過大な延伸応
力が発生し、延伸が困難となるという問題が生じ好まし
くない。また、γ型結晶化度が20%を越えると、延伸
がγ型結晶から始まってしまい、ネッキング延伸しやす
くなるという問題が生じるため好ましくない。ナイロン
の結晶相は、アミド基がC−NおよびC−C結合の周り
に回転し、平面構造からずれて折れ曲り構造を有するγ
型結晶と平面ジグザグ構造を有するα型結晶の2結晶型
のみと考え、ここでγ型結晶化度とは、結晶相と非晶相
を合わせた分子構造中に占めるγ型結晶の重量%であ
り、赤外吸収スペクトルの928cm-1および977c
-1のピークがそれぞれα型結晶、γ型結晶の特性吸収
に相当しているため、この吸光度比を測定することによ
り求めることができる。また、ここで全結晶化度とは、
密度勾配管法により測定した密度から求められるもので
ある。
In the present invention, the total crystallinity of the unstretched sheet is less than 30% and the γ-type crystallinity is 20%.
It is necessary that the total crystallinity is 25 or less.
%, And the γ-type crystallinity is preferably 15% or less. When the total crystallinity is 30% or more, intermolecular force becomes very large, excessive stretching stress occurs during stretching, and there is a problem that stretching becomes difficult, which is not preferable. On the other hand, if the γ-type crystallinity exceeds 20%, stretching starts from the γ-type crystal, and necking stretching tends to occur, which is not preferable. The crystalline phase of nylon has a γ structure in which the amide group rotates around the C—N and C—C bonds and shifts from the planar structure to form a bent structure.
Type crystal and α-type crystal having a planar zigzag structure are considered to be only two crystal types. Here, the γ-type crystallinity is the weight% of the γ-type crystal in the molecular structure including the crystalline phase and the amorphous phase. Yes, infrared absorption spectrum at 928 cm -1 and 977c
Since the peaks of m −1 correspond to the characteristic absorptions of the α-type crystal and the γ-type crystal, respectively, they can be determined by measuring this absorbance ratio. Also, here, the total crystallinity is
It is obtained from the density measured by the density gradient tube method.

【0014】本発明における延伸性の良いポリアミドシ
ートの製造方法としては、まず、ポリアミド樹脂を融点
(Tm(℃))以上の温度で溶融することが好ましい。
溶融温度がTm未満であると未溶融物による製品品質の
低下、押出機内への滞留、フィルタでの目詰まり等の問
題が生じやすくなるため好ましくない。また、ポリアミ
ド樹脂のTmは、示差走査熱量計(DSC)により公知
の方法で簡易に測定することが可能であるが、一般に高
分子材料の場合、Tmは1点として観測されるわけでわ
なく、裾野の広がったピークとして観測される。ここで
押出機における樹脂の溶融温度を定めるTmとしては、
ピーク温度では大半の樹脂は融解しているが、裾野の広
がり部分の溶融樹脂が溶解せず未溶融状態で残る可能性
があるため、ピーク温度より裾野の終わりの温度(融解
終了温度)を採用する。
As a method for producing a polyamide sheet having good stretchability in the present invention, first, it is preferable to melt the polyamide resin at a temperature equal to or higher than the melting point (Tm (° C.)).
If the melting temperature is lower than Tm, problems such as deterioration of product quality due to unmelted matter, retention in the extruder, and clogging of the filter are likely to occur, which is not preferable. Further, the Tm of a polyamide resin can be easily measured by a known method using a differential scanning calorimeter (DSC), but in general, in the case of a polymer material, the Tm is not always observed as one point. , It is observed as a widened peak. Here, as Tm that determines the melting temperature of the resin in the extruder,
Most of the resin is melted at the peak temperature, but the molten resin in the expanded part of the skirt may not be melted and may remain in an unmelted state, so the temperature at the end of the skirt (melting end temperature) is used rather than the peak temperature. To do.

【0015】次に、溶融樹脂を降温結晶化開始温度(T
cb(℃))以上、(Tm+30)℃以下の温度まで冷
却した後、口金から押出し、該溶融体に静電気力を与え
て、キャスティングドラム上に密着、冷却、固化し、シ
ート状とすることが好ましい。この際、該溶融体に高電
圧を印加して、溶融体とドラム間に電流を流す静電印加
法(SIキャスト法)を用いることにより、溶融体とキ
ャスティングドラムとを均一に密着させることが可能と
なる。また、キャスト速度が増加するほど、高いSI電
流が流れるため、高速キャストをする上で有効である。
ここでいう静電印加には、電極の形状としてはワイヤー
電極やナイフ電極等が挙げられるが印加斑の発生上限速
度からワイヤー電極を用いることが好ましい。また、素
材としては0.08〜0.15mmのタングステン素線
を用いて、直流電圧5〜20kV、電流3〜5mmA
で、製膜中常時巻取りながら使用することが好ましい。
Next, the molten resin is cooled to start crystallization (T
After being cooled to a temperature of not less than (cb (° C.)) and not more than (Tm + 30) ° C., it is extruded from a die, and an electrostatic force is applied to the melt to adhere, cool, and solidify on a casting drum to form a sheet. preferable. At this time, by applying a high voltage to the melt and applying an electrostatic current (SI cast method) in which a current is applied between the melt and the drum, the melt and the casting drum can be brought into close contact with each other uniformly. It will be possible. Further, as the casting speed increases, a higher SI current flows, which is effective for high-speed casting.
Examples of the shape of the electrode for the electrostatic application include a wire electrode and a knife electrode. However, it is preferable to use the wire electrode from the upper limit speed of occurrence of application spots. Also, as the material, a tungsten wire of 0.08 to 0.15 mm is used, a DC voltage of 5 to 20 kV, and a current of 3 to 5 mmA.
Therefore, it is preferable that the film is used while being constantly wound during film formation.

