JP2924114B2 - Method for producing thermoplastic polymer sheet - Google Patents

Method for producing thermoplastic polymer sheet

Info

Publication number
JP2924114B2
JP2924114B2 JP2192741A JP19274190A JP2924114B2 JP 2924114 B2 JP2924114 B2 JP 2924114B2 JP 2192741 A JP2192741 A JP 2192741A JP 19274190 A JP19274190 A JP 19274190A JP 2924114 B2 JP2924114 B2 JP 2924114B2
Authority
JP
Japan
Prior art keywords
sheet
discharge electrode
polymer sheet
cooling body
thermoplastic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2192741A
Other languages
Japanese (ja)
Other versions
JPH0477230A (en
Inventor
識 萩原
公夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TORE KK
Original Assignee
TORE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TORE KK filed Critical TORE KK
Priority to JP2192741A priority Critical patent/JP2924114B2/en
Publication of JPH0477230A publication Critical patent/JPH0477230A/en
Application granted granted Critical
Publication of JP2924114B2 publication Critical patent/JP2924114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92047Energy, power, electric current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/92409Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92571Position, e.g. linear or angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92609Dimensions
    • B29C2948/92647Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱可塑性重合体シートの製造方法に関す
る。さらに詳しくは、長手方向のシート厚さ斑の小さい
熱可塑性重合体シートの製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a thermoplastic polymer sheet. More specifically, the present invention relates to a method for producing a thermoplastic polymer sheet having a small unevenness in sheet thickness in the longitudinal direction.

[従来の技術] 熱可塑性重合体シートは磁気記録材のベースシート、
写真用ベースシート、コンデンサの誘導体材料等の種々
の工業用途材として用いられるが、これらの用途では、
シートの厚さ、特に長手方向のシート厚さについて高度
な寸法精度が要求される。
[Prior art] A thermoplastic polymer sheet is a base sheet of a magnetic recording material,
It is used as various industrial materials such as photographic base sheets and capacitor dielectric materials.
A high degree of dimensional accuracy is required for the thickness of the sheet, especially for the sheet thickness in the longitudinal direction.

従来から、溶融した熱可塑性重合体を移動冷却体上に
シート状に押出して成形するに際し、重合体シート上方
に高電圧を印加した放電電極を設置すれば静電的に重合
体シートの冷却体への密着度を向上させることができ、
良好な成形状態が得られることが知られている。(特開
昭49−55759) この方法に於いて、良好な成形状態を得るためには、
放電電極の位置が重要な条件となる。
Conventionally, when a molten thermoplastic polymer is extruded into a sheet on a moving cooling body and molded, if a discharge electrode to which a high voltage is applied is installed above the polymer sheet, the cooling body of the polymer sheet is electrostatically cooled. Can improve the degree of adhesion to
It is known that a good molding state can be obtained. (JP-A-49-55759) In this method, in order to obtain a good molding state,
The position of the discharge electrode is an important condition.

特に、放電電極の、重合体長手方向の位置が重要であ
り、移動冷却体との距離を一定に保ちながら容易に移動
設定できる方法が開示されている。(特開昭57−811
6)。
Particularly, the position of the discharge electrode in the longitudinal direction of the polymer is important, and there is disclosed a method in which the movement of the discharge electrode can be easily set while maintaining a constant distance from the moving cooling body. (JP-A-57-811
6).

また、さらに短時間で、良好な成形性の得られる最適
位置に調整する方法についても開示されており、電流値
最大という定量化された位置に自動制御することによ
り、高速化がはかれることが示されている(特開昭60−
120028)。
Also disclosed is a method for adjusting the position to an optimum position at which good formability can be obtained in a shorter time, and it is shown that the speed can be increased by automatically controlling the quantified position of the maximum current value. (Japanese Unexamined Patent Publication No.
120028).

放電電極の位置とシートの長手方向厚み斑について
も、成形後のシート厚みを測定し、周波数解析・演算を
行ない、厚さ斑を最小とする位置に制御する方法が開示
されている。(特開昭63−62723)。
Regarding the position of the discharge electrode and the thickness unevenness of the sheet in the longitudinal direction, a method of measuring the sheet thickness after molding, performing frequency analysis and calculation, and controlling the position to minimize the thickness unevenness is disclosed. (JP-A-63-62723).

[発明が解決しようとする課題] しかし、本発明者らの検討では、かかる従来技術の方
法では、シートの長手方向厚み斑は充分に小さくならな
いことが判明した。
[Problems to be Solved by the Invention] However, in the study of the present inventors, it has been found that in the method of the related art, unevenness in the thickness of the sheet in the longitudinal direction is not sufficiently reduced.

すなわち、特開昭60−120028に開示された電流値最大
の位置では高速化のため、溶融ポリマシートと、移動冷
却体間のエアーかみ込み防止には優れているものの、長
手方向厚み斑は最小にならない。また、特開昭63−6271
3に開示された方法は、解析・演算に時間がかかり非定
常的に変動する厚さ変動に対して時間おくれがあり、充
分に制御できない。
That is, although the position at the maximum current value disclosed in Japanese Patent Application Laid-Open No. Sho 60-120028 is high in speed, it is excellent in preventing air entrapment between the molten polymer sheet and the moving cooling body, but the thickness unevenness in the longitudinal direction is minimal. do not become. Also, JP-A-63-6271
The method disclosed in No. 3 requires a long time for analysis and calculation, and there is a time lag for a non-stationarily fluctuating thickness, so that the method cannot be sufficiently controlled.

本発明の目的は、かかる従来技術の欠点を解消し、長
手方向厚さ斑の小さいシートを製造する方法に関する。
It is an object of the present invention to overcome the disadvantages of the prior art and to a method for producing a sheet with a small thickness variation in the longitudinal direction.

[課題を解決するための手段] 本発明は、溶融した熱可塑性重合体を口金からシート
状にして移動冷却体上へ押出し、該重合体シート上方に
設置した放電電極により静電荷を印加し、該移動冷却体
に密着固化せしめる熱可塑性重合体シートの製造方法に
おいて、口金と移動冷却体間の溶融重合体シートの膜振
動を検出し、該膜振動の振幅が最小となるように、前記
放電電極を移動冷却体表面との距離を一定に保ちながら
移動させて、該放電電極を最適位置に制御することを特
徴とする熱可塑性重合体シートの製造方法に関する。
[Means for Solving the Problems] The present invention relates to a method in which a molten thermoplastic polymer is extruded from a die into a sheet and extruded onto a moving cooling body, and an electrostatic charge is applied by a discharge electrode provided above the polymer sheet, In the method for producing a thermoplastic polymer sheet which is tightly adhered to the moving cooling body, a film vibration of the molten polymer sheet between the die and the moving cooling body is detected, and the discharge is performed so that the amplitude of the film vibration is minimized. The present invention relates to a method for producing a thermoplastic polymer sheet, wherein an electrode is moved while maintaining a constant distance from a surface of a moving cooling body, and the discharge electrode is controlled to an optimum position.

本発明における熱可塑性重合体はポリエチレン、ポリ
プロピレン等のポリオレフィン類、ポリエステル類、ポ
リアミド類、ポリイミド類、ポリスチレン類、ポリビニ
ル類等のシートとして成型され得る周知の重合体および
これらの共重合体、混合体であって、他の添加剤、例え
ば帯電防止剤、耐候剤、有機粒子や無機粒子からなる滑
剤などが含有されたものであっても良い。
The thermoplastic polymer in the present invention is a well-known polymer that can be molded as a sheet of polyolefins such as polyethylene and polypropylene, polyesters, polyamides, polyimides, polystyrenes and polyvinyls, and copolymers and mixtures thereof. It may contain other additives such as an antistatic agent, a weathering agent, a lubricant composed of organic particles and inorganic particles, and the like.

又、口金から押出されるシートは、単層でも、多層に
積層されたものであっても良い。
Further, the sheet extruded from the die may be a single layer or a multilayer.

本発明において、該溶融重合体に放電電極により静電
荷を付与する方法は公知の装置、方法を用いる。
In the present invention, a known apparatus and method are used for imparting an electrostatic charge to the molten polymer by a discharge electrode.

以下図面を用いて本発明を詳しく説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図に於て、口金1から溶融押出された重合体シー
ト2は、移動冷却体3(この場合冷却ローラ)に接触、
冷却、固化され、引き離しローラ11を介して、後処理工
程へ連続的に送られる。放電電極4は、高電圧発生装置
5により高電圧が印加され、移動冷却体3に対して高電
位に保たれている。
In FIG. 1, a polymer sheet 2 melt-extruded from a die 1 contacts a moving cooling body 3 (in this case, a cooling roller).
It is cooled, solidified, and continuously sent to a post-processing step via a separation roller 11. A high voltage is applied to the discharge electrode 4 by a high voltage generator 5, and the discharge electrode 4 is maintained at a high potential with respect to the moving cooling body 3.

放電電極4は、モータ6、ギア7,8により、冷却体3
表面からの距離が一定となるように移動できる。
The discharge electrode 4 is connected to the cooling body 3 by a motor 6 and gears 7 and 8.
It can move so that the distance from the surface is constant.

口金1と移動冷却体3の間の溶融重合体シートの膜振
動は非接触の膜振動測定器9によりモニターされる。
The film vibration of the molten polymer sheet between the base 1 and the moving cooling body 3 is monitored by a non-contact film vibration measuring device 9.

このように構成された装置を用いて、本発明の方法は
次のように実施される。
Using the device configured as described above, the method of the present invention is performed as follows.

まず、放電電極4と冷却体3表面との距離は、この間
に適切な電位勾配が生じ、かつ重合体シート2に絶縁破
壊が生じないような適切な一定値に設定される。
First, the distance between the discharge electrode 4 and the surface of the cooling body 3 is set to an appropriate constant value so that an appropriate potential gradient is generated between the electrodes and the polymer sheet 2 does not cause dielectric breakdown.

つぎに、放電電極4の、冷却体3の円周方向における
位置制御について述べる。
Next, position control of the discharge electrode 4 in the circumferential direction of the cooling body 3 will be described.

前述のように、膜振動測定器9によりモニターされた
膜振動信号は、解析・制御装置10に入力され、振動の振
幅が最小になるように電極の円周方向位置を制御する。
即ち、初期の位置における振幅と微少距離を変位させた
位置における振幅を比較し、より小さい振幅が得られる
方向に放電電極を移動させていくのである。膜振動は、
シートと移動冷却体とが最初に接する部分における接地
線に変動をひきおこし、その結果として、シートと移動
冷却体の相対速度が変動し、成形されたシートの長手方
向厚み斑となる。放電電極の円周方向位置により、膜振
動を制御する静電力は変化し、前述のように膜振動を最
小とする最適位置が存在し、その最低位置に制御するこ
とで長手方向の厚み斑が減少・良化する(第3図参
照)。
As described above, the membrane vibration signal monitored by the membrane vibration measuring device 9 is input to the analysis / control device 10 and controls the circumferential position of the electrode so that the amplitude of the vibration is minimized.
That is, the amplitude at the initial position and the amplitude at the position displaced by the minute distance are compared, and the discharge electrode is moved in a direction in which a smaller amplitude can be obtained. The membrane vibration is
Variations in the ground line at the point where the sheet and the moving cooling body first contact each other cause the relative speed of the sheet and the moving cooling body to fluctuate, resulting in uneven thickness in the longitudinal direction of the formed sheet. Depending on the circumferential position of the discharge electrode, the electrostatic force for controlling the film vibration changes, and as described above, there is an optimum position for minimizing the film vibration. It decreases and improves (see Fig. 3).

制御は、常時フィードバック制御を行なっても良い
し、さらに実際的にはシートの成型条件(厚み、速度
等)が変更される時に、最適位置を設定する方法でも良
い。
For the control, feedback control may be always performed, or, more practically, a method of setting an optimum position when the sheet forming conditions (thickness, speed, etc.) are changed.

本発明では、溶融重合体シートの膜振動振幅をいかに
精度良く測定するかが重要であるが、その膜振動測定器
9は、公知のレーザードップラー振動計、光反射振動計
などを用いることができる。
In the present invention, it is important how to accurately measure the film vibration amplitude of the molten polymer sheet. As the film vibration measuring device 9, a known laser Doppler vibrometer, light reflection vibrometer, or the like can be used. .

[実施例] 以下、本発明を実施例によりさらに詳細に説明する。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例1 第1図の装置を用いて、口金よりシート状に押出され
た溶融ポリエチレンテレフタレートを成型した。このと
き、シート厚みは300μ、シート巾は1600mm、冷却ロー
ラの表面速度は50m/分とし、口金と冷却ローラ間の間隔
は40m/mとした。放電電極は径0.2mmのSUSワイヤを用
い、冷却体表面との距離を8mm、印加電圧を6kvに設定
し、定電圧制御を行なった。
Example 1 Using the apparatus shown in FIG. 1, molten polyethylene terephthalate extruded from a die into a sheet was molded. At this time, the sheet thickness was 300 μm, the sheet width was 1600 mm, the surface speed of the cooling roller was 50 m / min, and the interval between the die and the cooling roller was 40 m / m. The discharge electrode was a SUS wire having a diameter of 0.2 mm, the distance from the surface of the cooling body was set to 8 mm, and the applied voltage was set to 6 kv, and constant voltage control was performed.

膜振動測定には反射光の光量変化を利用する光反射式
振動計を用いた。
For the film vibration measurement, a light reflection type vibrometer utilizing a change in the amount of reflected light was used.

第2図及び第3図に示した電極位置lと膜振動振幅R
の関係を調べたところ、l=55mmで、膜振動振幅Rが最
小の820μとなった。
The electrode position l and the membrane vibration amplitude R shown in FIGS.
As a result, when l = 55 mm, the membrane vibration amplitude R was a minimum of 820 μm.

このとき成型されたシート長手方向厚みむらは、全長
2mで7.8μであった。
The thickness unevenness in the longitudinal direction of the molded sheet at this time is
It was 7.8 μ at 2 m.

比較例1 実施例と全く同様な装置・条件で、l=50mmとしたと
ころ、膜振動振幅Rは1220μとなった。
Comparative Example 1 The film vibration amplitude R was 1220 μ when l = 50 mm under the same apparatus and conditions as in the example.

このとき成型されたシートの長手方向厚みむらは、全
長2mで12.4μであった。
At this time, the thickness unevenness of the formed sheet in the longitudinal direction was 12.4 μm in a total length of 2 m.

比較例2 同様にl=60mmとしたところ、膜振動振幅Rは1040μ
となり、厚みむらは9.8μであった。
Comparative Example 2 Similarly, when l = 60 mm, the membrane vibration amplitude R was 1040 μm.
And the thickness unevenness was 9.8 μm.

[発明の効果] 以上説明したように、本発明の製造方法によれば、得
られるシートの長手方向厚み斑を著しく小さくすること
ができる。
[Effects of the Invention] As described above, according to the manufacturing method of the present invention, the unevenness in the thickness of the obtained sheet in the longitudinal direction can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明にかかる製造方法を実施するための装
置の概略図である。 第2図は、フイルム製造装置の口金周辺の概略図であ
る。 第3図は、電極位置と膜振動、電極位置と厚み斑の関係
を示した図である。 1……口金 2……熱可塑性重合体シート 3……冷却ローラ 4……放電電極 5……高電圧電源 6……モーター 7……ギア 8……ギア 9……膜振動測定器 10……解析・制御装置 11……引き離しローラ
FIG. 1 is a schematic view of an apparatus for performing a manufacturing method according to the present invention. FIG. 2 is a schematic view of the vicinity of a base of the film manufacturing apparatus. FIG. 3 is a diagram showing the relationship between the electrode position and the membrane vibration, and the relationship between the electrode position and the thickness unevenness. DESCRIPTION OF SYMBOLS 1 ... Base 2 ... Thermoplastic polymer sheet 3 ... Cooling roller 4 ... Discharge electrode 5 ... High voltage power supply 6 ... Motor 7 ... Gear 8 ... Gear 9 ... Membrane vibration meter 10 ... Analysis / control device 11 ... Pull-off roller

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】溶融した熱可塑性重合体を口金からシート
状にして移動冷却体上へ押出し、該重合体シート上方に
設置した放電電極により静電荷を印加し、該移動冷却体
に密着固化せしめる熱可塑性重合体シートの製造方法に
おいて、口金と移動冷却体間の溶融重合体シートの膜振
動を検出し、該膜振動の振幅が最小となるように、前記
放電電極を移動冷却体表面との距離を一定に保ちながら
移動させて、該放電電極を最適位置に制御することを特
徴とする熱可塑性重合体シートの製造方法。
1. A molten thermoplastic polymer is formed into a sheet from a die and extruded onto a moving cooling body, and an electrostatic charge is applied by a discharge electrode provided above the polymer sheet to solidify and adhere to the moving cooling body. In the method for producing a thermoplastic polymer sheet, a film vibration of a molten polymer sheet between a die and a moving cooling body is detected, and the discharge electrode is moved in contact with a moving cooling body surface so that the amplitude of the film vibration is minimized. A method for manufacturing a thermoplastic polymer sheet, wherein the discharge electrode is controlled to an optimum position by moving the discharge electrode while keeping the distance constant.
JP2192741A 1990-07-19 1990-07-19 Method for producing thermoplastic polymer sheet Expired - Fee Related JP2924114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2192741A JP2924114B2 (en) 1990-07-19 1990-07-19 Method for producing thermoplastic polymer sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2192741A JP2924114B2 (en) 1990-07-19 1990-07-19 Method for producing thermoplastic polymer sheet

Publications (2)

Publication Number Publication Date
JPH0477230A JPH0477230A (en) 1992-03-11
JP2924114B2 true JP2924114B2 (en) 1999-07-26

Family

ID=16296288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2192741A Expired - Fee Related JP2924114B2 (en) 1990-07-19 1990-07-19 Method for producing thermoplastic polymer sheet

Country Status (1)

Country Link
JP (1) JP2924114B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475572B2 (en) 2000-04-06 2002-11-05 3M Innovative Properties Company Electrostatically assisted coating method with focused web-borne charges
US6368675B1 (en) 2000-04-06 2002-04-09 3M Innovative Properties Company Electrostatically assisted coating method and apparatus with focused electrode field

Also Published As

Publication number Publication date
JPH0477230A (en) 1992-03-11

Similar Documents

Publication Publication Date Title
US3863108A (en) Electrostatic charge controller
JP2924114B2 (en) Method for producing thermoplastic polymer sheet
JPS6241095B2 (en)
US4911868A (en) Process and apparatus for making a thermoplastic foil
JP2924123B2 (en) Method for producing thermoplastic polymer sheet
EP0023754B1 (en) Electrostatic recording apparatus and method
KR100715166B1 (en) Electrostatically assisted coating method and apparatus with focused web charge field
JPH0428524A (en) Manufacture of thermoplastic polymer sheet
SE431139B (en) PROCEDURE FOR POLISHING POLYMER MOVIES BY CORONA CHARGING TO GRANT THE PIEZOELECTRIC ACTIVITY MOVIES
SU1299930A1 (en) Device for adjusting tension in winding long material
US4088892A (en) Corona charging apparatus and method
CA1193226A (en) Coating uniformity improvement technique
JP2818367B2 (en) Detecting method of film position corresponding to die
JPH11944A (en) Apparatus for manufacture of thermoplastic resin film
JPS63272521A (en) Manufacture of thermoplastic polymeric sheet
KR880001780B1 (en) Manufacturing process for thermoplastic resin film
JPS63272525A (en) Manufacture of thermoplastic polymeric sheet
JP3702465B2 (en) Inflation equipment
GB1409786A (en) Quenching of polymeric film
JPS63272524A (en) Manufacture of thermoplastic polymeric sheet
JPS63272527A (en) Manufacture of thermoplastic polymeric sheet
JPS63272523A (en) Manufacture of thermoplastic polymeric sheet
JPH11268101A (en) Production of thermoplastic resin film
SU899357A1 (en) Method of producing films and sheets from polymeric materials
US5030393A (en) Method of producing thermoplastic polymer film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees