JPH0483627A - Manufacture of thermoplastic polymer sheet - Google Patents

Manufacture of thermoplastic polymer sheet

Info

Publication number
JPH0483627A
JPH0483627A JP2199814A JP19981490A JPH0483627A JP H0483627 A JPH0483627 A JP H0483627A JP 2199814 A JP2199814 A JP 2199814A JP 19981490 A JP19981490 A JP 19981490A JP H0483627 A JPH0483627 A JP H0483627A
Authority
JP
Japan
Prior art keywords
sheet
discharge electrode
electrode
moving
thermoplastic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2199814A
Other languages
Japanese (ja)
Other versions
JP2924123B2 (en
Inventor
Satoru Hagiwara
萩原 識
Kimio Sato
佐藤 公夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2199814A priority Critical patent/JP2924123B2/en
Publication of JPH0483627A publication Critical patent/JPH0483627A/en
Application granted granted Critical
Publication of JP2924123B2 publication Critical patent/JP2924123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92047Energy, power, electric current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/92409Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92571Position, e.g. linear or angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To control a discharge electrode at an optimum position and to reduce a longitudinal thickness irregularity by detecting variation in a discharge current and moving the electrode while holding a distance to the surface of a moving cooler constant to minimize its variation width. CONSTITUTION:A polymer sheet 2 melted and extracted from a base 1 is brought into contact with a moving cooler 3, solidified, and continuously fed to a posttreating step through a peeling roller 11. A distance between a discharge electrode 4 and the surface of the cooler 3 is set to a suitable predetermined value so as to generate a suitable transfer gradient therebetween and not to generate an insulation breakdown at the sheet 2. A current variation width is monitored, its width variation is differentiated, and a position where its differential coefficient becomes '0' by a controller 10. The variation width at an initial position (arbitrary) is compared with that at a position when the electrode is displaced at an infinitesimal distance, and the electrode is moved in a direction for obtaining a smaller variation width.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱可塑性重合体シートの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing thermoplastic polymer sheets.

更に詳しくは、長手方向のシート厚さ斑の小さい熱可塑
性重合体シートの製造方法に関する。
More specifically, the present invention relates to a method for producing a thermoplastic polymer sheet with small variations in sheet thickness in the longitudinal direction.

[従来の技術] 熱可塑性重合体シートは磁気記録材のベースシト、写真
用ベースシート、コンデンサの誘電体材料等の種々の工
業用途素材として用いられるが、これらの用途では、シ
ートの厚さ、特に長手方向のシート厚さについて高度な
寸法精度が要求される。
[Prior Art] Thermoplastic polymer sheets are used as materials for various industrial applications, such as base sheets for magnetic recording materials, base sheets for photographs, and dielectric materials for capacitors. A high degree of dimensional accuracy is required regarding the sheet thickness in the longitudinal direction.

従来から、溶融した熱可塑性重合体を移動冷却体上にシ
ート状に抽出して成形するに際し、重合体シート上方に
高電圧を印加した放電電極を設置すれば静電的に重合体
シート冷却体への密着度を向上させることができ良好な
成形状態が得られることが知られている(特開昭49−
55759)。
Conventionally, when extracting and molding a molten thermoplastic polymer into a sheet on a moving cooling body, a discharge electrode to which a high voltage is applied is installed above the polymer sheet, and the polymer sheet is electrostatically transferred to the cooling body. It is known that good molding conditions can be obtained by improving the degree of adhesion to
55759).

この方法に於いて、良好な成形状態を得るためには放電
電極の位置が重要な条件となる。
In this method, the position of the discharge electrode is an important condition in order to obtain a good molding state.

特に、放電電極の重合体長手方向の位置が重要であり、
移動冷却体との距離を一定に保ちながら容易に移動設定
できる方法が開示されている(特開昭57−8116)
In particular, the position of the discharge electrode in the longitudinal direction of the polymer is important;
A method for easily setting the moving cooling body while keeping the distance to the moving cooling body constant is disclosed (Japanese Patent Laid-Open No. 57-8116).
.

又さらに短時間で良好な成形性の得られる最適位置に調
整する方法についても開示されており、電流値最大とい
う定量化され位置に自動制御することにより高速化かは
かれることが示されている(特開昭6O−120028
)。
Furthermore, it also discloses a method for adjusting to the optimum position that provides good formability in a short time, and it is shown that speeding up can be achieved by automatically controlling the quantified position of maximum current value ( JP-A-6O-120028
).