【0016】また、ポリアミドは溶融比抵抗が非常に低
いために電導度が高すぎ、そのため静電印加が困難であ
るという問題がある。しかし、本発明者らは鋭意検討し
た結果、口金から押出したポリアミド溶融体の温度(T
out)を(Tm+30)℃以下の温度にすればよいと
の知見を得た。このように低温で押出すことにより溶融
比抵抗が1×106 Ω・cm以上となり、キャスティン
グドラムとの密着性を向上させることが可能となる。ま
た、Toutを通常よりも低めの温度とすることにより
溶融比抵抗を上げることができるが、単に温度を低くす
ればよいわけではなく、Tcb未満であるとポリマーの
結晶化が開始し、経時で固化し、押出不可能になる。ま
た、Toutが(Tm+30)℃を越えた温度では、静
電印加が不可能な溶融比抵抗であるため、キャスティン
グドラムとの密着性が不充分であったり、変質ポリマが
発生するといった問題が生じる。そのため、口金から押
出した溶融体の温度は、Tcb以上、(Tm+30)℃
以下の温度であることが好ましい。
Further, polyamide has a problem that it is difficult to apply static electricity because polyamide has a very low melting specific resistance and thus has too high electric conductivity. However, as a result of intensive studies by the present inventors, the temperature of the polyamide melt extruded from the die (T
It was found that out) should be set to a temperature of (Tm + 30) ° C. or lower. By extruding at such a low temperature, the melting specific resistance becomes 1 × 10 6 Ω · cm or more, and the adhesion with the casting drum can be improved. Further, the melting specific resistance can be increased by setting Tout to a temperature lower than usual, but it is not necessary to simply lower the temperature. If it is lower than Tcb, crystallization of the polymer starts and It solidifies and cannot be extruded. Further, at a temperature at which Tout exceeds (Tm + 30) ° C., electrostatic melting cannot be applied, resulting in problems such as insufficient adhesion with the casting drum and generation of a modified polymer. . Therefore, the temperature of the melt extruded from the die is Tcb or higher, (Tm + 30) ° C.
The following temperatures are preferred.

【0017】さらに、前述した口金より該溶融体をTc
b以上、(Tm+30)℃以下という通常より低めの温
度で押出す溶融押出法(以下、「低温押出法」と略す)
と、SIキャスト法を併用することが好ましく、このこ
とにより全結晶化度が30%未満であり、かつ、γ型結
晶化度が20%以下である未延伸シートを得ることが可
能となる。
Further, the melt is heated to Tc from the above-mentioned die.
Melt extrusion method of extruding at a temperature lower than usual, that is, not lower than b and not higher than (Tm + 30) ° C. (hereinafter abbreviated as “low temperature extrusion method”)
And the SI cast method are preferably used together, which makes it possible to obtain an unstretched sheet having a total crystallinity of less than 30% and a γ-type crystallinity of 20% or less.

【0018】一方、溶融押出方法のみを低温押出法とし
て、他のキャスト法で得た未延伸シートは、押出時の樹
脂の溶融温度が低く、溶融粘度が高くなるため結晶化が
生じ、また、他の溶融押出法を用いて、キャスト法のみ
をSIキャスト法とした場合は、溶融温度が高すぎるこ
とから通電し静電印加が不可能となったり、溶融樹脂の
温度が低すぎることから押出不可能となるなどの問題が
生じ、本発明の全結晶化度、γ型結晶化度を満たした未
延伸シートが得られない。しかしながら、低温押出法と
SIキャスト法を併用することにより、全結晶化度が3
0%未満であり、かつ、γ型結晶化度が20%以下で、
延伸時にネッキング等の問題を生じない延伸性のよい未
延伸シートが得られる。また、前記の方法を併用するこ
とにより、SIキャスト法が用いられ、キャストの高速
化が可能となり好ましい。なお、ここでいう高速化と
は、60m/分以上で安定してキャストできることを意
味する。
On the other hand, an unstretched sheet obtained by another casting method with only the melt extrusion method as the low temperature extrusion method has a low melting temperature of the resin at the time of extrusion and has a high melt viscosity, so that crystallization occurs, and When the SI casting method is used only as the casting method by using another melt extrusion method, the melting temperature is too high to apply electricity and electrostatic application becomes impossible, or the temperature of the molten resin is too low to extrude. Problems such as being impossible occur, and an unstretched sheet satisfying the total crystallinity and γ-type crystallinity of the present invention cannot be obtained. However, when the low temperature extrusion method and the SI cast method are used together, the total crystallinity is 3
Is less than 0%, and the γ-type crystallinity is 20% or less,
An unstretched sheet having good stretchability that does not cause problems such as necking during stretching can be obtained. Further, by using the above method in combination, the SI casting method is used, and the casting speed can be increased, which is preferable. The speeding up here means that stable casting can be performed at 60 m / min or more.

【0019】また、本発明においては、口金より押出す
際のポリアミド樹脂の溶融比抵抗が1×106 Ω・cm
以上、1×109 Ω・cm以下であることが好ましく、
さらに好ましくは1×107 Ω・cm以上、1×108
Ω・cmである。溶融比抵抗が1×106 Ω・cm未満
であると、電導度が高すぎ静電印加を行う際に通電して
しまい、また、1×109 Ω・cmを超えると電導度が
低下してしまうため、キャスティングドラムとの密着性
が不十分となり好ましくない。この際、ドラム表面とし
ては表面粗度として0.2s以下が好ましく、さらには
硬質クロムメッキ、アモルファスクロムメッキなどのク
ロムメッキ仕上げしたものが長期安定キャストや再現
性、更には経済性などの点で好ましい。また、キャステ
ィングドラム温度を該ポリアミド樹脂のガラス転移点
(Tg)以下の温度とすることが、樹脂の結晶化を抑制
する上で最も好ましい。
Further, in the present invention, the melting specific resistance of the polyamide resin when extruded from the die is 1 × 10 6 Ω · cm.
It is preferably 1 × 10 9 Ω · cm or less,
More preferably, 1 × 10 7 Ω · cm or more, 1 × 10 8
Ω · cm. If the melting specific resistance is less than 1 × 10 6 Ω · cm, the electrical conductivity will be too high and electricity will be applied during electrostatic application, and if it exceeds 1 × 10 9 Ω · cm, the electrical conductivity will decrease. Therefore, the adhesion to the casting drum becomes insufficient, which is not preferable. At this time, the surface roughness of the drum is preferably 0.2 s or less, and a chrome-plated finish such as hard chrome plating or amorphous chrome plating is used for long-term stable casting, reproducibility, and economical efficiency. preferable. Further, it is most preferable to set the casting drum temperature to a temperature not higher than the glass transition point (Tg) of the polyamide resin in order to suppress the crystallization of the resin.

