JP2924123B2 - Method for producing thermoplastic polymer sheet - Google Patents

Method for producing thermoplastic polymer sheet

Info

Publication number
JP2924123B2
JP2924123B2 JP2199814A JP19981490A JP2924123B2 JP 2924123 B2 JP2924123 B2 JP 2924123B2 JP 2199814 A JP2199814 A JP 2199814A JP 19981490 A JP19981490 A JP 19981490A JP 2924123 B2 JP2924123 B2 JP 2924123B2
Authority
JP
Japan
Prior art keywords
sheet
thermoplastic polymer
discharge electrode
polymer sheet
cooling body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2199814A
Other languages
Japanese (ja)
Other versions
JPH0483627A (en
Inventor
識 萩原
公夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TORE KK
Original Assignee
TORE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TORE KK filed Critical TORE KK
Priority to JP2199814A priority Critical patent/JP2924123B2/en
Publication of JPH0483627A publication Critical patent/JPH0483627A/en
Application granted granted Critical
Publication of JP2924123B2 publication Critical patent/JP2924123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92047Energy, power, electric current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/92409Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92571Position, e.g. linear or angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱可塑性重合体シートの製造方法に関す
る。更に詳しくは、長手方向のシート厚さ斑の小さい熱
可塑性重合体シートの製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a thermoplastic polymer sheet. More specifically, the present invention relates to a method for producing a thermoplastic polymer sheet having a small unevenness in sheet thickness in the longitudinal direction.

[従来の技術] 熱可塑性重合体シートは磁気記録材のベースシート、
写真用ベースシート、コンデンサの誘電体材料等の種々
の工業用途素材として用いられるが、これらの用途で
は、シートの厚さ、特に長手方向のシート厚さについて
高度な寸法精度が要求される。
[Prior art] A thermoplastic polymer sheet is a base sheet of a magnetic recording material,
It is used as a material for various industrial applications such as a photographic base sheet and a dielectric material of a capacitor. In these applications, a high dimensional accuracy is required for the thickness of the sheet, particularly, the thickness of the sheet in the longitudinal direction.

従来から、溶融した熱可塑性重合体を移動冷却体上に
シート状に抽出して成形するに際し、重合体シート上方
に高電圧を印加した放電電極を設置すれば静電的に重合
体シート冷却体への密着度を向上させることができ良好
な成形状態が得られることが知られている(特開昭49−
55759)。
Conventionally, when extracting and molding a molten thermoplastic polymer into a sheet on a moving cooling body, if a discharge electrode to which a high voltage is applied is installed above the polymer sheet, the polymer sheet cooling body is electrostatically charged. It is known that the degree of adhesion to the resin can be improved and a good molded state can be obtained (Japanese Patent Laid-Open No.
55759).

この方法に於いて、良好な成形状態を得るためには放
電電極の位置が重要な条件となる。
In this method, the position of the discharge electrode is an important condition for obtaining a good molding state.

特に、放電電極の重合体長手方向の位置が重要であ
り、移動冷却体との距離を一定に保ちながら容易に移動
設定できる方法が開示されている(特開昭57−8116)。
Particularly, the position of the discharge electrode in the longitudinal direction of the polymer is important, and a method has been disclosed in which the movement of the discharge electrode can be easily set while keeping the distance to the moving cooling body constant (Japanese Patent Laid-Open No. 57-8116).

又さらに短時間で良好な成形性の得られる最適位置に
調整する方法についても開示されており、電流値最大と
いう定量化され位置に自動制御することにより高速化が
はかれることが示されている(特開昭60−120028)。
Also disclosed is a method of adjusting the position to an optimum position at which a good formability can be obtained in a shorter time, and it is shown that the speed can be increased by automatically controlling the quantified position of the maximum current value to the position ( JP-A-60-120028).

放電電極の位置とシートの長手方向厚み班について
も、成形後のシート厚みを測定し、周波数解析,演算を
行ない、厚さ斑を最小とする位置に制御する方法が開示
されている(特開昭63−62723)。
With respect to the position of the discharge electrode and the thickness of the sheet in the longitudinal direction, a method of measuring the sheet thickness after molding, performing frequency analysis and calculation, and controlling the position to minimize the thickness unevenness is disclosed (Japanese Patent Application Laid-Open No. H10-163873). 63-63723).

[発明が解決しようとする課題] しかし、本発明者らの検討では、かかえる従来技術の
方法ではシートの長手方向厚み斑は充分に小さくならな
いことが判明した。
[Problems to be Solved by the Invention] However, in the study of the present inventors, it has been found that the unevenness in the thickness of the sheet in the longitudinal direction is not sufficiently reduced by the conventional method.

すなわち、特開昭60−120028に開示された電流値最大
の位置では高速化のための、溶融ポリマシートと移動冷
却体間のエアーかみ込み防止には優れているものの、長
手方向厚み斑は最小にならない。また、特開昭63−6272
3に開示された方法は、解析、演算に時間がかかり非定
常的に変動する厚さ変動に対して時間おくれがあり充分
に制御できない。
In other words, at the position of the maximum current value disclosed in Japanese Patent Application Laid-Open No. Sho. do not become. Also, JP-A-63-6272
The method disclosed in No. 3 requires a long time for analysis and calculation, and there is a time lag for a non-stationarily fluctuating thickness, so that the method cannot be sufficiently controlled.

本発明の目的は、かかる従来技術の欠点を解消し、長
手方向厚さ斑の小さいシートを製造する方法に関する。
It is an object of the present invention to overcome the disadvantages of the prior art and to a method for producing a sheet with a small thickness variation in the longitudinal direction.

[課題を解決するための手段] 本発明は、溶融した熱可塑性重合体を口金からシート
状にして移動冷却体上へ押出し、該重合体シート上方に
設置した放電電極により静電荷を印加し、該移動冷却体
に密着固化せしめる熱可塑性重合体シートの製造方法に
おいて、放電電流変動を検出して、その変動幅が最小と
なるように、前記放電電極を移動冷却体表面との距離を
一定に保ちながら移動させて、該放電電極を最適位置に
制御することを特徴とする熱可塑性重合体シートの製造
方法に関するものである。
[Means for Solving the Problems] In the present invention, a molten thermoplastic polymer is formed into a sheet from a die and extruded onto a moving cooling body, and an electrostatic charge is applied by a discharge electrode provided above the polymer sheet, In the method for producing a thermoplastic polymer sheet that is tightly adhered to the moving cooling body, a discharge current fluctuation is detected, and the distance between the discharge electrode and the moving cooling body surface is kept constant so that the fluctuation width is minimized. The present invention relates to a method for producing a thermoplastic polymer sheet, wherein the discharge electrode is controlled to an optimum position by moving the discharge electrode while maintaining the same.

本発明における熱可塑性重合体はポリエチレン、ポリ
プロピレン等のポリオレフィン類、ポリエステル類、ポ
リアミド類、ポリイミド類、ポリスチレン類、ポリビニ
ル類等のシートとして成形され得る周知の重合体および
これらの共重合体、混合体であって他の添加剤、例えば
帯電防止剤、耐候剤、有機粒子や無機粒子からなる滑剤
などが含有されたものであってもよい。
The thermoplastic polymer in the present invention is a well-known polymer which can be formed as a sheet of polyolefins such as polyethylene and polypropylene, polyesters, polyamides, polyimides, polystyrenes and polyvinyls, and copolymers and mixtures thereof. However, it may contain other additives such as an antistatic agent, a weathering agent, a lubricant composed of organic particles and inorganic particles, and the like.

又、口金から抽出されるシートは単層でも、多層に積
層されたものであっても良い。本発明において、該溶融
重合体に放電電極により静電荷を付与する方法は公知の
装置方法を用いる。
The sheet extracted from the die may be a single layer or a multilayer. In the present invention, a known apparatus method is used for imparting an electrostatic charge to the molten polymer by a discharge electrode.

以下図面により本発明を詳しく説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図に於いて口金1から溶融抽出された重合体シー
ト2は移動冷却体3(この場合冷却ローラー)に、接
触、冷却、固化され、引き離しローラー11を介して、後
処理工程へ連続的に送られる。放電電極4は、高電圧発
生装置5により高電圧が印加され移動冷却体に対して高
電位に保たれている。
In FIG. 1, a polymer sheet 2 melt-extracted from a die 1 is brought into contact with a moving cooling body 3 (in this case, a cooling roller), cooled and solidified, and is continuously passed through a separation roller 11 to a post-treatment step. Sent to The discharge electrode 4 is applied with a high voltage by the high voltage generator 5 and is maintained at a high potential with respect to the moving cooling body.