放電電極の位置とシートの長手方向厚み班についても、
成形後のシート厚みを測定し、周波数解析、演算を行な
い、厚さ斑を最小とする位置に制御する方法が開示され
ている(特開昭63−62723)。
Regarding the position of the discharge electrode and the thickness of the sheet in the longitudinal direction,
A method is disclosed in which the sheet thickness after molding is measured, frequency analysis and calculations are performed, and the thickness is controlled to a position where unevenness is minimized (Japanese Patent Application Laid-Open No. 63-62723).

[発明か解決しようとする課題] しかし、本発明者らの検討では、かかえる従来技術の方
法ではシートの長手方向厚み斑は充分に小さくならない
ことが判明した。
[Problems to be Solved by the Invention] However, studies conducted by the present inventors have revealed that the thickness irregularities in the longitudinal direction of the sheet cannot be sufficiently reduced by the method of the prior art.

すなわち、特開昭60−120028に開示された電流
値最大の位置では高速化のための、溶融ポリマシートと
移動冷却体間のエアーかみ込み防止には優れでいるもの
の、長手方向厚み斑は最小にならない。また、特開昭6
3−62723に開示された方法は、解析、演算に時間
かかかり非定常的に変動する厚さ変動に対して時間おく
れがあり充分に制御できない。
That is, at the position of the maximum current value disclosed in JP-A-60-120028, although it is excellent in preventing air from being trapped between the molten polymer sheet and the moving cooling body to increase speed, the longitudinal thickness unevenness is minimal. do not become. Also, Unexamined Japanese Patent Publication No. 6
The method disclosed in No. 3-62723 requires time for analysis and calculation, and cannot adequately control thickness fluctuations that fluctuate unsteadily due to a time lag.

本発明の目的は、かかる従来技術の欠点を解消し、長手
方向厚さ斑の小さいシートを製造する方法に関する。
The object of the present invention is to overcome the drawbacks of the prior art and to provide a method for producing a sheet with small thickness variations in the longitudinal direction.

[課題を解決するための手段] 本発明は、溶融した熱可塑性重合体を口金からシート状
にして移動冷却体上へ押出し、該重合体シート上方に設
置した放電電極により静電荷を印加し、該移動冷却体に
密着固化せしめる熱可塑性重合体シートの製造方法にお
いて、放電電流変動を検出して、その変動幅が最小とな
るように、前記放電電極を移動冷却体表面との距離を一
定に保ちながら移動させて、該放電電極を最適位置に制
御することを特徴とする熱可塑性重合体シートの製造方
法に関するものである。
[Means for Solving the Problems] The present invention involves extruding a molten thermoplastic polymer into a sheet from a die onto a moving cooling body, applying an electrostatic charge using a discharge electrode installed above the polymer sheet, In the method for producing a thermoplastic polymer sheet that is tightly solidified on the moving cooling body, discharge current fluctuations are detected and the distance between the discharge electrode and the surface of the moving cooling body is kept constant so that the width of the fluctuation is minimized. The present invention relates to a method for producing a thermoplastic polymer sheet, characterized in that the discharge electrode is controlled to an optimum position by moving the discharge electrode while maintaining the discharge electrode at an optimum position.

本発明における熱可塑性重合体はポリエチレン、ポリプ
ロピレン等のポリオレフィン類、ポリエステル類、ポリ
アミド類、ポリイミド類、ポリスチレン類、ポリビニル
類等のシートとして成形され得る周知の重合体およびこ
れらの共重合体、混合体であって他の添加剤、例えば帯
電防止剤、耐候剤、有機粒子や無機粒子からなる滑剤な
どが含有されたものであってもよい。
The thermoplastic polymer in the present invention includes well-known polymers that can be molded into sheets such as polyolefins such as polyethylene and polypropylene, polyesters, polyamides, polyimides, polystyrenes, polyvinyls, etc., and copolymers and mixtures thereof. It may also contain other additives, such as antistatic agents, weathering agents, and lubricants made of organic or inorganic particles.

又、口金から抽出されるシートは単層でも、多層に積層
されたものであっても良い。本発明において、該溶融重
合体に放電電極により静電荷を付与する方法は公知の装
置方法を用いる。
Further, the sheet extracted from the nozzle may be a single layer or a multi-layered sheet. In the present invention, a known apparatus method is used to impart an electrostatic charge to the molten polymer using a discharge electrode.

以下図面により本発明の詳細な説明する。The present invention will be explained in detail below with reference to the drawings.

第1図に於いて口金1から溶融抽出された重合体シート
2は移動冷却体3(この場合冷却ローラ)に、接触、冷
却、固化され、引き離しローラ11を介して、後処理工
程へ連続的に送られる。
In FIG. 1, the polymer sheet 2 melt-extracted from the nozzle 1 is brought into contact with a moving cooling body 3 (in this case, a cooling roller), cooled and solidified, and is continuously transferred to a post-processing process via a separating roller 11. sent to.

放電電極4は、高電圧発生装置5により高電圧が印加さ
れ移動冷却体に対して高電位に保たれている。
A high voltage is applied to the discharge electrode 4 by a high voltage generator 5, and the discharge electrode 4 is maintained at a high potential with respect to the moving cooling body.

放電電極4は、モータ6、ギア7.8により、冷却体3
表面からの距離が一定となるように移動できる。
The discharge electrode 4 is connected to the cooling body 3 by a motor 6 and a gear 7.8.
It can be moved at a constant distance from the surface.

このように構成された装置を用いて、本発明の方法は次
のように実施される。まず、放電電極4と冷却体3表面
との距離は、この間に適切な電位勾配が生じ、かつ重合
体シート2に絶縁破壊が生じないような適切な一定値に
設定される。
Using the apparatus configured as described above, the method of the present invention is carried out as follows. First, the distance between the discharge electrode 4 and the surface of the cooling body 3 is set to an appropriate constant value such that an appropriate potential gradient occurs therebetween and no dielectric breakdown occurs in the polymer sheet 2.

つぎに、放電電極4の、冷却体3の円周方向における位
置制御について述べる。円周方向の位置(第2図参照)
と、放電電極4から冷却体3へ流れる電流の関係は第3
図、放電電極の円周方向の位置とシートの長手方向の厚
みむらとの関係は第4図に示した。
Next, position control of the discharge electrode 4 in the circumferential direction of the cooling body 3 will be described. Circumferential position (see Figure 2)
The relationship between the current flowing from the discharge electrode 4 to the cooling body 3 is the third
The relationship between the position of the discharge electrode in the circumferential direction and the thickness unevenness in the longitudinal direction of the sheet is shown in FIG.

第3図において、Rで示した幅が電流計9によって測定
された電流変動幅を示している。又lが電極位置を示し
ている。第3図で領域Bは、重合体シート2の冷却ロー
ラー3への着地点を中心とする領域、領域Cは着地点よ
り下流、領域Aは着地点より上流に対応している。C領
域では、重合体シートの固化が進んでおり、シートの密
着力が弱く、シートと冷却体間にエアーをかみ込んでい
るために、電流値も低く、変動も大きく、シートの厚み
むらも良くない。A領域では、電流値は高いが電流変動
が大きく、かつ厚みむらも大きい。
In FIG. 3, the width indicated by R indicates the current fluctuation width measured by the ammeter 9. Also, l indicates the electrode position. In FIG. 3, region B corresponds to a region centered on the landing point of the polymer sheet 2 on the cooling roller 3, region C corresponds to the downstream side of the landing point, and region A corresponds to the upstream side of the landing point. In region C, the polymer sheet is solidified, the adhesion of the sheet is weak, and air is trapped between the sheet and the cooling body, so the current value is low and fluctuates widely, and the sheet thickness is uneven. not good. In region A, although the current value is high, the current fluctuation is large and the thickness unevenness is also large.

B領域が最も電流変動が小さく、特に位置すにおいては
変動幅が最小でありかつ厚みむらも小さい。
In region B, the current fluctuation is the smallest, especially in the region where the fluctuation width is the smallest and the thickness unevenness is also small.

そこで、放電電極をできるだけ位置すに近づけるために
、上記電流変動幅をモニターし、変動幅変化を微分し微
係数が0となる位置を制御装置10によって制御する。
Therefore, in order to position the discharge electrode as close to the position as possible, the current fluctuation range is monitored, the fluctuation range change is differentiated, and the position where the differential coefficient becomes 0 is controlled by the control device 10.

即ち、初期の位置(任意)における電流変動幅と、微少
距離だけ放電電極を変位させた位置における電流変動幅
を比較し、より小さい変動幅が得られる方向に放電電極
を移動させていくのである。制御は、常時フィードバッ
ク制御をおこなっても良いし、またさらに実際的にはシ
ートの成形条件(厚み、速度等)が変更される時に最適
位置を設定する方法でも良い。
In other words, the current fluctuation width at the initial position (arbitrary) is compared with the current fluctuation width at a position where the discharge electrode is displaced by a small distance, and the discharge electrode is moved in the direction where the smaller fluctuation width is obtained. . The control may be performed by constant feedback control, or more practically, by setting the optimum position when the sheet forming conditions (thickness, speed, etc.) are changed.

[実施例コ 以下、本発明を実施例によりさらに詳細に説明する。[Example code] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例−1 第1図の装置を用いて、口金よりシート状に押出された
溶融ポリエチレンテレフタレートを成形した。このとき
、シート厚みは100μ、シート幅は720mm、冷却
ローラーの表面速度は、40m/分とし、口金と冷却ロ
ーラー間の間隔は20m/mとした。放電電極は径0.
2mmのSUSワイヤを用い、冷却体表面との距離を8
mm、印加電圧を6KVに設定し、定電圧制御を行なっ
た。電極位置lと電流値A1電流変動幅Iくの関係を調
べたところ、l=33mmで電流変動幅Rか最少の0゜
08mAを示したので、jl’=33mmでシートを成
形した。このとき電流値は2.OmAであった。
Example 1 Using the apparatus shown in FIG. 1, molten polyethylene terephthalate was extruded from a die into a sheet. At this time, the sheet thickness was 100 μm, the sheet width was 720 mm, the surface speed of the cooling roller was 40 m/min, and the interval between the die and the cooling roller was 20 m/m. The discharge electrode has a diameter of 0.
Using a 2mm SUS wire, the distance from the cooling body surface is 8.
mm, the applied voltage was set to 6 KV, and constant voltage control was performed. When the relationship between the electrode position l, the current value A1, and the current fluctuation width I was investigated, the current fluctuation width R showed the minimum 0°08 mA when l=33 mm, so a sheet was formed with jl'=33 mm. At this time, the current value is 2. It was OmA.

得られたシートの長手方向厚みむらは全長2mで、2.
1μであった。
The thickness unevenness in the longitudinal direction of the obtained sheet was 2 m in total length, and 2.
It was 1μ.

比較例−1 実施例と全く同様な装置条件てA!=30mmとしたと
ころ、電流値は2.1mAに上昇したか変動幅Rも0.
20mAと大きくなった。このとき得られたシートの長
手方向厚みむらは4.Ottであった。
Comparative Example-1 A with exactly the same equipment conditions as in Example! = 30mm, the current value increased to 2.1mA, and the fluctuation range R also decreased to 0.
The current was increased to 20mA. The thickness unevenness in the longitudinal direction of the sheet obtained at this time was 4. It was Ott.

比較例−2 同様に、/=36mmとしたところ電流値は1゜8mA
に減少、変動幅は0.12mAを示した。
Comparative Example-2 Similarly, when /=36mm, the current value was 1°8mA
The fluctuation range was 0.12 mA.

このとき得られたシートの厚みむらは2.4μであった
The thickness unevenness of the sheet obtained at this time was 2.4 μm.

[発明の効果] 以上説明したように、本発明の製造方法によれば、得ら
れるシートの長手方向の厚み斑を著しく小さくできる。
[Effects of the Invention] As explained above, according to the manufacturing method of the present invention, the thickness unevenness in the longitudinal direction of the obtained sheet can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明にかかる製造方法を実施するための装
置の一実施態様の概略図である。第2図は、第1図の口
金部を示す概略図であり、電極位置lを示すためのもの
である。第3図は、電極位置と電流値及び電流変動幅の
関係を示す図であり、第4図は、電極位置と厚みむらの
関係を示す図である。 1 二ロ金 2 :熱塑性重合体シート 3 :冷却ローラー 4 :放電電極 5 :高電圧電源 6 :モータ 7 :ギア ギア 電流計 制御装置 ・引き離しローラー
FIG. 1 is a schematic diagram of an embodiment of an apparatus for carrying out the manufacturing method according to the present invention. FIG. 2 is a schematic diagram showing the base portion of FIG. 1, and is for showing the electrode position l. FIG. 3 is a diagram showing the relationship between electrode position, current value, and current fluctuation width, and FIG. 4 is a diagram showing the relationship between electrode position and thickness unevenness. 1 Nitrometal 2: Thermoplastic polymer sheet 3: Cooling roller 4: Discharge electrode 5: High voltage power supply 6: Motor 7: Gear gear ammeter control device/separation roller

Claims (1)

【特許請求の範囲】[Claims] 溶融した熱可塑性重合体を口金からシート状にして移動
冷却体上へ押出し、該重合体シート上方に設置した放電
電極により静電荷を印加し、該移動冷却体に密着固化せ
しめる熱可塑性重合体シートの製造方法において、放電
電流変動を検出して、その変動幅が最小となるように、
前記放電電極を移動冷却体表面との距離を一定に保ちな
がら移動させて、該放電電極を最適位置に制御すること
を特徴とする熱可塑性重合体シートの製造方法。
A thermoplastic polymer sheet in which a molten thermoplastic polymer is extruded in a sheet form from a die onto a moving cooling body, and an electrostatic charge is applied by a discharge electrode installed above the polymer sheet to solidify the thermoplastic polymer in close contact with the moving cooling body. In the manufacturing method, discharge current fluctuations are detected and the fluctuation width is minimized.
A method for producing a thermoplastic polymer sheet, comprising controlling the discharge electrode to an optimal position by moving the discharge electrode while maintaining a constant distance from the surface of the moving cooling body.
JP2199814A 1990-07-27 1990-07-27 Method for producing thermoplastic polymer sheet Expired - Fee Related JP2924123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2199814A JP2924123B2 (en) 1990-07-27 1990-07-27 Method for producing thermoplastic polymer sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2199814A JP2924123B2 (en) 1990-07-27 1990-07-27 Method for producing thermoplastic polymer sheet

Publications (2)

Publication Number Publication Date
JPH0483627A true JPH0483627A (en) 1992-03-17
JP2924123B2 JP2924123B2 (en) 1999-07-26

Family

ID=16414088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2199814A Expired - Fee Related JP2924123B2 (en) 1990-07-27 1990-07-27 Method for producing thermoplastic polymer sheet

Country Status (1)

Country Link
JP (1) JP2924123B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368675B1 (en) 2000-04-06 2002-04-09 3M Innovative Properties Company Electrostatically assisted coating method and apparatus with focused electrode field
US6475572B2 (en) 2000-04-06 2002-11-05 3M Innovative Properties Company Electrostatically assisted coating method with focused web-borne charges
JP2009113381A (en) * 2007-11-07 2009-05-28 Kawakami Sangyo Co Ltd Method and apparatus for manufacturing plastic hollow panel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6368675B1 (en) 2000-04-06 2002-04-09 3M Innovative Properties Company Electrostatically assisted coating method and apparatus with focused electrode field
US6475572B2 (en) 2000-04-06 2002-11-05 3M Innovative Properties Company Electrostatically assisted coating method with focused web-borne charges
US6666918B2 (en) 2000-04-06 2003-12-23 3M Innovative Properties Company Electrostatically assisted coating apparatus with focused web charge field
US6716286B2 (en) 2000-04-06 2004-04-06 3M Innovative Properties Company Electrostatically assisted coating method and apparatus with focused electrode field
JP2009113381A (en) * 2007-11-07 2009-05-28 Kawakami Sangyo Co Ltd Method and apparatus for manufacturing plastic hollow panel

Also Published As

Publication number Publication date
JP2924123B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
US4997600A (en) Process for preparation of thermoplastic resin sheets
US3863108A (en) Electrostatic charge controller
EP0122721B1 (en) Method for producing a thermoplastic polymeric sheet
JPS6241095B2 (en)
JPH08224770A (en) Improved electrostatic pin guide method
US3898026A (en) Apparatus for randomizing thicker and thinner areas in the production of film webs
JPH0483627A (en) Manufacture of thermoplastic polymer sheet
JPH0477230A (en) Manufacture of themroplastic polymeric sheet
JPH0428524A (en) Manufacture of thermoplastic polymer sheet
US4129630A (en) Process for producing thermoplastic resin films having reduced thickness unevenness
JPS6138012B2 (en)
JPS60120028A (en) Molding method of polymer sheet
JP2818367B2 (en) Detecting method of film position corresponding to die
JP2020049738A (en) Method for producing biaxially oriented film
EP0051699B1 (en) Process for pneumatic gauge adjustment of edge-pinned cast web
JPS62202719A (en) Manufacture of thermoplastic polymer sheet
JPS62255112A (en) Manufacture of thermoplastic polymeric sheet
JPH107821A (en) Production of thermoplastic resin film and sheet
JP2857214B2 (en) Method for producing polyamide sheet
KR0181411B1 (en) Method of making thermoplastic sheet
JPH1120004A (en) Manufacture of thermoplastic resin sheet and production equipment
JPH11268101A (en) Production of thermoplastic resin film
JPS6195925A (en) Quenching film-making method of polyamide series film
KR0181412B1 (en) Method of making thermoplastic sheet
EP1020280A2 (en) Method and apparatus for producing thermoplastic resin sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees