JPS6210820B2 - - Google Patents

Info

Publication number
JPS6210820B2
JPS6210820B2 JP3960379A JP3960379A JPS6210820B2 JP S6210820 B2 JPS6210820 B2 JP S6210820B2 JP 3960379 A JP3960379 A JP 3960379A JP 3960379 A JP3960379 A JP 3960379A JP S6210820 B2 JPS6210820 B2 JP S6210820B2
Authority
JP
Japan
Prior art keywords
film
charge
temperature
sheet
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3960379A
Other languages
Japanese (ja)
Other versions
JPS55132220A (en
Inventor
Takuo Nakahara
Akira Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diafoil Co Ltd
Original Assignee
Diafoil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diafoil Co Ltd filed Critical Diafoil Co Ltd
Priority to JP3960379A priority Critical patent/JPS55132220A/en
Publication of JPS55132220A publication Critical patent/JPS55132220A/en
Publication of JPS6210820B2 publication Critical patent/JPS6210820B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/06Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed

Description

【発明の詳細な説明】 この発明は熱可塑性樹脂からなる延伸フイルム
の製造法、一層詳しくは押出機の口金から溶融押
出した押出物に静電荷を印加してキヤスチングド
ラム等の冷却体表面に密着させ、冷却固化して得
られた無定形のシート又はフイルム(シート及び
フイルムを総称して、以下の説明では単にフイル
ムという)から延伸フイルムを製造する方法の改
良に係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a stretched film made of a thermoplastic resin, and more specifically, to a method for producing a stretched film made of a thermoplastic resin, and more specifically, by applying an electrostatic charge to an extrudate melted and extruded from an extruder nozzle, the film is applied to the surface of a cooling body such as a casting drum. The present invention relates to an improvement in a method for manufacturing a stretched film from an amorphous sheet or film (the sheet and the film are collectively referred to simply as a film in the following description) obtained by adhering them together and cooling and solidifying them.

熱可塑性樹脂の延伸フイルムを製造する場合、
延伸を均一に行なうために、できるだけ均一な結
晶化していない無定形フイルムをつくらなければ
ならないが、これら無定形シートを製造する方法
としては、通常、押出機を通してTダイ又はIダ
イ等の口金から押出したシート状の溶融物を直ち
に所定の温度に保持した回転冷却体の表面に接触
させ、急冷固化する方法がとられている。このよ
うな方法において最も重要なことは、シート状の
溶融物と冷却体との接触状態であり、これが延伸
フイルムの特性の大部分を左右するともいゝ得
る。例えばシート状溶融物と冷却体との間に局部
的な空気の巻込みがあつたり、またナイロンやポ
リエステル樹脂における場合のように、低分子物
質、即ちオリゴマーが付着して冷却斑が生ずる
と、無定形フイルムが部分的に結晶化して不均一
なものとなり、次の延伸工程で延伸むらが生じた
り、厚み斑が大きくなつたりして延伸フイルムの
品質を大幅に低下させる。
When manufacturing thermoplastic resin stretched film,
In order to stretch uniformly, it is necessary to produce a non-crystallized amorphous film that is as uniform as possible, but the method for manufacturing these amorphous sheets is usually to pass it through an extruder and from a die such as a T-die or an I-die. A method is used in which the extruded sheet-like melt is immediately brought into contact with the surface of a rotary cooling body maintained at a predetermined temperature, and rapidly cooled and solidified. The most important thing in such a method is the state of contact between the sheet-like melt and the cooling body, which can determine most of the properties of the stretched film. For example, if there is local entrainment of air between the sheet-like melt and the cooling body, or if low-molecular substances, ie, oligomers, adhere to nylon or polyester resin, causing cooling spots, The amorphous film partially crystallizes and becomes non-uniform, causing uneven stretching in the next stretching step and increased unevenness in thickness, significantly reducing the quality of the stretched film.

このような不都合を回避する手段として、押出
機の口金から押出されたシート状の溶融物に静電
荷を印加し、冷却体との密着を向上させる方法が
知られており(例えば特公昭37−6142号、特公昭
48−3535号、特公昭48−14784号の各公報参照)、
この方法は極めて有効であり、特にナイロン、ポ
リエステル樹脂をフイルム素材とする場合のよう
に、冷却体に低分子量物質が付着する樹脂を用い
るときに採用すると、冷却体に低分子量の付着が
みられず、従来品に比べ均一且つ完全な無定形フ
イルムを得ることができる。
As a means to avoid such inconveniences, a method is known in which an electrostatic charge is applied to the sheet-like melt extruded from the extruder nozzle to improve the adhesion with the cooling body (for example, the No. 6142, Tokko Akira
48-3535, Special Publication No. 48-14784),
This method is extremely effective, especially when using a resin that has low molecular weight substances attached to the cooling body, such as when using nylon or polyester resin as a film material. First, it is possible to obtain an amorphous film that is more uniform and complete than conventional products.

しかしながら、この静電荷印加法を採る場合、
別の面から問題点のあることがわかつた。即ち前
記公知文献に示されている方法を実施しただけで
はフイルムの品質に問題を生じる。これは急冷固
化する過程において、溶融に近い状態でシート状
物に高電圧をかけ、その後、急激に冷却を行なう
ため、冷却、製膜されたフイルムの内部に電荷が
捕捉される(又は閉じこめられてしまうともいゝ
得る)。このフイルムを延伸すると、延伸後のフ
イルムでは結晶構造内に電荷が閉じこめられ、非
常に安定な電荷として固定される。このような閉
じこめられた電荷は通常の除電手段では殆んど除
くことができない。このような捕捉された電荷を
有するフイルムは、これを用いて最終目的商品を
得るための各種加工を行なう際、種々の問題を惹
起する。例えば、コンデンサー用、金銀糸用等の
目的品を得るために蒸着処理を施こす場合、従来
の捕捉電荷のないフイルムを用いるときでさえ、
蒸着後のロールを硬巻きにすることにより安定な
電荷が生成するが、蒸着前のフイルムに既に安定
な捕捉電荷が存在するときは、捕捉電荷の生成が
一層促進され、次のコーテイングや、スリツト加
工を行なう際、金属ロールとの滑り性が悪くな
り、作業性が大幅に低下し、特に厚さ25μより薄
いフイルムではしわが入つて作業ができなくな
る。また蒸着を施こさない用途においても、通
常、加工中に金属ロールとフイルムとの摩擦によ
り摩擦帯電と称する非常に不安定な電荷が生ず
る。この電荷は装置内に設けた除電バーで、通
常、除去可能であるが、それ以前に捕捉電荷を有
するフイルムでは、摩擦帯電により生ずる電荷が
フイルム内部の捕捉電荷により引込まれて安定化
する傾向があつて、作業性を一層低下させるのみ
ならず、摩擦帯電により生ずる電荷量が大きいた
め、特に冬場等に乾燥時期においては加工時の作
業性が著しく低下する。
However, when adopting this electrostatic charge application method,
It turned out that there was a problem from another aspect. That is, if only the method described in the above-mentioned known document is carried out, a problem will arise in the quality of the film. This is because during the rapid cooling and solidification process, a high voltage is applied to the sheet-like material in a state close to melting, and then it is rapidly cooled, so that charges are captured (or confined) inside the cooled and formed film. (Even if you get it, you get it). When this film is stretched, charges are confined within the crystal structure of the stretched film and are fixed as extremely stable charges. Such trapped charges can hardly be removed by ordinary static eliminating means. A film having such trapped charges causes various problems when it is used for various processing to obtain the final product. For example, when performing vapor deposition processing to obtain desired products such as capacitors or gold and silver threads, even when using conventional films without trapped charges,
Stable charges are generated by tightly winding the roll after vapor deposition, but if stable trapped charges already exist in the film before vapor deposition, the generation of trapped charges is further promoted, and it is difficult to perform the next coating or slitting. During processing, the slipperiness with metal rolls becomes poor, and work efficiency is significantly reduced. In particular, films thinner than 25 μm become wrinkled and become impossible to work with. Furthermore, even in applications where vapor deposition is not performed, very unstable charges called triboelectric charges are usually generated due to friction between the metal roll and the film during processing. This charge can usually be removed by a static elimination bar installed in the device, but with films that already have trapped charges, the charges generated by frictional charging tend to be drawn in and stabilized by the trapped charges inside the film. Not only does this further reduce workability, but also the amount of charge generated by frictional electrification is large, resulting in a significant decrease in workability during processing, particularly during dry periods such as winter.

本発明はかかる背景にかんがみて、静電荷を印
加して冷却体で冷却固化して得られる無定形フイ
ルムから延伸フイルムを製造する方法において、
延伸後のフイルムに上記捕捉電荷を有せず、その
後の作業に悪い影響を与えない熱可塑性樹脂から
なる延伸フイルムを能率よく製造する方法を提供
することを目的とするものであつて、その要旨と
するところは静電荷を印加して冷却体表面で冷却
固化して得られる熱可塑性樹脂よりなる無定形の
シート又はフイルムを延伸して、延伸フイルムを
製造する方法において、延伸処理に先だつて、上
記無定形のフイルム又はシートの温度Tを Tg−20℃≦T≦Tg+50℃ (ここでTgは無定形シート又はフイルムのガ
ラス転移温度)の範囲内に保持した状態で、上記
無定形のシート又はフイルムの片面又は両面に除
電処理を施こし、このシート又はフイルムの延伸
物の電荷保有量を室温からTg+40℃までの温度
領域において測定したときの熱刺激電流の電荷量
で0.7×10-10クーロン/cm2以下とすることを特徴
とする延伸フイルム製造方法に存する。
In view of this background, the present invention provides a method for manufacturing a stretched film from an amorphous film obtained by applying an electrostatic charge and cooling and solidifying with a cooling body.
The purpose of the present invention is to provide a method for efficiently manufacturing a stretched film made of a thermoplastic resin that does not have the above-mentioned trapped charges after stretching and does not adversely affect subsequent work. In a method for manufacturing a stretched film by stretching an amorphous sheet or film made of a thermoplastic resin obtained by applying an electrostatic charge and cooling and solidifying on the surface of a cooling body, prior to the stretching process, While maintaining the temperature T of the amorphous film or sheet within the range of Tg-20℃≦T≦Tg+50℃ (here, Tg is the glass transition temperature of the amorphous sheet or film), When one or both sides of the film are subjected to static elimination treatment and the amount of charge retained in a stretched sheet or film is measured in the temperature range from room temperature to Tg + 40°C, the amount of charge of the thermal stimulation current is 0.7 × 10 -10 coulombs. /cm 2 or less.

以下、本発明方法を詳説する。 The method of the present invention will be explained in detail below.

押出機から溶融押出しされたシート状物に静電
荷を印加し、キヤスチングドラムのような連続冷
却表面で冷却固化し、無定形の熱可塑性樹脂フイ
ルムを得る方法は従来知られている如何なる方法
によつても差支えない。本発明方法はこの無定形
フイルムを、延伸する前の予熱段階で、このフイ
ルムの温度をTg−20℃乃至Tg+50℃、好ましく
はTg乃至Tg+30℃の範囲に保ち除電処理に付す
が、Tg−20℃より低い温度では捕捉電荷の除去
が十分行なわれず、またTg+50℃より高い温度
の場合には、予熱ロール等の金属ロールにフイル
ムが粘着し、均一な延伸フイルムを得ることがで
きない。除電に使用する除電装置としては、従
来、フイルム処理において摩擦帯電等によつて生
じる電荷を除電するのに用いる通常の市販装置
(例えばコロナ放電式除電器)が使用できる。そ
して除電処理の程度は、この処理を経た無定形フ
イルムを延伸し、その延伸フイルムの電荷保有量
を、室温からTg+40℃までの温度領域におけ
る、熱刺激電流測定法で測定した値で、0.7×
10-10クーロン/cm2以下になるように調整する。
もし上記電荷量が0.7×10-10クーロン/cm2より大
きいと、フイルムの二次加工性は大幅に低下す
る。特に上記程度の電荷量が問題となるのは25μ
以下の厚みを有する延伸フイルムの場合であり、
25μより厚いフイルムでは、フイルム厚みによる
腰の強さがあるため、問題となることは比較的少
ない。
Any conventionally known method can be used to obtain an amorphous thermoplastic resin film by applying an electrostatic charge to the sheet material melted and extruded from an extruder, and cooling and solidifying it on a continuous cooling surface such as a casting drum. There is no harm in twisting it. In the method of the present invention, in the preheating stage before stretching, the temperature of the amorphous film is kept in the range of Tg - 20°C to Tg + 50°C, preferably Tg to Tg + 30°C, and subjected to static elimination treatment. If the temperature is lower than 0.degree. C., the trapped charges will not be removed sufficiently, and if the temperature is higher than Tg+50.degree. C., the film will stick to a metal roll such as a preheating roll, making it impossible to obtain a uniform stretched film. As the static eliminator used for static neutralization, a conventional commercially available device (for example, a corona discharge type static eliminator) used to eliminate electric charges caused by frictional electrification in film processing can be used. The degree of charge removal treatment is determined by stretching the amorphous film that has undergone this treatment, and measuring the amount of charge retained in the stretched film using thermally stimulated current measurement in the temperature range from room temperature to Tg + 40℃, which is 0.7×
Adjust so that it is 10 -10 coulombs/cm 2 or less.
If the above charge amount is larger than 0.7×10 −10 coulombs/cm 2 , the secondary processability of the film will be significantly reduced. In particular, it is 25μ that the amount of charge above is a problem.
In the case of a stretched film having the following thickness,
With films thicker than 25μ, this problem is relatively rare because the film has stiffness due to its thickness.

フイルム加工時の作業性を改善する手段として
は従来滑剤、すべり剤等の添加剤を加えて滑り性
を改良する方法が知られており、捕捉電荷が生成
しているフイルムでも大量の添加剤添加によつて
作業性をかなりの程度改良することができるが、
透明性が要求されるフイルムでは、添加剤の混入
は透明性の低下につながり、その他の特性も低下
させるので実施できず、本発明方法による捕捉電
荷の除去は必須になる。
Conventionally, methods for improving workability during film processing include adding additives such as lubricants and sliding agents to improve slipperiness. Although workability can be improved to a considerable extent by
For films that require transparency, the incorporation of additives cannot be carried out because it leads to a decrease in transparency and also degrades other properties, so it is essential to remove trapped charges by the method of the present invention.

また捕捉電荷を有する延伸シートをガラス転移
点以上、好ましくはTg+40℃以上、フイルムの
融点以下の温度範囲内で、フイルムの特性を失な
わぬ程度の高温に長時間保持しても捕捉電荷を除
去することができる。しかし、このためには数十
分というオーダーの時間が必要であり、数十m/
分乃至数百m/分という速度で延伸加工を行なつ
ている現状では上記のような除電処理は実用性か
らいつて不適である。
In addition, the trapped charges can be removed even if the stretched sheet with trapped charges is held at a temperature above the glass transition point, preferably above Tg + 40°C, and below the melting point of the film for a long time without losing the film's properties. can do. However, this requires time on the order of several tens of minutes, and
At present, where stretching is carried out at speeds ranging from 100 m/min to several hundred m/min, the above-described static elimination treatment is unsuitable from a practical standpoint.

除電処理の程度は、上述のように、延伸したと
きのフイルムを所定領域の温度で測定したときの
熱刺激電流の電荷量が一定以下になるようにする
のであるが、そのための調整は、フイルムの流れ
速度、フイルムの厚み、除電装置の除電バーの電
極の大きさ、除電能力、フイルムと除電バーとの
距離、除電装置の設置位置等の要素によつて行な
うことができる。これら要素の中でも、フイルム
の厚みは被処理フイルムが決まれば一定となり、
フイルムの流れ速度も他の処理との関連で実質的
に一定の範囲内に制限されるので、他の要素の組
合わせによつて調整を行なう。そして一定の静電
荷の印加によつて得られた無定形フイルムについ
て、その延伸物の上記温度領域の熱刺激電流の電
荷量の測定を繰返し、所望値を得る条件が判明す
れば、それ以後は都度熱刺激電流の電荷量を測定
しなくとも再現性ある実施を遂行することができ
る。
As mentioned above, the degree of static elimination treatment is such that the amount of charge of the thermal stimulation current is below a certain level when the stretched film is measured at a temperature in a predetermined area. This can be done depending on factors such as the flow speed of the film, the thickness of the film, the size of the electrode of the static eliminating bar of the static eliminating device, the static eliminating ability, the distance between the film and the static eliminating bar, and the installation position of the static eliminating device. Among these factors, the film thickness remains constant once the film to be processed is determined.
Since the film flow rate is also limited within a substantially fixed range in conjunction with other processing, adjustments are made by a combination of other factors. Then, for the amorphous film obtained by applying a constant electrostatic charge, the charge amount of the thermally stimulated current in the above temperature range of the stretched product is repeatedly measured, and once the conditions for obtaining the desired value are found, from then on, Reproducible implementation can be achieved without measuring the amount of charge of the thermal stimulation current each time.

上記捕捉電荷の除電程度の調整を達成する手段
の主要なものの一つは無定形フイルムと除電バー
との距離であり、その距離は10〜100mm、好まし
くは15〜50mmの範囲から選ばれる。即ち距離は短
かければよいわけでなく、10mmより近い距離では
逆に捕捉電荷の増加が認められ、一方100mmより
遠くなると除電の効果がなくなる。また除電処理
はフイルムの両面に対して行うのが好ましいが、
片面に対してだけ行なつてもよい。
One of the main means for adjusting the degree of charge removal of the trapped charges is the distance between the amorphous film and the charge removal bar, and the distance is selected from the range of 10 to 100 mm, preferably 15 to 50 mm. In other words, the shorter the distance, the better; on the contrary, if the distance is closer than 10 mm, an increase in the trapped charge will be observed, while if it is farther than 100 mm, the static elimination effect will be lost. Also, it is preferable to perform static elimination treatment on both sides of the film.
It may be done only on one side.

熱刺激電流の測定を行なう装置を第1図に示
す。第1図はその装置の概要図であり、図中、1
は恒温槽、2は表裏両面に導電性塗料を塗布した
フイルムサンプル、3は電極、4は振動容量型微
少電流計(本発明の実施例で使用したのはタケダ
理研製TR−84型)である。測定を行なうには、
フイルムサンプルの両面に導電性塗料を塗布し、
電極3の間に挟み、恒温槽1内を一定の昇温速度
(1.5℃/分)で昇温させ、そのときの電流値(脱
分極電流、アンペヤー)を読みとり、電極面積で
除した値を、各温度に対してプロツトとし、図表
を作成する。その図表の一例を第2図に示す。こ
の図表において縦軸は単位面積(1cm2)当りの脱
分極電流(amp)、横軸は温度(℃)である。
FIG. 1 shows an apparatus for measuring thermally stimulated current. Figure 1 is a schematic diagram of the device, and in the figure, 1
2 is a film sample coated with conductive paint on both the front and back sides, 3 is an electrode, and 4 is a vibratory capacitance type microcurrent meter (TR-84 model manufactured by Takeda Riken) was used in the examples of the present invention. be. To make measurements,
Apply conductive paint to both sides of the film sample,
Place it between the electrodes 3, raise the temperature inside the constant temperature chamber 1 at a constant temperature increase rate (1.5℃/min), read the current value (depolarization current, amperage) at that time, and divide the value by the electrode area. , plot each temperature and create a chart. An example of the chart is shown in Figure 2. In this chart, the vertical axis is depolarization current (amp) per unit area (1 cm 2 ), and the horizontal axis is temperature (° C.).

第2図において、実線5は捕捉電荷を有するフ
イルムを上記のようにして測定した刺激電流の温
度特性であり、点線6は同サンプルを上記の測定
後、室温まで降温し、再度昇温して測定した熱刺
激電流の温度特性である。電荷量とは実線5と点
線6で囲まれた面積(図中、斜線を施した部分)
をいうものである。なお、電流の極性は、第2図
とは反対になることもある。
In FIG. 2, the solid line 5 is the temperature characteristic of the stimulation current measured as described above on a film with trapped charges, and the dotted line 6 is the temperature characteristic of the same sample after the above measurement, cooled to room temperature, and then heated again. This is the temperature characteristic of the measured thermal stimulation current. The amount of charge is the area surrounded by solid line 5 and dotted line 6 (shaded area in the figure)
This is what it means. Note that the polarity of the current may be opposite to that shown in FIG.

本発明方法は延伸可能な熱可塑性樹脂であれば
如何なるものにでも適用できるが、特にポリマー
中に低分子量物質(オリゴマー)が多量に含まれ
ている樹脂、例えばナイロン、ポリエステル(例
えばポリエチレンテレフタレート或いはエチレン
テレフタレート構成単位が70モル%以上含有する
共重合体、又はこれらのブレンド品)等の延伸フ
イルムの製造において有効である。そして本発明
方法によつて得られた延伸フイルムは、コンデン
サー用、金銀糸用等の製品に仕上げるための加工
を行なう際、極めて良好である。
The method of the present invention can be applied to any stretchable thermoplastic resin, but is particularly applicable to resins containing a large amount of low molecular weight substances (oligomers) in the polymer, such as nylon, polyester (such as polyethylene terephthalate or ethylene). It is effective in producing stretched films such as copolymers containing 70 mol% or more of terephthalate structural units, or blends thereof. The stretched film obtained by the method of the present invention is extremely suitable for finishing into products such as capacitors and gold and silver threads.

次に本発明の実施例を説明するが、これらの例
では、第3図に示す構成の装置を用いて実施し
た。第3図において、11は押出機の口金、12
は静電荷の印加電極、13は静電荷印加のための
高電圧発生器、14はキヤスチングドラム、15
はガイドロール、16及び17は予熱ロール、1
8は延伸用低速ロール、19は延伸用高速ロー
ル、20は冷却ロール、21は押出機口金から溶
融押出しされたシート状物、22は延伸フイルム
である。
Next, examples of the present invention will be described. In these examples, an apparatus having the configuration shown in FIG. 3 was used. In Fig. 3, 11 is the extruder mouthpiece, 12
13 is a high voltage generator for applying static charge; 14 is a casting drum; 15
is a guide roll, 16 and 17 are preheating rolls, 1
Reference numeral 8 denotes a low-speed stretching roll, 19 a high-speed stretching roll, 20 a cooling roll, 21 a sheet-like material melt-extruded from an extruder die, and 22 a stretched film.

また、素材樹脂のガラス転移温度はフイルムを
室温から5℃/分の定昇速度で昇温させながら測
定した示差熱分析(パーキシエルマー社製DSC
−1B使用)により得られた図表の線において、
最初に発現する吸熱ピークの立上り接線とベース
ラインの接線との交点をガラス転移温度(Tg)
としたものである。ポリエチレンテレフタレート
では、Tgはほぼ70℃である。
In addition, the glass transition temperature of the material resin was determined by differential thermal analysis (DSC manufactured by Perxielmer), which was measured while raising the temperature of the film from room temperature at a constant rate of 5°C/min.
In the diagram line obtained by -1B use),
The intersection of the rising tangent of the first endothermic peak and the baseline tangent is the glass transition temperature (Tg).
That is. For polyethylene terephthalate, the Tg is approximately 70°C.

また実施例において、得られたフイルムの作業
性とは印刷及びコーテイング加工時において、し
わの発生度合いを5段階に分け、1はロールが真
円に巻けない程度にしわが入つたもの、3はロー
ル外観は良好であるが若干しわが入るもの、5は
全くしわが入らないもの、としたものである。実
用面からは4〜5程度であれば使用可能である。
In addition, in the examples, the workability of the obtained film is determined by the degree of wrinkles generated during printing and coating processing, which is divided into five levels. The appearance is good, but there are some wrinkles, and the number 5 is that there are no wrinkles at all. From a practical standpoint, a value of about 4 to 5 can be used.

実施例 1 第3図に示す装置を用い、極限粘度0.62のポリ
エチレンテレフタレートを押出温度290℃で口金
21から溶融押出し、このシート状の押出物に静
電荷を印加し、(電圧20キロボルト、電流10ミリ
アンベヤー)、キヤスチングドラム14に密着さ
せて冷却固化し、幅700mm、厚み150μの急冷フイ
ルムを得た。引続き予熱ロール16及び17でフ
イルムを85〜95℃(赤外線輻射温度計で測定)に
加熱保持し、図中、Cで示す位置に設置した除電
装置(春日電気社製KSC−325−S型)により、
フイルムから電極までの距離を25mmとしてフイル
ムの両面除電を行ない、直ちに同温度において、
延伸用低速ロール18と同高速ロール19との間
で縦方向に3.2倍延伸し、次いでテンター(図示
省略)内で90℃において横方向に3.9倍延伸した
後、200℃で熱固定し(図示省略)、しかる後冷却
して厚み12μの外観の極めて良好な二軸延伸フイ
ルムを得た。(フイルムのTgは70℃)。得られた
フイルムの20℃から110℃までの熱刺激電流測定
における電荷量は0.10×10-10クーロン/cm2であ
り、作業性の評価は5であつた。
Example 1 Using the apparatus shown in Fig. 3, polyethylene terephthalate with an intrinsic viscosity of 0.62 was melt-extruded from the die 21 at an extrusion temperature of 290°C, and an electrostatic charge was applied to this sheet-like extrudate (voltage 20 kilovolts, current 10 The film was cooled and solidified in close contact with the casting drum 14 to obtain a quenched film with a width of 700 mm and a thickness of 150 μm. Subsequently, the film was heated and maintained at 85 to 95°C (measured with an infrared radiation thermometer) using preheating rolls 16 and 17, and a static eliminator (KSC-325-S type manufactured by Kasuga Denki Co., Ltd.) was installed at the position indicated by C in the figure. According to
The distance from the film to the electrode was set to 25 mm, and the static electricity was removed from both sides of the film. Immediately at the same temperature,
It was stretched 3.2 times in the machine direction between the low-speed stretching roll 18 and the high-speed roll 19, then stretched 3.9 times in the cross direction at 90°C in a tenter (not shown), and then heat-set at 200°C (not shown). (omitted), and then cooled to obtain a biaxially stretched film with a thickness of 12 μm and an extremely good appearance. (Tg of film is 70℃). The amount of electric charge of the obtained film in thermally stimulated current measurement from 20°C to 110°C was 0.10 x 10 -10 coulombs/cm 2 , and the workability was evaluated as 5.

比較例 1 実施例1と全く同様にして延伸フイルムを製造
し、ただフイルム中に捕捉された電荷の除電処理
を全く行なわなかつたところ、得られた延伸フイ
ルムについて同様に熱刺激電流を測定した結果、
電荷量は5×10-10クーロン/cm2であり、作業性
の評価は1であつた。
Comparative Example 1 A stretched film was produced in exactly the same manner as in Example 1, but no charge removal process was performed on the charges trapped in the film, and the thermal stimulation current was similarly measured for the stretched film obtained. ,
The amount of electric charge was 5×10 −10 coulombs/cm 2 and the workability was evaluated as 1.

比較例 2 実施例1と全く同様にして延伸フイルムを製造
し、ただ除電処理を延伸工程前に行なわず、二軸
延伸し、熱固定した後、85℃で行なつたところ、
延伸フイルムの熱刺激電流測定による電荷量は5
×10-10クーロン/cm2(即ち除電処理を全く行な
わない比較例1における結果と同じ)であり、フ
イルムの作業性評価は2であつた。
Comparative Example 2 A stretched film was produced in exactly the same manner as in Example 1, except that the static elimination treatment was not performed before the stretching process, and the film was biaxially stretched and heat-set at 85°C.
The amount of charge measured by thermally stimulated current on the stretched film is 5.
×10 -10 coulombs/cm 2 (that is, the same result as in Comparative Example 1 in which no static elimination treatment was performed), and the workability evaluation of the film was 2.

実施例 2 除電バーをキヤステイング面とは逆の面のみ
(片面)に設置した以外は実施例1と同一条件で
操作し、厚み12μの外観の非常に良好な二軸延伸
ポリエチレンテレフタレートフイルムを得た。こ
のフイルムの20℃から110℃までの熱刺激電流測
定における電荷量は0.15×10-10クーロン/cm2
あり、作業性の評価は5であつた。
Example 2 A biaxially stretched polyethylene terephthalate film with a thickness of 12μ and a very good appearance was obtained by operating under the same conditions as in Example 1 except that the static elimination bar was installed only on the opposite side (one side) from the casting surface. Ta. The amount of charge of this film in heat-stimulated current measurement from 20°C to 110°C was 0.15 x 10 -10 coulombs/cm 2 , and the workability was evaluated as 5.

実施例 3 除電バーの位置を第3図Bで示す位置に設置
し、フイルムから電極までの距離を50mmとし、フ
イルム温度を約75℃に保持して、フイルム面に対
し除電を行ない、85〜95℃で縦方向に一軸延伸し
た以外は実施例1と同一条件で操作し、厚み12μ
の外観極めて良好な延伸フイルムを得た。このフ
イルムの20℃から110℃までの熱刺激電流測定に
おける電荷量は0.28×10-10クーロン/cm2であ
り、作業性の評価は5であつた。
Example 3 The static eliminating bar was installed at the position shown in Figure 3B, the distance from the film to the electrode was 50 mm, the film temperature was maintained at approximately 75°C, and static electricity was removed from the film surface until 85~ The process was carried out under the same conditions as in Example 1, except for uniaxial stretching in the longitudinal direction at 95°C, and the thickness was 12 μm.
A stretched film with an extremely good appearance was obtained. The amount of charge of this film in thermally stimulated current measurement from 20°C to 110°C was 0.28 x 10 -10 coulombs/cm 2 , and the workability was evaluated as 5.

実施例 4 除電バーをキヤステイング面とは逆の面のみ
(片面)に設置した以外は実施例3と同一条件で
操作し、厚み12μの外観極めて良好な延伸フイル
ムを得た。このフイルムの20℃から110℃までの
熱刺激電流測定における電荷量は0.30×10-10
ーロン/cm2であり、作業性の評価は5であつた。
Example 4 A stretched film having a thickness of 12 μm and having an extremely good appearance was obtained by operating under the same conditions as in Example 3 except that the static elimination bar was installed only on the opposite side (one side) to the casting surface. The charge amount of this film in heat-stimulated current measurement from 20°C to 110°C was 0.30×10 -10 coulombs/cm 2 , and the workability was evaluated as 5.

実施例 5 除電するときのフイルム温度を110℃とし、縦
延伸温度を110℃とした以外は実施例2と同一条
件で操作し、厚み12μの外観極めて良好な二軸延
伸フイルムを得た。このフイルムの20℃から110
℃までの熱刺激電流測定における電荷量は0.15×
10-10クーロン/cm2であり、作業性の評価は5で
あつた。
Example 5 A biaxially stretched film with a thickness of 12 μm and an extremely good appearance was obtained by operating under the same conditions as in Example 2 except that the film temperature during static elimination was 110° C. and the longitudinal stretching temperature was 110° C. 110 from 20℃ for this film
The amount of charge in thermally stimulated current measurement up to ℃ is 0.15×
10 -10 coulombs/cm 2 , and the workability evaluation was 5.

実施例 6 除電バーの電極からフイルムまでの距離を100
mmとした以外は実施例4と同一条件で操作し、厚
み12μの外観極めて良好な延伸フイルムを得た。
このフイルムの20℃から110℃までの熱刺激電流
測定における電荷量は0.45×10-10クーロン/cm2
であり、作業性の評価は4であつた。
Example 6 The distance from the electrode of the static elimination bar to the film is 100
The operation was carried out under the same conditions as in Example 4 except that the thickness was 12 mm, and a stretched film having a thickness of 12 μm and having an extremely good appearance was obtained.
The amount of charge of this film in thermally stimulated current measurements from 20℃ to 110℃ is 0.45×10 -10 coulombs/cm 2
The workability evaluation was 4.

比較例 3 除電バーの電極からフイルムまでの距離を120
mmとした以外は実施例1と同一条件で操作し、厚
み12μの外観極めて良好な二軸延伸フイルムを得
た。このフイルムの20℃から110℃までの熱刺激
電流測定における電荷量は0.75×10-10クーロ
ン/cm2であり、作業性の評価は3であつた。
Comparative example 3 The distance from the electrode of the static elimination bar to the film is 120
A biaxially stretched film having a thickness of 12 μm and having an extremely good appearance was obtained by operating under the same conditions as in Example 1 except that the film was set to mm. The amount of charge of this film in thermally stimulated current measurement from 20°C to 110°C was 0.75 x 10 -10 coulombs/cm 2 , and the workability was evaluated as 3.

比較例 4 除電バーの電極からフイルムまでの距離を5mm
とした以外は実施例1と同一条件で操作し、厚み
12μの外観良好な二軸延伸フイルムを得た。この
フイルムの20℃から110℃までの熱刺激電流測定
における電荷量は0.93×10-10クーロンであり、
作業性の評価は3であつた。
Comparative example 4 Distance from the electrode of the static elimination bar to the film is 5 mm
The operation was carried out under the same conditions as in Example 1 except that the thickness
A biaxially stretched film with a thickness of 12μ and a good appearance was obtained. The amount of charge of this film in thermally stimulated current measurement from 20°C to 110°C is 0.93 × 10 -10 coulombs,
The workability evaluation was 3.

比較例 5 除電装置の設置位置を第3図Aで示す箇所と
し、フイルムから電極までの距離を25mmとし、フ
イルム温度を35℃に保持して両面除電を行ない、
85〜95℃で縦延伸した以外は実施例1と同一条件
で操作し、厚み12μの外観良好な二軸延伸フイル
ムを得た。このフイルムの20℃から110℃までの
熱刺激電流測定における電荷量は2.3×10-10クー
ロン/cm2であり、作業性の評価は2であつた。
Comparative Example 5 The static eliminator was installed at the location shown in Figure 3A, the distance from the film to the electrode was 25 mm, and the film temperature was maintained at 35°C to perform static neutralization on both sides.
A biaxially stretched film with a thickness of 12 μm and a good appearance was obtained by operating under the same conditions as in Example 1 except for longitudinal stretching at 85 to 95°C. The charge amount of this film in heat-stimulated current measurement from 20°C to 110°C was 2.3 x 10 -10 coulombs/cm 2 , and the workability was evaluated as 2.

比較例 6 除電するときのフイルム温度を120℃に保持し
た以外は実施例1と同一条件で二軸延伸フイルム
を製造しようとしたが、予熱ロールで粘着が起
り、実際に採取したフイルムは外観が非常に悪か
つた。なお、このフイルムの20℃から110℃まで
の熱刺激電流測定による電荷量は0.10×10-10
ーロン/cm2であつた。
Comparative Example 6 An attempt was made to produce a biaxially stretched film under the same conditions as in Example 1 except that the film temperature during static elimination was maintained at 120°C, but adhesion occurred on the preheating roll and the appearance of the film actually sampled was poor. It was very bad. Note that the amount of charge of this film was 0.10×10 −10 coulombs/cm 2 as determined by thermally stimulated current measurement from 20° C. to 110° C.

以上説明し、実施例に記載したところは本発明
の理解を助けるためのものであり、本発明はこれ
らによつて制限されるものでなく、発明の要旨内
でその他の変更、変形例をとることができるもの
である。
What has been explained above and described in the examples is for the purpose of helping the understanding of the present invention, and the present invention is not limited thereto, and other changes and modifications may be made within the gist of the invention. It is something that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱刺激電流を測定する装置の概要図、
第2図は第1図に示す装置を用い、フイルムサン
プルを一定昇温速度で昇温して熱刺激電流を測定
した結果を示す図表、第3図は本発明方法を実施
する装置を説明するための説明図である。 図中、1は恒温槽、2はフイルムサンプル、3
は電極、4は振動容量型微少電流計、11は押出機
の口金、12は静電気の印加電極、13は高電圧
発生器、14はキヤスチングドラム、15はガイ
ドロール、16及び17は予熱ロール、18は延
伸用低速ロール、19は延伸用高速ロールであ
る。
Figure 1 is a schematic diagram of the device for measuring thermally stimulated current;
Fig. 2 is a chart showing the results of measuring thermally stimulated current by heating a film sample at a constant heating rate using the apparatus shown in Fig. 1, and Fig. 3 explains the apparatus for carrying out the method of the present invention. FIG. In the figure, 1 is a constant temperature bath, 2 is a film sample, and 3
1 is an electrode, 4 is a vibratory capacitance type microammeter, 11 is an extruder mouthpiece, 12 is an electrode for applying static electricity, 13 is a high voltage generator, 14 is a casting drum, 15 is a guide roll, 16 and 17 are preheating rolls , 18 are low-speed stretching rolls, and 19 are high-speed stretching rolls.

Claims (1)

【特許請求の範囲】 1 静電荷を印加して冷却体表面で冷却固化して
得られる熱可塑性樹脂よりなる無定形のシート又
はフイルムを延伸して、延伸フイルムを製造する
方法において、延伸処理に先だつて、上記無定形
のフイルム又はシートの温度Tを Tg−20℃≦T≦Tg+50℃ (ここでTgは無定形シート又はフイルムのガ
ラス転移温度)の範囲内に保持した状態で、上記
無定形のシート又はフイルムの片面又は両面に除
電処理を施こし、このシート又はフイルムの延伸
物の電荷保有量を室温からTg+40℃までの温度
領域において測定したときの熱刺激電流の電荷量
で0.7×10-10クーロン/cm2以下とすることを特徴
とする延伸フイルム製造方法。
[Scope of Claims] 1. A method for producing a stretched film by stretching an amorphous sheet or film made of a thermoplastic resin obtained by applying an electrostatic charge and cooling and solidifying on the surface of a cooling body. First, while maintaining the temperature T of the amorphous film or sheet within the range of Tg-20℃≦T≦Tg+50℃ (here, Tg is the glass transition temperature of the amorphous sheet or film), When static electricity removal treatment is applied to one or both sides of a sheet or film, and the amount of charge retained in a stretched sheet or film is measured in the temperature range from room temperature to Tg + 40℃, the amount of charge of the thermally stimulated current is 0.7 × 10 -10 coulombs/cm 2 or less, a method for producing a stretched film.
JP3960379A 1979-04-02 1979-04-02 Manufacture of stretched film Granted JPS55132220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3960379A JPS55132220A (en) 1979-04-02 1979-04-02 Manufacture of stretched film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3960379A JPS55132220A (en) 1979-04-02 1979-04-02 Manufacture of stretched film

Publications (2)

Publication Number Publication Date
JPS55132220A JPS55132220A (en) 1980-10-14
JPS6210820B2 true JPS6210820B2 (en) 1987-03-09

Family

ID=12557683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3960379A Granted JPS55132220A (en) 1979-04-02 1979-04-02 Manufacture of stretched film

Country Status (1)

Country Link
JP (1) JPS55132220A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6386980B2 (en) * 2015-08-21 2018-09-05 富士フイルム株式会社 Optical film manufacturing method

Also Published As

Publication number Publication date
JPS55132220A (en) 1980-10-14

Similar Documents

Publication Publication Date Title
US3068528A (en) Method for conveying and stretching thermoplastic film
JPS6241095B2 (en)
JPS6040383B2 (en) Polypropylene composite biaxially stretched film
GB2218036A (en) Biaxially stretched poly- epsilon -caproamide film
US3709964A (en) Process for producing polymeric film
JPS6210820B2 (en)
JPS5923270B2 (en) Manufacturing method of polyamide polymer stretched film
JP3369381B2 (en) Method for producing polyamide film
JPH09141736A (en) Biaxially stretched polyester film and production thereof
JPH11216759A (en) Manufacture of thermoplastic resin film
JPS6138012B2 (en)
JP2000263572A (en) Manufacture of thermoplastic resin sheet
JP4392564B2 (en) Method for producing thermoplastic resin film
US5954926A (en) Glow discharge treatment of a web substrate surface in a web coating line
JP4082061B2 (en) Corona discharge treatment method, plastic film production method and apparatus
JP3654540B2 (en) Polypropylene film for capacitors
JPH0764023B2 (en) Method for producing biaxially stretched polyetheretherketone film
JP2000271988A (en) Manufacture of aliphatic polyester film
CA1044867A (en) Method for the production of polymeric film
KR20180093559A (en) High-speed casting method for preparation of a polymeric film
JPH09300456A (en) Polyamide sheet and its production
JPS6342832A (en) Manufacture of polyester film
JP4437587B2 (en) Method for producing thermoplastic resin sheet
EP0008825B1 (en) Production of polyamide material sheet
JP2001334565A (en) Method for manufacturing polyamide resin sheet