【0020】本発明において、該成形用ポリアミドシー
トは、逐次二軸延伸されることが該シートの特徴を発揮
できて好ましいものである。
In the present invention, it is preferable that the polyamide sheet for molding is successively biaxially stretched so that the characteristics of the sheet can be exhibited.

【0021】延伸方法としては、例えば、該未延伸ポリ
アミドシートを40〜90℃、好ましくは50〜80℃
に加熱し、延伸速度104 〜106 %/分、好ましくは
5×104 〜2×105 %/分で長手方向に2〜5倍、
好ましくは3〜4倍延伸し、その後できるだけ早く冷却
し、一軸延伸フィルムを得る。この長手方向の延伸は加
熱ゾーン内の周速の異なる2対のニップロール間で行う
ことが好ましい。この一軸延伸フィルムを60〜140
℃、好ましくは80〜125℃の加熱下で幅方向に3〜
5倍延伸する。この後、必要に応じて180〜220℃
で0.5〜10秒間熱処理を行ってもよい。
As the stretching method, for example, the unstretched polyamide sheet is 40 to 90 ° C, preferably 50 to 80 ° C.
At a stretching speed of 10 4 to 10 6 % / min, preferably 5 × 10 4 to 2 × 10 5 % / min in the longitudinal direction by 2 to 5 times,
It is preferably stretched 3 to 4 times and then cooled as quickly as possible to obtain a uniaxially stretched film. This stretching in the longitudinal direction is preferably performed between two pairs of nip rolls having different peripheral speeds in the heating zone. This uniaxially stretched film is 60 to 140
C., preferably 80 to 125.degree.
Stretch 5 times. After this, 180-220 ℃ if necessary
The heat treatment may be performed for 0.5 to 10 seconds.

【0022】次に、本発明の製造法について具体的に説
明するが、かかる例に限定されるものではない。
Next, the manufacturing method of the present invention will be specifically described, but the invention is not limited to such an example.

【0023】相対粘度3.2のナイロン6を減圧加熱下
で十分に乾燥した後、通常の溶融押出機、例えば一軸あ
るいは二軸押出機を用いて、押出機内で加熱されたスク
リューの回転によりTm以上の温度で樹脂を溶融し、押
出機から送出された溶融樹脂を加熱された流路管(ポリ
マ管)内に通し、フィルターに樹脂を通して異物や変質
ポリマーを除去し、口金に導く。このとき、必要に応じ
て定量供給性を向上させるためにギアポンプを設けても
よい。
After sufficiently drying nylon 6 having a relative viscosity of 3.2 under reduced pressure heating, Tm was obtained by rotating a screw heated in an extruder using a conventional melt extruder, for example, a single-screw or twin-screw extruder. The resin is melted at the above temperature, the molten resin sent from the extruder is passed through a heated flow pipe (polymer pipe), and the resin is passed through a filter to remove foreign matters and denatured polymer, and then guided to a die. At this time, if necessary, a gear pump may be provided to improve the quantitative supply property.

【0024】ここで、口金から押出したポリアミド樹脂
の溶融比抵抗が1×106 Ω・cm以上1×109 Ω・
cm以下となるように、樹脂の温度をTcb〜(Tm+
30)℃の温度に制御する方法としては、例えば、押出
機とフィルターの間に熱交換機を設けて樹脂の温度を制
御する方法や、タンデム押出機を用いて二段目で冷却し
てもよい。続いて、このようにして得られた溶融樹脂
を、Tダイ口金より押出し、冷却されたキャスティング
ドラムにより溶融シートの結晶化を抑制しながら、キャ
スティングドラム上に静電気力により密着固化せしめ
て、全結晶化度が30%未満で、かつ、γ型結晶化度が
20%以下の未延伸シートを得る。
Here, the melting specific resistance of the polyamide resin extruded from the die is 1 × 10 6 Ω · cm or more and 1 × 10 9 Ω ·
The temperature of the resin is Tcb to (Tm +
As a method of controlling the temperature of 30) ° C., for example, a method of providing a heat exchanger between the extruder and the filter to control the temperature of the resin, or a tandem extruder for cooling in the second stage may be used. . Subsequently, the molten resin thus obtained is extruded from a T-die die, and while the crystallization of the molten sheet is suppressed by a cooled casting drum, the molten resin is adhered and solidified by electrostatic force on the casting drum to obtain a total crystal. An unstretched sheet having a degree of crystallinity of less than 30% and a γ-type crystallinity of 20% or less is obtained.

【0025】本発明に用いられるポリアミドシートの厚
みは、特に限定されるものではなく、通常30μmから
1mm程度のものにも用いられる。
The thickness of the polyamide sheet used in the present invention is not particularly limited, and it is usually used in the range of 30 μm to 1 mm.

【0026】かくして得られたポリアミドシートを40
〜90℃に加熱し、延伸速度104〜106 %/分、で
長手方向に加熱ゾーン内に周速の異なる2対のニップロ
ール間で2〜5倍延伸し、その後、できるだけ早く冷却
し、一軸延伸シートを得る。次に、この一軸延伸フィル
ムを60〜150℃の加熱下で幅方向に3〜6倍延伸す
る。この後、必要に応じて熱処理、成形、表面処理、ラ
ミネート、コーティング、印刷、エンボス加工、エッチ
ング、などの任意の処理を行ってもよい。さらに、該延
伸シートの表面にコロナ放電処理などを行ってもよい。
また、かくして得られたポリアミドの表層に、イオン性
の高分子電解質を含んだ層などを共押出することによ
り、さらにに優れた湿度安定性を有したシートが得られ
る。
The polyamide sheet thus obtained was used as 40
Heated to ˜90 ° C., drawn at a draw speed of 10 4 to 10 6 % / min in the longitudinal direction in the heating zone between 2 to 5 times between two pairs of nip rolls with different peripheral speeds, then cooled as soon as possible, Obtain a uniaxially stretched sheet. Next, this uniaxially stretched film is stretched 3 to 6 times in the width direction under heating at 60 to 150 ° C. After this, any treatment such as heat treatment, molding, surface treatment, laminating, coating, printing, embossing, etching, etc. may be performed, if necessary. Further, the surface of the stretched sheet may be subjected to corona discharge treatment or the like.
By coextruding a layer containing an ionic polyelectrolyte on the surface layer of the polyamide thus obtained, a sheet having more excellent humidity stability can be obtained.

【0027】[0027]

【物性値の評価法】[Evaluation method of physical properties]

(1)全結晶化度 四塩化炭素とn−ヘプタンからなる密度勾配管を用い
て、25℃における密度を測定し、次式により全結晶化
度を求めた。
(1) Total Crystallinity The density at 25 ° C. was measured using a density gradient tube composed of carbon tetrachloride and n-heptane, and the total crystallinity was calculated by the following formula.

【0028】(d−da )/(dc −da )×100
(%) ただし、 d:試料密度 da :非晶密度(1.335g/cm3 ) dc :結晶密度(1.455g/cm3 ) (2)γ型結晶化度 赤外吸収スペクトルにより求めた928cm-1および9
77cm-1の吸光度と、密度勾配管法により求めた全結
晶化度から、次式に従ってγ結晶化度を求めた。
(D-da) / (dc-da) × 100
(%) However, d: sample density da: amorphous density (1.335 g / cm 3 ) dc: crystal density (1.455 g / cm 3 ) (2) γ-type crystallinity 928 cm obtained by infrared absorption spectrum -1 and 9
The γ crystallinity was determined according to the following formula from the absorbance at 77 cm −1 and the total crystallinity determined by the density gradient tube method.

【0029】Vob=Vα・xα+Vγ・xγ+(1−x
α−xγ)・Va xc =(Va −Vob)/{Va −(Vα・Xα+Vγ・
Xγ)} xα=Xα・Xc xγ=Xγ・Xc ただし、 Xα=7.58D4 −5.78D3 −1.87D2 +3.05D Xγ=1 −Xα D=D928 /(D928 +D974 ) Vob=1/d Vα=0.8127 Vγ=0.8389 Va =0.9139 d:25℃で測定したサンプルの密度(g/cm3 ) D928 :928cm-1での赤外吸収スペクトルより求め
た吸光度 D974 :974cm-1での赤外吸収スペクトルより求め
た吸光度 (3)熱特性 示差走査熱量計として、セイコー電子工業株式会社製
“ロボット”DSC−RDC220を用い、データー解
析装置として、同社製“ディスクステーション”SSC
/5200を用いて、サンプル約5mgをアルミニウム
製の受皿上300℃で5分間溶融保持し、液体窒素で急
冷固化した後、室温から昇温速度20℃/分で昇温し、
ガラス状態からゴム状態への転位に基づくベースライン
の変曲点の温度をTgとし、さらに昇温し、このとき観
測される融解のピーク終了温度をTmとした。また、3
00℃まで昇温後、5分間溶融保持し、降温速度20℃
/分で降温した。この際、観測される降温結晶化の発熱
ピークの開始温度をTcbとした。
Vob = Vα · xα + Vγ · xγ + (1-x
α−xγ) · Vax × c = (Va−Vob) / {Va− (Vα · Xα + Vγ ·
Xγ)} xα = Xα · Xc xγ = Xγ · Xc where Xα = 7.58D 4 −5.78D 3 −1.87D 2 + 3.05D Xγ = 1−Xα D = D 928 / (D 928 + D 974 ) Vob = 1 / D Vα = 0.8127 Vγ = 0.8389 Va = 0.9139 d: Density (g / cm 3 ) of the sample measured at 25 ° C. D 928 : Absorbance determined from infrared absorption spectrum at 928 cm −1 D 974 : 974 cm −1 (3) Thermal characteristics Seiko Denshi Kogyo's "Robot" DSC-RDC220 was used as a differential scanning calorimeter, and the company's "Disk Station" SSC was used as a data analyzer.
/ 5200 was used to melt and hold about 5 mg of a sample on an aluminum pan at 300 ° C. for 5 minutes, quenching and solidifying with liquid nitrogen, and then heating from room temperature at a heating rate of 20 ° C./minute,
The temperature at the inflection point of the baseline due to the transition from the glass state to the rubber state was Tg, and the temperature was further raised, and the melting end temperature observed at this time was Tm. Also, 3
After raising the temperature to 00 ° C, melt and hold for 5 minutes, cooling rate 20 ° C
The temperature was lowered at a rate of / minute. At this time, the starting temperature of the exothermic peak of the temperature-falling crystallization observed was set to Tcb.

【0030】(4)樹脂温度 口金から押出された溶融樹脂に熱電対を挿入し、樹脂の
温度を測定した。
(4) Resin temperature A thermocouple was inserted into the molten resin extruded from the die, and the temperature of the resin was measured.

【0031】(5)溶融比抵抗 ポリアミド樹脂150gを170℃で4時間真空乾燥し
た後、N2 雰囲気下で溶融した。続いて、溶融樹脂中に
一対の銅製電極を挿入し、樹脂温度が目的の温度に到達
した時点で直流電圧を印加し、次式により溶融比抵抗ρ
を求めた。
(5) Melt Specific Resistance 150 g of polyamide resin was vacuum dried at 170 ° C. for 4 hours and then melted under N 2 atmosphere. Then, a pair of copper electrodes are inserted into the molten resin, and a DC voltage is applied when the resin temperature reaches the target temperature.
I asked.

【0032】ρ=(V×S)/(I×D) ただし、 V:印加電圧 S:電極面積 I:電流値 D:電極間距離 (6)逐次二軸延伸性 口金より溶融押出し、キャスティングドラム上でシート
状となった未延伸シートを、ロール表面温度60℃に加
熱してある縦延伸装置にて長手方向に3.2倍延伸し、
続いて、テンター内で60℃に予熱後、110℃で幅方
向に3.6倍延伸を行った際の延伸状況を目視し、以下
のような条件にて逐次二軸延伸性を判定し、次の状態の
○を合格、×を不合格とした。
Ρ = (V × S) / (I × D) However, V: Applied voltage S: Electrode area I: Current value D: Distance between electrodes (6) Sequential biaxial stretchability Melt extrusion from a die, casting drum The sheet-shaped unstretched sheet is stretched 3.2 times in the longitudinal direction by a longitudinal stretching device heated to a roll surface temperature of 60 ° C.,
Subsequently, after preheating to 60 ° C. in a tenter, the stretching condition when visually stretching at a temperature of 110 ° C. in the width direction of 3.6 times was visually observed, and the biaxial stretchability was sequentially determined under the following conditions, In the following state, ◯ was passed and X was not passed.

【0033】○:延伸時にネッキングが生じず、上記の
延伸が可能であったもの。
◯: Necking did not occur during stretching, and the above stretching was possible.

【0034】×:延伸時にネッキングが生じたもの、ま
たは延伸時に破れが生じたもの。
X: Necking occurred during stretching, or breakage occurred during stretching.

【0035】(7)キャスト上限速度、及び高速キャス
ト性 ドラム表面が0.2s以下の鏡面硬質クロムメッキ仕上
げである直径1mのキャスティングドラムを用いてキャ
ストを行い、溶融シートとドラムの間に空気の噛み込み
を生じない、限界のキャスト速度をキャスト上限速度と
し、以下のような条件で高速キャスト性を判定し、次の
状態の○を合格、×を不合格とした。
(7) Casting upper limit speed and high speed casting property Casting was performed using a casting drum having a diameter of 1 m and having a mirror surface hard chrome plating finish of 0.2 s or less on the drum surface, and air was blown between the molten sheet and the drum. The limit casting speed that does not cause biting was set as the casting upper limit speed, and the high-speed castability was judged under the following conditions.

【0036】○:キャスト上限速度を、60m/分以上
にできたもの。
◯: A cast upper limit speed of 60 m / min or more.

【0037】×:キャスト上限速度が、60m/分未満
であったもの。
X: The maximum casting speed was less than 60 m / min.

【0038】[0038]

【実施例】以下、本発明を実施例に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.

【0039】実施例1 相対粘度3.2のナイロン6を用いた。DSCを用いて
熱特性を測定したところ、Tg:47℃、Tm:223
℃、Tcb:190℃であった。このナイロン6のペレ
ットを170℃で3時間真空乾燥した後、通常の溶融押
出機に供給して280℃の温度で溶融後、熱交換機内で
溶融樹脂を冷却し、Tダイ口金より235℃の温度で溶
融押出し、23℃に冷却されたドラム表面が0.2s以
下の鏡面硬度クロムメッキ仕上げである直径1mのキャ
スティングドラム上に静電気力により密着固化させ、8
5m/分のキャスト速度で未延伸シートを得た。なお、
溶融シートとキャスティングドラムの間の空気の噛み込
みは、キャスト速度の上限が90m/分まで生じなかっ
た。
Example 1 Nylon 6 having a relative viscosity of 3.2 was used. When thermal characteristics were measured using DSC, Tg: 47 ° C., Tm: 223
C, Tcb: 190C. After vacuum-drying the nylon 6 pellets at 170 ° C. for 3 hours, the nylon 6 pellets are supplied to an ordinary melt extruder and melted at a temperature of 280 ° C. Then, the molten resin is cooled in a heat exchanger, and the temperature of 235 ° C. is increased from a T-die die. Melt-extruded at a temperature of 23 ° C., and the surface of the drum cooled to 23 ° C. has a mirror hardness of 0.2 s or less.
An unstretched sheet was obtained at a casting speed of 5 m / min. In addition,
Air entrapment between the molten sheet and the casting drum did not occur up to an upper casting speed of 90 m / min.

【0040】かくして得られた未延伸シートをロール表
面温度60℃に加熱してある縦延伸装置にて長手方向に
3.2倍延伸した。続いて、テンター内で60℃に予熱
後、110℃で幅方向に3.6倍延伸後、幅方向に2%
リラックス処理を施しながら200℃で8秒間熱処理を
行い、コロナ放電処理後、厚さ15μmの二軸延伸ポリ
アミドシートを得た。
The unstretched sheet thus obtained was stretched 3.2 times in the longitudinal direction by means of a longitudinal stretching device which was heated to a roll surface temperature of 60 ° C. Subsequently, after preheating to 60 ° C. in a tenter, stretching at 110 ° C. in the width direction by 3.6 times, and 2% in the width direction.
A heat treatment was performed at 200 ° C. for 8 seconds while performing the relaxation treatment, and after the corona discharge treatment, a biaxially stretched polyamide sheet having a thickness of 15 μm was obtained.

【0041】このようにして得られたポリアミドシート
の物性は表1の通りであり、全結晶化度、γ型結晶化度
が共に低く、また、静電気力によるキャスティングドラ
ムとの密着性が良好であるため、延伸性、高速キャスト
性に優れた延伸ポリアミドシートが得られた。
The physical properties of the polyamide sheet thus obtained are shown in Table 1. Both the total crystallinity and the γ-type crystallinity are low, and the adhesion to the casting drum due to electrostatic force is good. Therefore, a stretched polyamide sheet excellent in stretchability and high-speed castability was obtained.

【0042】比較例1 実施例1と同様にして、ナイロン6のペレットを乾燥
後、通常の溶融押出機に供給して280℃の温度で溶融
後、熱交換機内で溶融樹脂を冷却し、Tダイ口金より2
35℃の温度で溶融押出し、54℃に冷却されたキャス
ティングドラム上に静電気力により密着固化させ、85
m/分のキャスト速度で未延伸シートを得た。なお、溶
融シートとキャスティングドラムの間の空気の噛み込み
は、キャスト速度の上限が88m/分まで生じなかっ
た。
Comparative Example 1 In the same manner as in Example 1, after drying the nylon 6 pellets, the nylon 6 pellets were supplied to an ordinary melt extruder and melted at a temperature of 280 ° C., and then the molten resin was cooled in a heat exchanger to obtain T. 2 from die base
It is melt extruded at a temperature of 35 ° C. and adhered and solidified by electrostatic force on a casting drum cooled to 54 ° C.
An unstretched sheet was obtained at a casting speed of m / min. In addition, the trapping of air between the molten sheet and the casting drum did not occur until the upper limit of the casting speed was 88 m / min.

【0043】かくして得られた未延伸シートを用いて実
施例1と全く同様にして二軸延伸ポリアミドシートを得
た。
Using the unstretched sheet thus obtained, a biaxially stretched polyamide sheet was obtained in exactly the same manner as in Example 1.

【0044】このようにして得られたポリアミドシート
の物性は表1の通りであり、キャスト上限速度は88m
/分であり、高速キャスト性には優れていたが、実施例
1と比較して、キャスティングドラムの温度がTgの4
7℃以上と高いために、全結晶化度、γ型結晶化度が高
く、延伸時にネッキングが生じ、延伸性が低下したもの
となった。
The physical properties of the polyamide sheet thus obtained are as shown in Table 1, and the maximum casting speed is 88 m.
/ Min, which was excellent in high-speed castability, but compared with Example 1, the casting drum temperature was Tg of 4 or less.
Since it was as high as 7 ° C. or higher, the total crystallinity and the γ-type crystallinity were high, necking occurred during stretching, and the stretchability was deteriorated.

【0045】実施例2 実施例1と同様にして、ナイロン6のペレットを乾燥
後、通常の溶融押出機に供給して279℃の温度で溶融
後、熱交換機内で溶融樹脂を冷却し、Tダイ口金より2
00℃の温度で溶融押出し、25℃に冷却されたキャス
ティングドラム上に静電気力により密着固化させ、85
m/分のキャスト速度で未延伸シートを得た。なお、溶
融シートとキャスティングドラムの間の空気の噛み込み
は、キャスト速度の上限が87m/分まで生じなかっ
た。
Example 2 In the same manner as in Example 1, after drying the nylon 6 pellets, the nylon 6 pellets were fed to an ordinary melt extruder and melted at a temperature of 279 ° C., and then the molten resin was cooled in a heat exchanger to obtain T 2 from die base
It is melt extruded at a temperature of 00 ° C., and adhered and solidified by electrostatic force on a casting drum cooled to 25 ° C.
An unstretched sheet was obtained at a casting speed of m / min. In addition, the trapping of air between the molten sheet and the casting drum did not occur until the upper limit of the casting speed was 87 m / min.

【0046】かくして得られた未延伸シートを用いて、
実施例1と同様にして二軸延伸ポリアミドシートを得
た。
Using the unstretched sheet thus obtained,
A biaxially stretched polyamide sheet was obtained in the same manner as in Example 1.

【0047】このようにして得られたポリアミドシート
の物性は表1の通りであり、実施例1と比較して、溶融
押出時の温度が35℃低いために、溶融比抵抗は多少高
いが、静電印加時の溶融シートとキャスティングドラム
との密着には影響がなく、高速キャスト性に優れ、ま
た、全結晶化度、γ型結晶化度が低いため延伸性にも優
れた延伸ポリアミドシートが得られた。
The physical properties of the polyamide sheet thus obtained are as shown in Table 1. Compared with Example 1, the temperature at the time of melt extrusion is 35 ° C. lower, so the melt specific resistance is somewhat higher, A stretched polyamide sheet that does not affect the adhesion between the molten sheet and the casting drum when static electricity is applied, has excellent high-speed castability, and has excellent stretchability due to low total crystallinity and low γ-type crystallinity. Was obtained.

【0048】比較例2 実施例1と同様にして、ナイロン6のペレットを乾燥
後、通常の溶融押出機に供給して281℃の温度で溶融
後、熱交換機内で溶融樹脂を冷却し、Tダイ口金より1
87℃の温度で溶融押出しをしたところ、溶融押出時の
温度がTcbの190℃以下の温度であるため、樹脂の
固化が生じ、押出し不可能となった。
Comparative Example 2 In the same manner as in Example 1, after drying the nylon 6 pellets, the nylon 6 pellets were supplied to an ordinary melt extruder and melted at a temperature of 281 ° C., and then the molten resin was cooled in a heat exchanger to obtain T. 1 from die base
When melt extrusion was performed at a temperature of 87 ° C., the temperature at the time of melt extrusion was 190 ° C. or lower of Tcb, so that the resin solidified and the extrusion became impossible.

【0049】実施例3 実施例1と同様にして、ナイロン6のペレットを乾燥
後、通常の溶融押出機に供給して281℃の温度で溶融
後、熱交換機内で溶融樹脂を冷却し、Tダイ口金より2
53℃の温度で溶融押出し、24℃に冷却されたキャス
ティングドラム上に静電気力により密着固化させ、85
m/分のキャスト速度で未延伸シートを得た。なお、溶
融シートとキャスティングドラムの間の空気の噛み込み
は、キャスト速度の上限が88m/分まで生じなかっ
た。
Example 3 In the same manner as in Example 1, after drying the nylon 6 pellets, the nylon 6 pellets were fed to an ordinary melt extruder and melted at a temperature of 281 ° C., and the molten resin was cooled in a heat exchanger to obtain T 2 from die base
It is melt extruded at a temperature of 53 ° C. and is electrostatically contacted and solidified on a casting drum cooled to 24 ° C.
An unstretched sheet was obtained at a casting speed of m / min. In addition, the trapping of air between the molten sheet and the casting drum did not occur until the upper limit of the casting speed was 88 m / min.

【0050】かくして得られた未延伸シートを用いて、
実施例1と同様にして二軸延伸ポリアミドシートを得
た。
Using the unstretched sheet thus obtained,
A biaxially stretched polyamide sheet was obtained in the same manner as in Example 1.

【0051】このようにして得られたポリアミドシート
の物性は、表1の通りであり、実施例1と比較して、溶
融押出時の温度が18℃高いために、全結晶化度、γ型
結晶化度、溶融比抵抗が若干低くなっているが、88m
/分の高速キャストも可能であり、高速キャスト性、延
伸性に優れた延伸ポリアミドシートを得ることができ
た。
The physical properties of the polyamide sheet thus obtained are as shown in Table 1. Compared with Example 1, the temperature during melt extrusion is higher by 18 ° C. Crystallinity and melting specific resistance are slightly lower, but 88m
It is possible to perform high-speed casting / minute, and it is possible to obtain a stretched polyamide sheet having excellent high-speed castability and stretchability.

【0052】比較例3 実施例1と同様にして、ナイロン6のペレットを乾燥
後、通常の溶融押出機に供給して280℃の温度で溶融
後、ポリマー管に通して自然冷却を行い、Tダイ口金よ
り270℃の温度で溶融押出し、25℃に冷却されたキ
ャスティングドラム上に空気の動圧の力によりキャスト
位置を固定し密着固化させ(エアーナイフ法)、10m
/分のキャスト速度で未延伸シートを得た。なお、溶融
シートとキャスティングドラムの間の空気の噛み込み
は、キャスト速度の上限が15m/分まで生じなかっ
た。
Comparative Example 3 In the same manner as in Example 1, after drying the nylon 6 pellets, the nylon 6 pellets were fed to an ordinary melt extruder and melted at a temperature of 280 ° C., and then naturally cooled by passing them through a polymer tube. It is melt extruded at a temperature of 270 ° C. from a die die and fixed on a casting drum cooled to 25 ° C. by a dynamic pressure of air to fix the casting position and adhere to it (air knife method) for 10 m.
An unstretched sheet was obtained at a casting speed of / min. In addition, the trapping of air between the molten sheet and the casting drum did not occur until the upper limit of the casting speed was 15 m / min.

【0053】かくして得られた未延伸シートを用いて、
実施例1と同様にして二軸延伸ポリアミドシートを得
た。
Using the unstretched sheet thus obtained,
A biaxially stretched polyamide sheet was obtained in the same manner as in Example 1.

【0054】このようにして得られたポリアミドシート
の物性は表1の通りであり、実施例1と比較して、溶融
押出時の温度がかなり高いために、キャスティングドラ
ム上で十分に冷却されず、結晶化が起こり、延伸時にネ
ッキングが生じ、また、キャスト法がエアーナイフ法で
あるためキャスティングドラムとの密着性が悪く、キャ
スト上限速度が15m/分と低くなり、高速キャスト性
のものが得られなかった。
Physical properties of the polyamide sheet thus obtained are as shown in Table 1. Compared with Example 1, the temperature at the time of melt extrusion was considerably high, so that the sheet was not sufficiently cooled on the casting drum. , Crystallization occurs, necking occurs during stretching, and since the casting method is the air knife method, the adhesion to the casting drum is poor, and the maximum casting speed is reduced to 15 m / min, and high-speed castability is obtained. I couldn't do it.

【0055】比較例4 実施例1と同様にして、ナイロン6のペレットを乾燥
後、通常の溶融押出機に供給して282℃の温度で溶融
後、熱交換機内で溶融樹脂を冷却し、Tダイ口金より2
72℃の温度で溶融押出し、25℃に冷却されたキャス
ティングドラム上に静電気力により密着固化させたが、
表1の物性からわかるように、溶融押出時の温度が(T
m+30)℃の250℃以上の温度であるため、通電に
より静電印加が不可能となった。
Comparative Example 4 In the same manner as in Example 1, after drying the nylon 6 pellets, the nylon 6 pellets were fed to an ordinary melt extruder and melted at a temperature of 282 ° C., and then the molten resin was cooled in a heat exchanger to obtain T. 2 from die base
It was melt extruded at a temperature of 72 ° C., and was adhered and solidified on the casting drum cooled to 25 ° C. by electrostatic force.
As can be seen from the physical properties in Table 1, the temperature during melt extrusion is (T
Since the temperature was 250 ° C. or higher of m + 30) ° C., electrostatic application was impossible due to energization.

【0056】[0056]

【表1】 [Table 1]

【0057】[0057]

【発明の効果】本発明のポリアミドシートによれば、未
延伸シートの結晶化を抑制し、高速キャストが可能であ
り、また、柔軟性や耐衝撃性も良好であり、延伸が容易
なポリアミドシートが実現されるものである。
According to the polyamide sheet of the present invention, crystallization of an unstretched sheet is suppressed, high-speed casting is possible, flexibility and impact resistance are also good, and a polyamide sheet which is easily stretched. Is realized.

【0058】本発明の延伸成形用ポリアミドシートの製
造方法によれば、上述の特性を有する延伸成形用ポリア
ミドシートを容易に製造することができるものである。
According to the method for producing a stretch-forming polyamide sheet of the present invention, a stretch-forming polyamide sheet having the above-mentioned characteristics can be easily produced.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B29K 77:00 B29L 7:00 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // B29K 77:00 B29L 7:00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】未延伸シートの全結晶化度が30%未満で
あり、かつ、γ型結晶化度が20%以下であることを特
徴とする逐次二軸延伸用ポリアミドシート。
1. A polyamide sheet for successive biaxial stretching, wherein the uncrystallized sheet has a total crystallinity of less than 30% and a γ-type crystallinity of 20% or less.
【請求項2】ポリアミド樹脂を融点(Tm)以上の温度
で溶融後、口金から押出し、キャスティングドラムに密
着、冷却、固化し、シート状にするに際して、該溶融樹
脂を降温結晶化開始温度(Tcb)以上、(Tm+3
0)℃以下の温度まで冷却した後、口金から押出し、該
溶融体に静電気力を与えて、密着、冷却、固化せしめる
ことを特徴とする延伸成形用ポリアミドシートの製造方
法。
2. When a polyamide resin is melted at a temperature equal to or higher than the melting point (Tm), it is extruded from a die, closely adhered to a casting drum, cooled and solidified to form a sheet, the molten resin is cooled to start crystallization (Tcb). ) And above, (Tm + 3
0) A method for producing a polyamide sheet for stretch-molding, which comprises cooling to a temperature of 0 ° C. or lower, extruding from a die, applying an electrostatic force to the melt to bring it into close contact, cooling, and solidification.
【請求項3】口金から押出しされるポリアミド溶融体を
溶融比抵抗が1×106Ω・cm以上、1×10 9Ω・
cm以下にせしめることを特徴とする請求項2に記載の
延伸成形用ポリアミドシートの製造方法。
3. A polyamide melt extruded from a die having a melting specific resistance of 1 × 10 6 Ω · cm or more and 1 × 10 9 Ω ·
The method for producing a polyamide sheet for stretch forming according to claim 2, wherein the polyamide sheet is made to have a size of not more than cm.
【請求項4】全結晶化度が30%未満であり、かつ、γ
型結晶化度が20%以下であるポリアミドシートを逐次
二軸延伸に供することを特徴とするポリアミドシートの
製造方法。
4. The total crystallinity is less than 30%, and γ
A method for producing a polyamide sheet, which comprises sequentially subjecting a polyamide sheet having a type crystallinity of 20% or less to biaxial stretching.
JP8114997A 1996-05-09 1996-05-09 Polyamide sheet and its production Pending JPH09300456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8114997A JPH09300456A (en) 1996-05-09 1996-05-09 Polyamide sheet and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8114997A JPH09300456A (en) 1996-05-09 1996-05-09 Polyamide sheet and its production

Publications (1)

Publication Number Publication Date
JPH09300456A true JPH09300456A (en) 1997-11-25

Family

ID=14651753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8114997A Pending JPH09300456A (en) 1996-05-09 1996-05-09 Polyamide sheet and its production

Country Status (1)

Country Link
JP (1) JPH09300456A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239578A (en) * 2000-02-28 2001-09-04 Unitika Ltd Biaxially oriented nylon 6 film and manufacturing method therefor
JP2015134413A (en) * 2014-01-16 2015-07-27 信越ポリマー株式会社 Apparatus and method for producing polyamide 9t resin sheet
JP2021130754A (en) * 2020-02-18 2021-09-09 株式会社ジェイエスピー Polyamide-based resin foam particle, and method for producing polyamide-based resin foam particle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316067A (en) * 1976-07-29 1978-02-14 Toray Ind Inc Polyamide films having improved drawing properties
JPH02248433A (en) * 1989-03-22 1990-10-04 Mitsubishi Monsanto Chem Co Heat-resistant polyamide film
JPH0716920A (en) * 1993-07-06 1995-01-20 Toray Ind Inc Method for successively biaxial orientation of crystalline polymer film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316067A (en) * 1976-07-29 1978-02-14 Toray Ind Inc Polyamide films having improved drawing properties
JPH02248433A (en) * 1989-03-22 1990-10-04 Mitsubishi Monsanto Chem Co Heat-resistant polyamide film
JPH0716920A (en) * 1993-07-06 1995-01-20 Toray Ind Inc Method for successively biaxial orientation of crystalline polymer film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239578A (en) * 2000-02-28 2001-09-04 Unitika Ltd Biaxially oriented nylon 6 film and manufacturing method therefor
JP4508341B2 (en) * 2000-02-28 2010-07-21 ユニチカ株式会社 Biaxially stretched nylon 6 film and manufacturing method thereof
JP2015134413A (en) * 2014-01-16 2015-07-27 信越ポリマー株式会社 Apparatus and method for producing polyamide 9t resin sheet
JP2021130754A (en) * 2020-02-18 2021-09-09 株式会社ジェイエスピー Polyamide-based resin foam particle, and method for producing polyamide-based resin foam particle

Similar Documents

Publication Publication Date Title
JP2000263642A (en) Manufacture of biaxially oriented polyester film
JPS58153616A (en) Method of stretching nylon-film in mechanical direction
KR910001573B1 (en) Process for the production of a poly-epsilon caproamid film
JPH09300456A (en) Polyamide sheet and its production
JP4289323B2 (en) Manufacturing method of polyamide resin film roll
JPH11105131A (en) Manufacture of simultaneously biaxially oriented film
JPS5923270B2 (en) Manufacturing method of polyamide polymer stretched film
JP3006751B2 (en) Thermoplastic resin film having excellent thickness uniformity and method for producing the same
JP4641673B2 (en) Method for producing polyamide film
JP3676883B2 (en) Method for producing polyamide film, and biaxially oriented polyamide film obtained by the method
JPH11216759A (en) Manufacture of thermoplastic resin film
JPH09155952A (en) Manufacture of polyamide film
US20090065979A1 (en) Process for Producing Polyamide-Based Resin Film Roll
JPH0764023B2 (en) Method for producing biaxially stretched polyetheretherketone film
JP3367129B2 (en) Method for producing polyester film
JP2857214B2 (en) Method for producing polyamide sheet
JPH09286054A (en) Production of biaxially stretched polyamide film
JP4437587B2 (en) Method for producing thermoplastic resin sheet
JP3870746B2 (en) Method for producing thermoplastic resin sheet
JP2007015188A (en) Manufacturing method of polyamide type mixed resin film roll
JP3918288B2 (en) Method for casting thermoplastic resin sheet
JP2001334565A (en) Method for manufacturing polyamide resin sheet
JP2000296528A (en) Manufacture of thermoplastic resin sheet
JPH0248923A (en) Manufacture of thermoplastic resin film
JPH0716920A (en) Method for successively biaxial orientation of crystalline polymer film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050726