放電電極4は、モータ6、ギヤ7,8により、冷却体3
表面からの距離が一定となるように移動できる。
The discharge electrode 4 is connected to the cooling body 3 by a motor 6 and gears 7 and 8.
It can move so that the distance from the surface is constant.

このように構成された装置を用いて、本発明の方法は
次のように実施される。まず、放電電極4と冷却体3表
面との距離は、この間に適切な電位勾配が生じ、かつ重
合体シート2に絶縁破壊が生じないような適切な一定値
に設定される。
Using the device configured as described above, the method of the present invention is performed as follows. First, the distance between the discharge electrode 4 and the surface of the cooling body 3 is set to an appropriate constant value so that an appropriate potential gradient is generated between the electrodes and the polymer sheet 2 does not cause dielectric breakdown.

つぎに、放電電極4の、冷却体3の円周方向における
位置制御について述べる。円周方向の位置(第2図参
照)と、放電電極4から冷却体3へ流れる電流の関係は
第3図、放電電極の円周方向の位置とシートの長手方向
の厚みむらとの関係は第4図に示した。
Next, position control of the discharge electrode 4 in the circumferential direction of the cooling body 3 will be described. The relationship between the position in the circumferential direction (see FIG. 2) and the current flowing from the discharge electrode 4 to the cooling body 3 is shown in FIG. 3, and the relationship between the position in the circumferential direction of the discharge electrode and the thickness unevenness in the longitudinal direction of the sheet is as follows. As shown in FIG.

第3図において、Rで示した幅が電流計9によって測
定された電流変動幅を示している。又lが電極位置を示
している。第3図で領域Bは、重合体シート2の冷却ロ
ーラー3への着地点を中心とする領域、領域Cは着地点
より下流、領域Aは着地点より上流に対応している。C
領域では、重合体シートの固化が進んでおり、シートの
密着力が弱く、シートと冷却体間にエアーをかみ込んで
いるために、電流値も低く、変動も大きく、シートの厚
みむらも良くない。A領域では、電流値は高いが電流変
動が大きく、かつ厚みむらも大きい。B領域が最も電流
変動が小さく、特に位置bにおいては変動幅が最小であ
りかつ厚みむらも小さい。そこで、放電電極をできるだ
け位置bに近づけるために、上記電流変動幅をモニター
し、変動幅変化を微分し微係数が0となる位置を制御装
置10によって制御する。即ち、初期の位置(任意)にお
ける電流変動幅と、微少距離だけ放電電極を変位させた
位置における電流変動幅を比較し、より小さい変動幅が
得られる方向に放電電極を移動させていくのである。制
御は、常時フィードバック制御をおこなっても良いし、
またさらに実際的にはシートの成形条件(厚み、速度
等)が変更される時に最適位置を設定する方法でも良
い。
In FIG. 3, the width indicated by R indicates the current fluctuation width measured by the ammeter 9. Also, 1 indicates the electrode position. In FIG. 3, a region B corresponds to a region centered on a landing point of the polymer sheet 2 on the cooling roller 3, a region C corresponds to a downstream of the landing point, and a region A corresponds to an upstream of the landing point. C
In the area, the solidification of the polymer sheet is progressing, the adhesion of the sheet is weak, and air is trapped between the sheet and the cooling body, so the current value is low, the fluctuation is large, and the sheet thickness unevenness is good Absent. In the region A, the current value is high but the current fluctuation is large and the thickness unevenness is large. The region B has the smallest current fluctuation, and particularly at the position b, the fluctuation width is the smallest and the thickness unevenness is also small. Therefore, in order to make the discharge electrode as close as possible to the position b, the current fluctuation width is monitored, and the fluctuation width fluctuation is differentiated, and the position where the differential coefficient becomes 0 is controlled by the control device 10. That is, the current fluctuation width at the initial position (arbitrary) is compared with the current fluctuation width at the position where the discharge electrode is displaced by a very small distance, and the discharge electrode is moved in a direction in which a smaller fluctuation width can be obtained. . For control, feedback control may always be performed,
Further, more practically, an optimum position may be set when the sheet forming conditions (thickness, speed, etc.) are changed.

[実施例] 以下、本発明を実施例によりさらに詳細に説明する。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例−1 第1図の装置を用いて、口金よりシート状に押出され
た溶融ポリエチレンテレフタレートを成形した。このと
き、シート厚みは100μ、シート幅は720mm、冷却ローラ
ーの表面速度は、40m/分とし、口金と冷却ローラー間の
間隔は20m/mとした。放電電極は径0.2mmのSUSワイヤを
用い、冷却体表面との距離を8mm、印加電圧を6KVに設定
し、定電圧制御を行なった。電極位置lと電流値A、電
流変動幅Rの関係を調べたところ、l=33mmで電流変動
幅Rが最少の0.08mAを示したので、l=33mmでシートを
成形した。このとき電流値は2.0mAであった。得られた
シートの長手方向厚みむらは全長2mで、2.1μであっ
た。
Example 1 Using the apparatus shown in FIG. 1, molten polyethylene terephthalate extruded from a die into a sheet was molded. At this time, the sheet thickness was 100 μm, the sheet width was 720 mm, the surface speed of the cooling roller was 40 m / min, and the interval between the die and the cooling roller was 20 m / m. The discharge electrode was a SUS wire with a diameter of 0.2 mm, the distance to the surface of the cooling body was set to 8 mm, and the applied voltage was set to 6 KV, and constant voltage control was performed. When the relationship between the electrode position l, the current value A, and the current fluctuation width R was examined, the current fluctuation width R showed a minimum of 0.08 mA when l = 33 mm. Therefore, a sheet was formed with l = 33 mm. At this time, the current value was 2.0 mA. The thickness unevenness in the longitudinal direction of the obtained sheet was 2 μm in total length and 2.1 μm.

比較例−1 実施例と全く同様な装置条件でl=30mmとしたとこ
ろ、電流値は2.1mAに上昇したが変動幅Rも0.20mAと大
きくなった。このとき得られたシートの長手方向厚みむ
らは4.0μであった。
Comparative Example-1 When l = 30 mm under the same apparatus conditions as in the example, the current value increased to 2.1 mA, but the fluctuation range R also increased to 0.20 mA. At this time, the thickness unevenness in the longitudinal direction of the obtained sheet was 4.0 μm.

比較例−2 同様に、l=36mmとしたところ電流値は1.8mAに減
少、変動幅は0.12mAを示した。このとき得られたシート
の厚みむらは2.4μであった。
Comparative Example 2 Similarly, when l = 36 mm, the current value was reduced to 1.8 mA, and the fluctuation range was 0.12 mA. The thickness unevenness of the sheet obtained at this time was 2.4 μm.

[発明の効果] 以上説明したように、本発明の製造方法によれば、得
られるシートの長手方向の厚み斑を著しく小さくでき
る。
[Effects of the Invention] As described above, according to the production method of the present invention, unevenness in the thickness of the obtained sheet in the longitudinal direction can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明にかかる製造方法を実施するための装
置の一実施態様の概略図である。第2図は、第1図の口
金部を示す概略図であり、電極位置lを示すためのもの
である。第3図は、電極位置と電流値及び電流変動幅の
関係を示す図であり、第4図は、電極位置と厚みむらの
関係を示す図である。 1:口金 2:熱塑性重合体シート 3:冷却ローラー 4:放電電極 5:高電圧電源 6:モーター 7:ギア 8:ギア 9:電流計 10:制御装置 11:引き離しローラー
FIG. 1 is a schematic view of an embodiment of an apparatus for performing a manufacturing method according to the present invention. FIG. 2 is a schematic view showing the base part of FIG. 1, and shows the electrode position l. FIG. 3 is a diagram showing the relationship between the electrode position and the current value and the current fluctuation width, and FIG. 4 is a diagram showing the relationship between the electrode position and the thickness unevenness. 1: Cap 2: Thermoplastic polymer sheet 3: Cooling roller 4: Discharge electrode 5: High voltage power supply 6: Motor 7: Gear 8: Gear 9: Ammeter 10: Control device 11: Pull-off roller

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】溶融した熱可塑性重合体を口金からシート
状にして移動冷却体上へ押出し、該重合体シート上方に
設置した放電電極により静電荷を印加し、該移動冷却体
に密着固化せしめる熱可塑性重合体シートの製造方法に
おいて、放電電流変動を検出して、その変動幅が最小と
なるように、前記放電電極を移動冷却体表面との距離を
一定に保ちながら移動させて、該放電電極を最適位置に
制御することを特徴とする熱可塑性重合体シートの製造
方法。
1. A molten thermoplastic polymer is formed into a sheet from a die and extruded onto a moving cooling body, and an electrostatic charge is applied by a discharge electrode provided above the polymer sheet to solidify and solidify the moving cooling body. In the method for producing a thermoplastic polymer sheet, a discharge current fluctuation is detected, and the discharge electrode is moved while maintaining a constant distance from a moving cooling body surface so that the fluctuation width is minimized. A method for producing a thermoplastic polymer sheet, comprising controlling an electrode to an optimum position.
JP2199814A 1990-07-27 1990-07-27 Method for producing thermoplastic polymer sheet Expired - Fee Related JP2924123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2199814A JP2924123B2 (en) 1990-07-27 1990-07-27 Method for producing thermoplastic polymer sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2199814A JP2924123B2 (en) 1990-07-27 1990-07-27 Method for producing thermoplastic polymer sheet

Publications (2)

Publication Number Publication Date
JPH0483627A JPH0483627A (en) 1992-03-17
JP2924123B2 true JP2924123B2 (en) 1999-07-26

Family

ID=16414088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2199814A Expired - Fee Related JP2924123B2 (en) 1990-07-27 1990-07-27 Method for producing thermoplastic polymer sheet

Country Status (1)

Country Link
JP (1) JP2924123B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475572B2 (en) 2000-04-06 2002-11-05 3M Innovative Properties Company Electrostatically assisted coating method with focused web-borne charges
US6368675B1 (en) 2000-04-06 2002-04-09 3M Innovative Properties Company Electrostatically assisted coating method and apparatus with focused electrode field
JP4924367B2 (en) * 2007-11-07 2012-04-25 川上産業株式会社 Method and apparatus for manufacturing plastic hollow plate

Also Published As

Publication number Publication date
JPH0483627A (en) 1992-03-17

Similar Documents

Publication Publication Date Title
US3863108A (en) Electrostatic charge controller
US4594203A (en) Method for producing a thermoplastic polymeric sheet
JP2924123B2 (en) Method for producing thermoplastic polymer sheet
JPS6241095B2 (en)
JP2924114B2 (en) Method for producing thermoplastic polymer sheet
JPH0428524A (en) Manufacture of thermoplastic polymer sheet
JP2818367B2 (en) Detecting method of film position corresponding to die
SU899357A1 (en) Method of producing films and sheets from polymeric materials
JPS63272521A (en) Manufacture of thermoplastic polymeric sheet
JP4636356B2 (en) Sheet manufacturing method
JPH11268101A (en) Production of thermoplastic resin film
JPS63272527A (en) Manufacture of thermoplastic polymeric sheet
JPS63272523A (en) Manufacture of thermoplastic polymeric sheet
GB2312396A (en) Producing structured sheeting using corona discharge
JPS63272525A (en) Manufacture of thermoplastic polymeric sheet
JPH10193441A (en) Manufacture of thermoplastic resin film
KR880001780B1 (en) Manufacturing process for thermoplastic resin film
JPH10315306A (en) Electrostatic charge casting apparatus
JPS5941850B2 (en) Method for manufacturing thermoplastic film
JPS62202719A (en) Manufacture of thermoplastic polymer sheet
JPS63272526A (en) Manufacture of thermoplastic resin sheet
JPH11286360A (en) Winding device of thermoplastic resin film
JPS6195925A (en) Quenching film-making method of polyamide series film
JPS63272522A (en) Manufacture of thermoplastic resin sheet
JPH107821A (en) Production of thermoplastic resin film and sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees