JPS6240735A - Film thickness monitoring method - Google Patents

Film thickness monitoring method

Info

Publication number
JPS6240735A
JPS6240735A JP18068485A JP18068485A JPS6240735A JP S6240735 A JPS6240735 A JP S6240735A JP 18068485 A JP18068485 A JP 18068485A JP 18068485 A JP18068485 A JP 18068485A JP S6240735 A JPS6240735 A JP S6240735A
Authority
JP
Japan
Prior art keywords
film
film thickness
pattern
deposited
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18068485A
Other languages
Japanese (ja)
Inventor
Michi Kozuka
古塚 岐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP18068485A priority Critical patent/JPS6240735A/en
Publication of JPS6240735A publication Critical patent/JPS6240735A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To enable a non-destructive inspection by coating a film with a pattern having a step of a monitoring pattern, then observing by an optical microscope from above a substrate, and measuring the film thickness coated on the side of the step as a plane size in the microscope visual field. CONSTITUTION:The ratio of the thickness of a film coated on a plane surface to that of a film coated on the side of a step always becomes constant if physical conditions at coating time such as a material of the film, a coating principle and the type of a coating machine are secured. When observing from above the film thickness monitoring pattern after film coating, the width of the monitoring pattern is observed to be increased due to the film coating on the side of the step. Thus, if the end W1 of the monitoring pattern is obtained in advance, the width of the monitoring pattern after film coating is observed by the microscope to monitor the film thickness coated on the plane surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は膜厚モニタ法に関し、4!に半導体装置の製造
のための膜被着工程に好適な膜厚モニタ法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a film thickness monitoring method. The present invention relates to a film thickness monitoring method suitable for film deposition processes for manufacturing semiconductor devices.

〔従来の技術〕[Conventional technology]

半導体装置の製造工程には金属膜、誘電体膜。 Metal films and dielectric films are used in the manufacturing process of semiconductor devices.

半導体膜等の被着工程があシ、各工程毎の所要厚さが定
められている。このような膜の厚さをモニタする方法と
しては、S iO* 、 S l、N4等の透明な膜に
対してはエリプソメトリ法、光干渉法等の光学的モニタ
法が、金属等の不透明な膜に対しては被着膜の一部を除
去して段差を生ぜしめ、これを触針法、光干渉法により
モニタする方法がそれぞれ用いられて来た。
There are several steps for depositing semiconductor films, etc., and the required thickness for each step is determined. Methods for monitoring the thickness of such films include optical monitoring methods such as ellipsometry and optical interferometry for transparent films such as SiO*, S1, N4, etc., and optical monitoring methods such as optical interference method for opaque films such as metals. For such films, methods have been used in which a part of the deposited film is removed to create a step, and this is monitored by a stylus method or an optical interference method, respectively.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の膜厚モニタ法はいずれも専用の高価な膜
厚測定装置を要するという欠点がある。
All of the conventional film thickness monitoring methods described above have the disadvantage of requiring a dedicated and expensive film thickness measuring device.

また不透明な膜に対する上記モニタ法は被着膜を一部を
除去する破壊検査法であること、被着膜除去のための工
数を要し、膜厚モニタに時間がかかることが問題であっ
た。
Another problem is that the above-mentioned monitoring method for opaque films is a destructive inspection method that removes a portion of the deposited film, requires man-hours to remove the deposited film, and takes time to monitor the film thickness. .

本発明の目的はこれらの問題点を解決した膜厚モニタ法
を提供することにある。
An object of the present invention is to provide a film thickness monitoring method that solves these problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による膜厚モニタ法は、基板上に膜厚モニタ用の
パターンを形成し、膜を被着した後、該モニタ用のパタ
ーンを用いて被着膜厚を求める膜厚モニタ法において、
該モニタ用のパターンが段差を有するパターンで、股を
被着した後に該モニタ用のパターンを基板上方より光学
顕微鏡により覗測し、段差側面に被着した膜厚を顕微鏡
視野における平面寸法として測定し、被着膜厚を求める
方法であシ、特に膜厚モニタ用パターンが、膜被着工程
の所望膜厚に対応する所定寸法幅の溝パターン、若しく
は複数の異なる寸法幅の溝パターン群とすることにより
、更に膜厚モニタを容易ならしめることが可能な膜厚モ
ニタ法である。
The film thickness monitoring method according to the present invention is a film thickness monitoring method in which a film thickness monitoring pattern is formed on a substrate, a film is deposited, and then the deposited film thickness is determined using the monitoring pattern.
The monitor pattern has a step, and after the crotch has been applied, the monitor pattern is inspected from above the substrate using an optical microscope, and the thickness of the film deposited on the side surface of the step is measured as the planar dimension in the microscope field. However, there is a method for determining the deposited film thickness, especially when the film thickness monitoring pattern is a groove pattern with a predetermined width corresponding to the desired film thickness in the film deposition process, or a group of groove patterns with a plurality of different widths. This is a film thickness monitoring method that can further facilitate film thickness monitoring.

〔作用〕[Effect]

平面上に被着された膜の厚さと段差側面に被着された膜
の厚さの比は、被着膜の材料、被着原理。
The ratio of the thickness of the film deposited on a flat surface to the thickness of the film deposited on the side of a step depends on the material of the deposited film and the principle of deposition.

被着装置の機稽、被着時の物理的条件を固定すれば常に
一定となる。膜被着後の膜厚モニタ用パターンを上方よ
り観察すると、段差側面への膜被着により膜厚モニタ用
パターンの幅が増加して見える。従って膜厚モニタ用パ
ターンの幅を予じめ求めておけば、膜被着後の膜厚モニ
タ用パターンの幅を顕微鏡を用いて測定することにより
、平面上に被着された膜厚をモニタすることができる。
If the mechanism of the deposition device and the physical conditions at the time of deposition are fixed, it will always be constant. When observing the film thickness monitoring pattern from above after the film has been deposited, it appears that the width of the film thickness monitoring pattern has increased due to the film being deposited on the side surface of the step. Therefore, if the width of the film thickness monitoring pattern is determined in advance, the thickness of the film deposited on a flat surface can be monitored by measuring the width of the film thickness monitoring pattern using a microscope after the film has been deposited. can do.

〔実施例1〕 以下図面を用いて本発明の実施例について説明する。第
1図(a) 、 (b)および第2図(al 、 (b
)は本発明の第1の実施例を工程順に説明するための図
面で、第1図は平面図、第2図は第1図のX−X部の断
面図である。第1図葎)および第2図(a)において1
1はSl基板で、21はこの上に形成した厚さ1.5μ
mのSlO,膜よりなる膜厚モニタ用パターンである。
[Example 1] An example of the present invention will be described below with reference to the drawings. Figure 1 (a), (b) and Figure 2 (al, (b)
) are drawings for explaining the first embodiment of the present invention in the order of steps; FIG. 1 is a plan view, and FIG. 2 is a sectional view taken along line XX in FIG. 1. 1 in Figure 1(a) and Figure 2(a)
1 is an Sl substrate, and 21 is a 1.5μ thick layer formed on this.
This is a film thickness monitoring pattern made of a SlO film of m.

パターン幅W1は4μmとした。次にスパッタ蒸着法に
よりこの上にAI膜31を被着した(第1図(b)、第
2図(b))。被着装置はマグネトロンスパッタ方式の
もので、AIターゲット径は150mmである。被着条
件はスパッタガス(Ar )圧5Pa、ガス流量80S
CCM、スパッタ電力500W、電極間隔5Qmm、ウ
ニ八回転数6 rpmとしたが、本装置でこの被着条件
を用いると段差側面へのAJ被着膜厚と平面上への被着
膜厚の比は1対1.2である。Al膜の被着後の膜厚測
定パターンの幅W、を光学顕微鏡とスケールを用いて測
定した結果、W會 は6.4μmであった。Wlよ#)
Wlを減じた値(2,4μm)は段差側面に被着したA
l膜厚の2倍に当たるので、平面上に被着したAlく、
従来法の様なAu膜の一部を除去する必要がなくなった
The pattern width W1 was 4 μm. Next, an AI film 31 was deposited thereon by sputter deposition (FIGS. 1(b) and 2(b)). The deposition device is of a magnetron sputtering type, and the diameter of the AI target is 150 mm. The deposition conditions are sputtering gas (Ar) pressure 5Pa and gas flow rate 80S.
CCM, sputtering power 500W, electrode spacing 5Qmm, and sea urchin rotation speed 6 rpm were used. When these deposition conditions are used with this device, the ratio of the AJ deposited film thickness on the step side and the deposited film thickness on the flat surface is is 1:1.2. The width W of the film thickness measurement pattern after the Al film was deposited was measured using an optical microscope and a scale, and the width W was 6.4 μm. Wl #)
The value obtained by subtracting Wl (2.4 μm) is the value of A deposited on the side surface of the step.
Since this is twice the thickness of the Al film, the thickness of Al deposited on a flat surface is
It is no longer necessary to remove part of the Au film as in the conventional method.

〔実施例2〕 第3図Is) 、 fb) 、 fc)は本発明の他の
実施例を説明するための平面図である。同図(alにお
いて22は厚さ2μmの810.で形成された膜厚モニ
タ用パターンで、中央部222が幅3μmの溝となって
いる。半導体基板12を含む表面全体は厚さそれぞれ0
.05μmのTlおよびAuを順次a1Mfしてなるご
く薄い積層金F4膜で覆った後、非シアン果合めつき液
(商品名工エートロネクス201 )を60t3に加温
し、底面内寸が200mmX200mmの角柱型テフロ
ン容器内で、流速1017秒で攪拌しながら1を極間隔
を18!Mfmに保った状態で電解金めりきを施し念第
3図(bl。電流密度は4.QmA/lya″である。
[Embodiment 2] Figures Is), fb), and fc) are plan views for explaining another embodiment of the present invention. In the same figure (al), 22 is a film thickness monitoring pattern formed of 810. with a thickness of 2 μm, and the central part 222 is a groove with a width of 3 μm.The entire surface including the semiconductor substrate 12 has a thickness of 0.
.. After covering with a very thin laminated gold F4 film made by successively a1Mf of Tl and Au with a thickness of 05 μm, a non-cyanide plating solution (trade name Kou Aetronex 201) was heated to 60t3, and a prismatic shape with an inner bottom dimension of 200mm x 200mm was formed. In a Teflon container, while stirring at a flow rate of 1017 seconds, the pole spacing was 18! Electrolytic gold plating was applied while maintaining the Mfm.

このような条件では、段差側面の全膜厚と平坦部の全膜
厚の比は1対1である。平坦部のAu膜の厚さに第2の
実施例と同様に膜厚パターン巾の変化を測定することに
よりモニタできる。
Under such conditions, the ratio of the total thickness of the step side surface to the total thickness of the flat portion is 1:1. The thickness of the Au film in the flat portion can be monitored by measuring the change in the width of the film thickness pattern in the same manner as in the second embodiment.

第3図(clは更にめっきを続け、めっき厚が1.6μ
mとなった場合の平面図である。幅3μmの溝が形成さ
れていた膜厚モニタ中央部は、段差側面への金膜の被着
のために塞がりてしまった。このように溝部が塞がった
か否かに注目すればスケールを用いることなく、所定の
膜厚以上に膜が被着されつ極めて容易にモニタできた。
Figure 3 (CL continues plating and the plating thickness is 1.6 μm.
It is a top view when it becomes m. The central part of the film thickness monitor, where a groove with a width of 3 μm had been formed, was blocked due to the adhesion of the gold film to the side surfaces of the step. In this way, by paying attention to whether or not the groove was filled, it was possible to very easily monitor whether the film had been deposited to a predetermined thickness or more without using a scale.

第3図(alに示した膜厚モニタ用パターンに替わって
第4図に示した膜厚モニタ用パターンを用いれば膜厚モ
ニタは更に簡単に行なうことができる。
If the film thickness monitoring pattern shown in FIG. 4 is used instead of the film thickness monitoring pattern shown in FIG. 3 (al), film thickness monitoring can be performed even more easily.

第4図において、23は厚さ2μmのS五〇、で形成さ
れた膜厚モニタ用パターンで、溝の幅が1pmから5μ
mまで1μm刻みで5段階変化させである。膜を被着さ
せた後に溝が塞がったパターンを調べれば、1pmlD
精度で被着膜厚を、顕微鏡観察のみで容易に知ることが
できた。
In Fig. 4, 23 is a film thickness monitoring pattern formed of S50 with a thickness of 2 μm, and the groove width is from 1 pm to 5 μm.
It changes in 5 steps in 1 μm increments up to m. If we examine the pattern in which the grooves are closed after the film is deposited, it will be 1 pmlD.
It was possible to easily determine the thickness of the deposited film with accuracy just by observing it with a microscope.

〔発明の効果〕〔Effect of the invention〕

以上の説明より明らかなように本発明によれば、専用の
高価な膜厚測定装置を用いることなく、光学顕微鏡を用
いて膜厚モニタが可能となる。また従来不透明膜の膜厚
モニタで必要であった被着膜の除去作業が不要となシ、
非破壊検査を行なうことができるのでその効果は大きい
As is clear from the above description, according to the present invention, film thickness can be monitored using an optical microscope without using a dedicated and expensive film thickness measuring device. In addition, there is no need to remove the adhered film, which was required in conventional opaque film thickness monitors.
The effect is great because non-destructive testing can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第4図は本発明の第2の実施例を説明するための平面図
である。 11.12.13・・・半導体基板、21.22.23
・・・膜厚モニタ用パターン、31・・・被着膜。 多  j  口
FIG. 4 is a plan view for explaining a second embodiment of the present invention. 11.12.13...Semiconductor substrate, 21.22.23
... Film thickness monitoring pattern, 31... Deposited film. many mouths

Claims (3)

【特許請求の範囲】[Claims] (1)基板上に膜厚モニタ用のパターンを形成し、膜を
被着した後、該モニタ用のパターンを用いて被着膜厚を
求める膜厚モニタ法において、該モニタ用のパターンが
段差を有するパターンであり、膜を被着した後に該モニ
タ用のパターンを基板上方より光学顕微鏡により観測し
、段差側面に被着した膜厚を顕微鏡視野における平面寸
法として測定し、被着膜厚を求めることを特徴とする膜
厚モニタ法。
(1) In a film thickness monitoring method in which a film thickness monitoring pattern is formed on a substrate and a film is deposited, the thickness of the deposited film is determined using the monitoring pattern. After the film is deposited, the monitor pattern is observed using an optical microscope from above the substrate, and the thickness of the film deposited on the side surface of the step is measured as a planar dimension in the field of view of the microscope. A film thickness monitoring method characterized by:
(2)膜厚モニタ用の段差パターンが、膜被着工程の所
望膜厚に対応する所定寸法幅の溝パターンを含んでなる
ことを特徴とする特許請求の範囲第1項記載の膜厚モニ
タ法。
(2) The film thickness monitor according to claim 1, wherein the step pattern for film thickness monitoring includes a groove pattern with a predetermined width corresponding to a desired film thickness in a film deposition process. Law.
(3)膜厚モニタ用の段差パターンが、複数の異なる寸
法幅の溝パターン群を含んでなることを特徴とする特許
請求の範囲第1項記載の膜厚モニタ法。
(3) The film thickness monitoring method according to claim 1, wherein the step pattern for film thickness monitoring includes a plurality of groove pattern groups having different dimension widths.
JP18068485A 1985-08-16 1985-08-16 Film thickness monitoring method Pending JPS6240735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18068485A JPS6240735A (en) 1985-08-16 1985-08-16 Film thickness monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18068485A JPS6240735A (en) 1985-08-16 1985-08-16 Film thickness monitoring method

Publications (1)

Publication Number Publication Date
JPS6240735A true JPS6240735A (en) 1987-02-21

Family

ID=16087496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18068485A Pending JPS6240735A (en) 1985-08-16 1985-08-16 Film thickness monitoring method

Country Status (1)

Country Link
JP (1) JPS6240735A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018087807A1 (en) * 2016-11-08 2018-05-17 三菱電機株式会社 Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018087807A1 (en) * 2016-11-08 2018-05-17 三菱電機株式会社 Semiconductor device
CN109923647A (en) * 2016-11-08 2019-06-21 三菱电机株式会社 Semiconductor device
US10804169B2 (en) 2016-11-08 2020-10-13 Mitsubishi Electric Corporation Semiconductor device
CN109923647B (en) * 2016-11-08 2023-06-20 三菱电机株式会社 Semiconductor device with a semiconductor device having a plurality of semiconductor chips

Similar Documents

Publication Publication Date Title
JP5228586B2 (en) Vapor deposition mask, vapor deposition pattern production method using the same, semiconductor wafer evaluation sample production method, semiconductor wafer evaluation method, and semiconductor wafer production method
CN100465615C (en) Method for testing film residual stress and its layered deep distribution
CN106568411B (en) A kind of tin film thickness test method based on different surfaces difference in height
EP0362296A1 (en) Spin coating of electrolytes
CN109809359A (en) 2.5D interdigital electrode manufacturing method and interdigital electrode
US20190214319A1 (en) In-situ calibration structures and methods of use in semiconductor processing
CN111781120A (en) Testing method for thin film package
JPS6240735A (en) Film thickness monitoring method
US5543775A (en) Thin-film measurement resistor and process for producing same
CN106548956A (en) A kind of thickness measurement method of hydatogenesis thin film
KR20220056642A (en) Method of measuring thickness of coating layer for coated steel sheet
Mittal et al. Vapor deposited silanes and other coupling agents
TW203161B (en)
JPS63219582A (en) Method for measuring film-thickness distribution
JPH07251371A (en) Polishing method for formation of thin film and polishing device for formation of thin film
TWI832913B (en) Method for optical topography measurements
US5907763A (en) Method and device to monitor integrated temperature in a heat cycle process
JPH04132949A (en) Enzyme immobilization electrode
KR0175444B1 (en) Method of manufacturing semiconductor device having legs on groove
JPH0219757A (en) Micro-electrode cell for electrochemical measurement and its production
JPH04363611A (en) Optical measuring deveice
JPS5853859B2 (en) Pinhole measurement method for thin films
JPH01120094A (en) Manufacture of high-strength thin-film wiring board
Stoner et al. In-line copper process control using picosecond ultrasonics
JPS61251747A (en) Standard sample for evaluation pulverous particle