JPS6240603B2 - - Google Patents

Info

Publication number
JPS6240603B2
JPS6240603B2 JP55133898A JP13389880A JPS6240603B2 JP S6240603 B2 JPS6240603 B2 JP S6240603B2 JP 55133898 A JP55133898 A JP 55133898A JP 13389880 A JP13389880 A JP 13389880A JP S6240603 B2 JPS6240603 B2 JP S6240603B2
Authority
JP
Japan
Prior art keywords
signal
water
flow rate
water supply
water level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55133898A
Other languages
Japanese (ja)
Other versions
JPS5759196A (en
Inventor
Taku Oomori
Takao Watanabe
Yonemasa Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP55133898A priority Critical patent/JPS5759196A/en
Publication of JPS5759196A publication Critical patent/JPS5759196A/en
Publication of JPS6240603B2 publication Critical patent/JPS6240603B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子炉の給水制御装置に係り、特に
2種類の給水ポンプを自動的に切替えることので
きる原子炉給水制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a nuclear reactor feed water control system, and more particularly to a nuclear reactor water supply system that can automatically switch between two types of water pumps.

〔発明の背景〕[Background of the invention]

原子炉(例えば沸騰水形原子炉)の給水ポンプ
は、複数のタービン駆動ポンプ及びモータ駆動ポ
ンプによつて構成されている。原子炉の出力が低
いときには主にモータ駆動給水ポンプ(以下M−
RFPと略称)が使用され、出力を上昇する過程
でタービン駆動給水ポンプ(以下F−RFPと略
称)に切り替えられる。
A feedwater pump for a nuclear reactor (for example, a boiling water reactor) is comprised of a plurality of turbine-driven pumps and motor-driven pumps. When the reactor output is low, the motor-driven feed water pump (hereinafter referred to as M-
RFP) is used, and in the process of increasing the output, it is switched to a turbine-driven feedwater pump (hereinafter F-RFP).

従来、この給水ポンプの切替操作は運転員の手
動操作によつて行われていた。T−RFPは、駆
動タービンの回転数を変化させて給水流量を制御
するものであり、駆動タービン回転数の変化率を
大きくすると急激に給水流量が変化して原子炉の
水位が変動する。沸騰水形原子炉では、炉心冷却
などの観点から、水位の変動は厳しく制限されて
いる。すなわち、水位上昇に対しては主タービン
トリツプ、また水位低下に対しては原子炉スクラ
ムや、緊急炉心冷却系が作動するようになつてい
る。
Conventionally, this switching operation of the water supply pump has been performed manually by an operator. T-RFP controls the feed water flow rate by changing the rotation speed of the drive turbine, and when the rate of change in the drive turbine rotation speed is increased, the feed water flow rate changes rapidly and the water level of the reactor fluctuates. In boiling water reactors, fluctuations in water level are strictly limited from the perspective of core cooling. In other words, the main turbine trip is activated in response to a rise in the water level, and the reactor scram and emergency core cooling system are activated in response to a decrease in the water level.

したがつて、給水ポンプの切替操作は、経験を
有する運転員によつて、注意深く、長時間かけて
行われていた。また、給水ポンプ再循環弁は、給
水ポンプの締切運転を回避すべく、給水ポンプの
吐出部から給水を復水器へ戻すラインに設置さ
れ、給水ポンプ吸込流量が規定値以下になると自
動的に開放されるよう制御インターロツクが組ま
れている。しかし、給水ポンプ起動、停止の切替
過程で、給水ポンプ再循環弁が自動開閉すると、
これが給水流量に外乱を及ぼす。したがつて、給
水ポンプ再循環弁は、予め強制的に開放してい
る。
Therefore, the switching operation of the water supply pump has been performed carefully and over a long period of time by experienced operators. In addition, in order to avoid shut-off operation of the water pump, the water pump recirculation valve is installed in the line that returns the water from the discharge part of the water pump to the condenser. A control interlock is provided to ensure that it is released. However, when the water pump recirculation valve automatically opens and closes during the process of switching between starting and stopping the water pump,
This causes a disturbance to the water supply flow rate. Therefore, the water pump recirculation valve is previously forced open.

また、給水ポンプの最小確保流量は、ポンプ過
熱防止のみならず、軸振動、エロージヨン等の観
点からポンプ定格流量の25〜30%程度必要とされ
る。したがつて、給水ポンプ切替時のみならず、
原子炉出力上昇下降の過程でも給水ポンプ再循環
弁が開閉する可能性があり、原子炉水位変動をで
きるだけ軽減した弁操作方法が必要となる。
In addition, the minimum flow rate for a water supply pump is required to be approximately 25 to 30% of the pump's rated flow rate, not only to prevent pump overheating, but also to prevent shaft vibration and erosion. Therefore, not only when switching the water supply pump,
There is a possibility that the feed water pump recirculation valve may open or close during the process of increasing or decreasing reactor power, so a valve operation method that reduces reactor water level fluctuations as much as possible is required.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、原子炉水位の変動が極めて少
なく給水ポンプを切替えできる原子炉給水制御装
置を提供することにある。
An object of the present invention is to provide a reactor feed water control system that can switch feed water pumps with very little fluctuation in reactor water level.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、起動並列制御時において水位
検出器から出力された水位測定信号に対応して一
定割合で増加する信号と水位検出信号が所定の上
限値に達した時に増加信号を所定レベルに保持し
て得られる信号とのいずれかを第2信号として出
力し、しかも停止解列制御時において水位測定信
号に対応して得られる一定割合で減少する信号と
水位検出信号が所定の下限値に達した時に減少信
号を一定レベルに保持して得られる信号とのいず
れかを第2信号として出力する起動停止制御手段
を設けたことにある。
The features of the present invention include a signal that increases at a constant rate in response to the water level measurement signal output from the water level detector during start-up parallel control, and a signal that increases at a predetermined level when the water level detection signal reaches a predetermined upper limit. The signal obtained by holding the water level is output as a second signal, and the signal that decreases at a constant rate corresponding to the water level measurement signal and the water level detection signal reach a predetermined lower limit value during stop and release control. A start/stop control means is provided for outputting either the signal obtained by holding the decrease signal at a constant level as a second signal when the decrease signal reaches a certain level.

〔発明の実施例〕[Embodiments of the invention]

沸騰水型原子炉に適用した本発明の実施例を第
1図に示す。給水制御器18は、原子炉の水位検
出器14にて検出された水位信号LR、主蒸気検
出器にて検出された主蒸気流量信号16及び給水
流量検出器にて検出された給水流量17の三要素
と、水位設定信号15との偏差信号を取り込み比
例・積分演算を行う。給水制御器18の出力は各
ポンプ制御系に与えられるが、ここではT−
RFP9の場合について述べる。給水制御器18
の出力は、切替スイツチSW0の端子a0及び19、
関数発生器20を経て、バイアスゲイン7の出力
と加算され、タービン速度要求量となる。タービ
ン速度制御器21はこの速度要求量とタービン速
度信号24の偏差を入力しこの偏差に基づいてT
−RFP9の駆動タービンへの蒸気供給量を調節
する蒸気加減弁22を制御する。給水ポンプ再循
環弁12の制御は、T−RFP9の上流側で流量
検出器8にて測定された給水ポンプ吸込流量信号
sに依存している。給水ポンプ再循環弁12は
弁開流量、弁閉流量に従つて制御器13により自
動的にランプ状に開閉される。
An embodiment of the present invention applied to a boiling water reactor is shown in FIG. The feed water controller 18 uses a water level signal L R detected by the water level detector 14 of the reactor, a main steam flow rate signal 16 detected by the main steam detector, and a feed water flow rate 17 detected by the feed water flow rate detector. A deviation signal between the three elements and the water level setting signal 15 is taken in and proportional/integral calculations are performed. The output of the water supply controller 18 is given to each pump control system, but here T-
Let us discuss the case of RFP9. Water supply controller 18
The output of is the terminal a 0 and 19 of the changeover switch SW 0 ,
It passes through the function generator 20 and is summed with the output of the bias gain 7 to form the turbine speed requirement. The turbine speed controller 21 inputs the deviation between this speed request amount and the turbine speed signal 24, and adjusts T based on this deviation.
- Controls the steam control valve 22 that adjusts the amount of steam supplied to the driving turbine of the RFP 9. The control of the water pump recirculation valve 12 is dependent on the water pump suction flow signal W s measured by the flow detector 8 upstream of the T-RFP 9 . The water pump recirculation valve 12 is automatically opened and closed in a ramp-like manner by the controller 13 according to the valve opening flow rate and the valve closing flow rate.

給水ポンプ自動起動停止装置25は、水位信号
R及び逆止弁差圧検出器26にて検出された差
圧信号ΔPに基づいて求めた出力信号を切替スイ
ツチSW0の端子b0に出力する。逆止弁差圧検出器
26はT−RFP9の下流に設けられた逆止弁1
0の上流側と下流側との差圧を検出する。給水ポ
ンプ自動起動停止装置25の詳細は、第2図に示
されている。原子炉水位信号LBは、シーケンサ
31及び32(シーケンサ31は起動・並列用、
シーケンサ32は停止・解列用)を経て切替スイ
ツチSW1の各端子a1,b1の入力信号となる。切替
スイツチSW1は、このいずれかの信号を選択して
増幅器34に伝える。増幅器34の出力は切替ス
イツチSW2の端子a2に入力される。他方、逆止弁
差圧検出器26から出力された差圧信号ΔPは、
リミツタ39及び増巾器40を経て切替スイツチ
SW2の端子b2に入力される。この差圧信号ΔPは
給水ポンプ吐出圧力を給水ポンプ出口ヘツダ圧力
に近づける均圧制御に使われる。切替スイツチ
SW2にて選択された信号は、積分器36で積分さ
れて積分器36の出力信号37となる。
The water supply pump automatic start/stop device 25 outputs an output signal obtained based on the water level signal L R and the differential pressure signal ΔP detected by the check valve differential pressure detector 26 to the terminal b 0 of the changeover switch SW 0 . . The check valve differential pressure detector 26 is the check valve 1 provided downstream of the T-RFP 9.
Detects the differential pressure between the upstream and downstream sides of 0. Details of the water pump automatic start/stop device 25 are shown in FIG. The reactor water level signal L B is transmitted by sequencers 31 and 32 (sequencer 31 is for startup/paralleling,
The sequencer 32 passes through the stop/disconnect) and becomes an input signal to each terminal a 1 , b 1 of the changeover switch SW 1 . The changeover switch SW 1 selects one of these signals and transmits it to the amplifier 34 . The output of the amplifier 34 is input to the terminal a2 of the changeover switch SW2 . On the other hand, the differential pressure signal ΔP output from the check valve differential pressure detector 26 is
Switch via limiter 39 and amplifier 40
Input to terminal b 2 of SW 2 . This differential pressure signal ΔP is used for pressure equalization control to bring the water supply pump discharge pressure closer to the water supply pump outlet header pressure. changeover switch
The signal selected by SW 2 is integrated by an integrator 36 and becomes an output signal 37 of the integrator 36 .

給水ポンプ再循環弁12は、T−RFP9の吐
出部から復水器に給水を戻す配管に設けられる。
この給水ポンプ再循環弁12の制御器13は、T
−RFP9の吸込流量を制御するように構成され
るが、その詳細な構成を第3図に示す。第3図に
おいて、流量検出器にて測定されたポンプ吸込流
量Wsはシーケンス52に入力される。シーケン
サ52は、流量信号Wsに対応させて弁開流量、
弁閉流量でオンオフ信号を出力する。このオンオ
フ信号は、増巾器53及び54に入力される。こ
れらの増幅器のゲインK3及びK4は異る値に設定
される。増幅器53または54の出力が、給水ポ
ンプ再循環弁12の開度または再循環流量に応じ
て、切替スイツチSWsにて選択される。一般に給
水ポンプ再循環弁12が微開の状態では、給水ポ
ンプ再循環弁12でキヤビテーシヨン、エロージ
ヨン等が発生しやすいので給水ポンプ再循環弁1
2を急速動作させ、その後は給水外乱を少なくす
るように給水ポンプ再循環弁12を緩動作させ
る。このためには、K3>K4となるようにゲイン
を設定すればよい。給水ポンプ再循環弁12の開
度が所定の微小開度以下の場合には、切替スイツ
チSW3により増幅器54の出力を積分器56に伝
え、それ以上の開度の場合には増幅器54の出力
を積分器54に伝える。ゲインK3及びK4は弁動
作の変化率で与えられるので、切替スイツチSW3
の出力は、積分器56で積分され、弁開度の上下
限リミツタ57で処理されて出力62となる。
The water supply pump recirculation valve 12 is provided in a pipe that returns the water supply from the discharge part of the T-RFP 9 to the condenser.
The controller 13 of this water pump recirculation valve 12 is T
- It is configured to control the suction flow rate of the RFP 9, and its detailed configuration is shown in FIG. In FIG. 3, the pump suction flow rate W s measured by the flow rate detector is input into sequence 52 . The sequencer 52 controls the valve opening flow rate in response to the flow rate signal Ws .
Outputs an on/off signal when the valve is closed. This on/off signal is input to amplifiers 53 and 54. The gains K 3 and K 4 of these amplifiers are set to different values. The output of the amplifier 53 or 54 is selected by the changeover switch SW s depending on the opening degree of the water pump recirculation valve 12 or the recirculation flow rate. Generally, when the water pump recirculation valve 12 is slightly open, cavitation, erosion, etc. are likely to occur in the water pump recirculation valve 12.
2 is operated rapidly, and thereafter the water supply pump recirculation valve 12 is operated slowly to reduce disturbance in the water supply. For this purpose, the gain may be set so that K 3 >K 4 . When the opening degree of the water pump recirculation valve 12 is less than a predetermined minute opening degree, the output of the amplifier 54 is transmitted to the integrator 56 by the changeover switch SW 3 , and when the opening degree is more than that, the output of the amplifier 54 is transmitted to the integrator 56. is transmitted to the integrator 54. Since the gains K 3 and K 4 are given by the rate of change in valve operation, the changeover switch SW 3
The output is integrated by an integrator 56 and processed by a valve opening upper and lower limit limiter 57 to become an output 62.

次に動作について説明する。 Next, the operation will be explained.

(1) ポンプ起動並列制御 M−RFPが1台運転中で給水制御器18で
自動制御されており、起動並列すべきT−
RFP9は低速回転にあり、T−RFP9のポン
プ吐出圧力より給水ポンプ出口ヘツダ11の圧
力が高いので逆止弁10は閉じており、給水ポ
ンプ再循環弁12は全開になつているとする。
切替スイツチSW0は、給水ポンプ自動起動停止
装置25の出力関数発生器20に伝えている。
また第2図の切替スイツチSW2は差圧信号ΔP
に基づく制御を行うべく増幅器40の出力を積
分器36に伝えている。したがつて、差圧信号
ΔPが高い値である場合にはほぼリミツタ39
の上限値にあり、制御出力は変化率の大きな増
加信号となる。この増加信号が切替スイツチ
SW0及び関数発生器20を介してタービン速度
制御器21に伝えられるのでT−RFPの駆動
タービンはタービン速度制御器21から出力さ
れる制御信号に基づいて回転数を急激に上昇さ
せてゆく。T−RFP9から吐出される給水流
量が増大するこの操作によつて逆止弁差圧ΔP
は小さくなり、T−RFP9の昇速率が低下す
る。差圧信号ΔPがリミツタ39の下限値以下
になると、その下限値の一定変化率に基づいて
T−RFP9の駆動タービンが微小変化で昇速
する。やがて、T−RFP9の吐出圧力が給水
ポンプ出口ヘツダ11の圧力よりも高くなり、
T−RFP9から吐出された給水が逆止弁10
を通して流れ始める。このとき、切替スイツチ
SW2は端子a2側に切替えられ、水位の監視制御
に移行する。すなわち、切替スイツチSW1は端
子a1側に投入されているので、水位信号LR
監視制御に移行し、シーケンサ31は水位信号
Rのレベルに応じて以下のように動作する。
すなわち、シーケンサ31は、 と動作し、OFFの時に1をONの時に0を出力
する。設定レベルH1は設定レベルH2よりも高
いレベルである。シーケンサ31がONになつ
た場合にシーケンサ31は「1」を出力する。
この出力信号は増幅器34を経て積分器36に
て積算される。従つて、積分器36から出力さ
れる出力信号37は、一定割合で増加する。こ
のため、T−RFP9の駆動タービンの回転数
は一定割合で増加する。シーケンサ31が
OFFになつた場合、水位信号LRが上限の設定
レベルH1にある時、シーケンサ31は「0」
を出力する。このため、積分器36から出力さ
れる出力信号37は増減することなくシーケン
サ31が「0」を出力する直前の値にホールド
され、T−RFP9の駆動タービンの回転速度
は変化しない。このような制御は、給水ポンプ
の起動並列制御時には、起動すべきポンプ流量
を能動的に増加させて、原子炉水位を上昇させ
る。この結果、給水制御器18は減少信号を被
切替ポンプ(この場合M−RFP)に出力する
ので、被切替ポンプの吐出流量が減少し、ポン
プ切替制御が遂行される。
(1) Pump start parallel control One M-RFP is in operation and is automatically controlled by the water supply controller 18, and the T-RFP that should be started in parallel
It is assumed that the RFP 9 is rotating at a low speed and the pressure at the water pump outlet header 11 is higher than the pump discharge pressure of the T-RFP 9, so the check valve 10 is closed and the water pump recirculation valve 12 is fully open.
The changeover switch SW 0 transmits information to the output function generator 20 of the water pump automatic start/stop device 25 .
In addition, the changeover switch SW 2 in Fig. 2 is the differential pressure signal ΔP.
The output of the amplifier 40 is transmitted to the integrator 36 in order to perform control based on . Therefore, when the differential pressure signal ΔP is a high value, the limiter 39
is at the upper limit of , and the control output becomes a signal with a large increasing rate of change. This increase signal is the changeover switch.
Since the signal is transmitted to the turbine speed controller 21 via SW 0 and the function generator 20, the driving turbine of the T-RFP rapidly increases the rotation speed based on the control signal output from the turbine speed controller 21. Due to this operation in which the water supply flow rate discharged from T-RFP9 increases, the check valve differential pressure ΔP
becomes smaller, and the speed increase rate of T-RFP9 decreases. When the differential pressure signal ΔP becomes equal to or less than the lower limit value of the limiter 39, the driving turbine of the T-RFP 9 speeds up with minute changes based on a constant rate of change of the lower limit value. Eventually, the discharge pressure of the T-RFP 9 becomes higher than the pressure of the water supply pump outlet header 11,
The water supply discharged from T-RFP9 passes through the check valve 10.
begins to flow through. At this time, switch
SW 2 is switched to the terminal a 2 side, and the water level monitoring control is started. That is, since the changeover switch SW1 is connected to the terminal a1 side, the process shifts to monitoring control of the water level signal L R , and the sequencer 31 operates as follows according to the level of the water level signal L R.
That is, the sequencer 31 It operates and outputs 1 when it is OFF and 0 when it is ON. Setting level H1 is a higher level than setting level H2 . When the sequencer 31 is turned ON, the sequencer 31 outputs "1".
This output signal passes through an amplifier 34 and is integrated by an integrator 36. Therefore, the output signal 37 output from the integrator 36 increases at a constant rate. Therefore, the rotational speed of the driving turbine of the T-RFP 9 increases at a constant rate. The sequencer 31
When turned OFF, when the water level signal L R is at the upper limit setting level H 1 , the sequencer 31 is set to “0”.
Output. Therefore, the output signal 37 output from the integrator 36 does not increase or decrease and is held at the value immediately before the sequencer 31 outputs "0", and the rotational speed of the driving turbine of the T-RFP 9 does not change. Such control actively increases the flow rate of the pumps to be started during parallel start-up control of the feed water pumps to raise the reactor water level. As a result, the water supply controller 18 outputs a reduction signal to the switched pump (in this case, M-RFP), so the discharge flow rate of the switched pump decreases, and pump switching control is performed.

(2) ポンプ停止・解列制御 この場合には第1図の切替スイツチ(SW0
は端子b0に接続される。切換時において端子a0
と端子b0とに加えられる信号が等しくなるよう
な初期が積分器36の初期設定として与えられ
る。切替スイツチSW1は端子b1側、切替スイツ
チSW2は端子a2側を選択している。解列すべき
給水ポンプによる給水流量を能動的に低下させ
るので、原子炉水位は低下し非解列ポンプは給
水制御に従つて低下する。水位信号LRのレベ
ルに応じてシーケンサ32は、 と動作し、OFFの時に0をONの時に−1を出
力する。設定レベルL2は設定レベルL1よりも
低いレベルである。
(2) Pump stop/disconnect control In this case, use the changeover switch (SW 0 ) shown in Figure 1.
is connected to terminal b 0 . When switching, terminal a 0
An initial setting of the integrator 36 is given such that the signals applied to the terminal b 0 and the terminal b 0 are equal. The changeover switch SW1 selects the terminal b1 side, and the changeover switch SW2 selects the terminal a2 side. Since the feed water flow rate by the feed water pumps to be decoupled is actively reduced, the reactor water level is lowered and the pumps that are not decoupled are lowered in accordance with the water supply control. Depending on the level of the water level signal L R , the sequencer 32 It operates and outputs 0 when it is OFF and -1 when it is ON. Setting level L2 is a level lower than setting level L1 .

シーケンサ32がONになつた場合にシーケ
ンサ32は「−1」を出力する。この出力信号
は積分器36にて積算される。従つて、積分器
36は、一定割合で減少する出力信号37を出
力する。このため、T−RFP9の駆動タービ
ンの回転数は一定割合で増加する。シーケンサ
32がOFFになつた場合、水位信号LRが下限
の設定レベルL2にある時、シーケンサ32は
「0」を出力する。このため積分器36から出
力される出力信号37は、増減することなくシ
ーケンサ32が「0」を出力する前の値にホー
ルドされる。この制御は解列される給水ポンプ
による給水流量が零となるまで続けられ、ポン
プ流量が非解列ポンプに完全に移り替れば解列
終了となる。
When the sequencer 32 is turned ON, the sequencer 32 outputs "-1". This output signal is integrated by an integrator 36. Therefore, integrator 36 outputs an output signal 37 that decreases at a constant rate. Therefore, the rotational speed of the driving turbine of the T-RFP 9 increases at a constant rate. When the sequencer 32 is turned off, the sequencer 32 outputs "0" when the water level signal L R is at the lower limit setting level L 2 . Therefore, the output signal 37 output from the integrator 36 is held at the value before the sequencer 32 outputs "0" without increasing or decreasing. This control continues until the water supply flow rate from the water supply pump to be disconnected becomes zero, and when the pump flow rate is completely transferred to the non-connected pump, the disconnection ends.

ここで、ポンプ起動並列制御時には、給水ポ
ンプ並列完了まで起動される給水ポンプの給水
ポンプ再循環弁が開のままでそれが閉する流量
まで至らず、出力上昇過程で給水ポンプ再循環
弁の閉動作が行われる。このときは、給水制御
系の支配下にあるため、弁閉の動作時間を3〜
5分にすると給水ポンプ再循環弁閉による外乱
は炉水位の上昇につながるが。この上昇分は僅
かであり問題にならない。他方、ポンプ解列の
場合には、解列制御を開始後に、給水ポンプ再
循環弁が閉動作を開始する。このときの概念を
第4図に示す。すなわち、原子炉の停止過程で
給水流量が約45%に低下すると、T−RFP2台
のうち1台を解列する。時間t0で解列を開始す
ると、時間t2で解列されるT−RFP(T−Bポ
ンプ)の給水ポンプ再循環弁が開動作を開始す
る。このとき、給水ポンプ再循環弁を単純なオ
ンオブ制御で行うと、第5図のような過渡応答
となる。すなわち、水位信号LRはレベルL2
下となるので解列信号をホールドしているが時
間t1で給水ポンプ再循環弁が開くとポンプによ
る給水T−B流量(T−B流量。ここでは逆止
弁10通過流量を指す)が急激に低下し、零と
なつてしまう。しかし、T−A解列されないT
−RFP(T−Bポンプ)による給水流量(T
−A流量)は、ポンプ系の干渉効果によつて、
増加するが、給水流量は過渡的に減少するため
に、原子炉水位は低下し、ANN(水位低の警
報)以下となる。これは、給水ポンプ再循環弁
が開いたことにより、給水ポンプ吸込流量の総
量が増加し、給水ポンプよりも上流側にあるポ
ンプ(第1図の低圧復水ポンプ4及び高圧復水
ポンプ5)の揚程が下つて、給水ポンプ吸込ヘ
ツダ7の圧力が低下するので、T−RFPの吐
出圧力が低下し、逆止弁を通過する給水流量を
維持できなくなるためである。したがつて、給
水ポンプ再循環弁の動作を3〜5分の緩動作と
すれば、原子炉水位の低下は少なくなるが、給
水ポンプ再循環弁が全開する以前に逆止弁通過
流量が零となつてしまう。
During pump start parallel control, the water pump recirculation valve of the water pump that is started remains open until the water pump parallelization is completed, and the flow rate does not reach the point at which it closes, and the water pump recirculation valve closes during the output increase process. An action is taken. At this time, since it is under the control of the water supply control system, the valve closing operation time is 3 to 30 minutes.
If the time is set to 5 minutes, the disturbance caused by the closing of the water pump recirculation valve will lead to a rise in the reactor water level. This increase is small and does not pose a problem. On the other hand, in the case of pump disconnection, the water supply pump recirculation valve starts the closing operation after starting the disconnection control. The concept at this time is shown in FIG. That is, when the water supply flow rate decreases to about 45% during the reactor shutdown process, one of the two T-RFPs is disconnected from the line. When disconnection is started at time t 0 , the water pump recirculation valve of the T-RFP (T-B pump) to be disconnected at time t 2 starts an opening operation. At this time, if the water supply pump recirculation valve is controlled by simple on-off control, a transient response as shown in FIG. 5 will result. In other words, since the water level signal L R is below the level L2 , the disconnection signal is held, but when the water pump recirculation valve opens at time t1 , the water supply T-B flow rate by the pump (T-B flow rate.Here, (refers to the flow rate passing through the check valve 10) suddenly decreases to zero. However, T
- Water supply flow rate (T
-A flow rate) is due to the interference effect of the pump system,
However, the water supply flow rate decreases transiently, causing the reactor water level to drop below the ANN (low water level alarm). This is because the total suction flow rate of the water pump increases due to the opening of the water pump recirculation valve, and the pumps located upstream of the water pump (low-pressure condensate pump 4 and high-pressure condensate pump 5 in Figure 1) This is because the pump head of the T-RFP decreases and the pressure of the water supply pump suction header 7 decreases, so the discharge pressure of the T-RFP decreases, making it impossible to maintain the water supply flow rate passing through the check valve. Therefore, if the feedwater pump recirculation valve is operated slowly for 3 to 5 minutes, the drop in the reactor water level will be reduced, but the flow rate passing through the check valve will reach zero before the feedwater pump recirculation valve is fully opened. I become confused.

これに対し、本実施例では、制御器13から
出力される給水ポンプ再循環弁開度信号に比例
して、T−RFPの駆動タービンの回転数設定
値を上昇させている。すなわち、回転数設定値
は、給水ポンプ再循環開度信号に応じて、バイ
アスゲイン27を調整することにより設定され
る。この設定値は、給水ポンプ再循環弁全開時
に定格回転数の5〜10%程度上昇させるように
設定すれば、給水ポンプ再循環弁が全開する以
前に逆止弁通過流量が零になることはない。こ
のようなバイアスを関数発生器20の出力信号
に印加して、タービン速度制御器21によるポ
ンプ解列制御を行つた場合には第6図のように
なる。すなわち、給水流量の変動が少なくて原
子炉水位は警報点には至らず、良好に制御がで
きる。
On the other hand, in this embodiment, the rotational speed set value of the driving turbine of the T-RFP is increased in proportion to the feed water pump recirculation valve opening signal output from the controller 13. That is, the rotation speed setting value is set by adjusting the bias gain 27 according to the water supply pump recirculation opening signal. If this setting value is set so that the rotation speed increases by about 5 to 10% of the rated rotation speed when the water supply pump recirculation valve is fully opened, the flow rate passing through the check valve will not reach zero before the water supply pump recirculation valve is fully opened. do not have. When such a bias is applied to the output signal of the function generator 20 and the pump disconnection control is performed by the turbine speed controller 21, the result is as shown in FIG. In other words, the fluctuation in the water supply flow rate is small, the reactor water level does not reach the alarm point, and good control can be achieved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、原子炉水位を監視しつつ給水
ポンプの起動並列制御または停止解列制御を行う
ので、給水ポンプ切替え時における原子炉水位の
変動が少ない。
According to the present invention, since the start-up parallel control or stop-disconnect control of the feedwater pumps is performed while monitoring the reactor water level, there is little fluctuation in the reactor water level when switching the feedwater pumps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例を示す構成図、第2
図は、本発明の給水ポンプ自動起動停止装置の制
御ブロツク図、第3図は、本発明の給水ポンプ再
循環弁制御ブロツク図、第4図は、給水ポンプ解
列運転の概念図、第5図は、従来例による給水ポ
ンプ解列制御の過渡応答図、第6図は、本発明に
よる給水ポンプ解列制御の過渡応答図である。 1…原子炉、2…主蒸気管、3…タービン、4
…復水器、5…低圧復水ポンプ、6…高圧復水ポ
ンプ、7…給水ポンプ入口ヘツダ、8…ポンプ吸
込流量、9…タービン駆動給水ポンプ、10…逆
止弁、11…給水ポンプ出口ヘツダ、12…給水
ポンプ再循環弁、13…制御器、14…水位検出
器、15…水位設定、16…主蒸気流量信号、1
7…給水流量信号、18…給水制御器、19…切
替器、20…関数発生器、21…タービン速度制
御器、22…蒸気加減弁、23…給水ポンプター
ビン、24…タービン速度信号、25…自動起動
停止装置、26…逆止弁差圧検出器、27…バイ
アスゲイン。
FIG. 1 is a configuration diagram showing an embodiment of the present invention, and FIG.
3 is a control block diagram of the water supply pump automatic start/stop device of the present invention, FIG. 3 is a control block diagram of the water supply pump recirculation valve of the present invention, FIG. 4 is a conceptual diagram of the water supply pump decoupling operation, and FIG. FIG. 6 is a transient response diagram of feedwater pump disconnection control according to the conventional example, and FIG. 6 is a transient response diagram of feedwater pump disconnection control according to the present invention. 1... Nuclear reactor, 2... Main steam pipe, 3... Turbine, 4
...Condenser, 5...Low pressure condensate pump, 6...High pressure condensate pump, 7...Water pump inlet header, 8...Pump suction flow rate, 9...Turbine driven water pump, 10...Check valve, 11...Water pump outlet Header, 12... Water pump recirculation valve, 13... Controller, 14... Water level detector, 15... Water level setting, 16... Main steam flow rate signal, 1
7... Water supply flow rate signal, 18... Water supply controller, 19... Switch, 20... Function generator, 21... Turbine speed controller, 22... Steam control valve, 23... Water supply pump turbine, 24... Turbine speed signal, 25... Automatic start/stop device, 26... Check valve differential pressure detector, 27... Bias gain.

Claims (1)

【特許請求の範囲】 1 原子炉に設けられた水位検出器と、タービン
にて駆動される複数の給水ポンプが並列に設置さ
れた給水配管に設けられてしかも前記原子炉に導
かれる給水流量を測定する給水流量検出器と、前
記原子炉内で発生した蒸気を導く主蒸気管に設け
られた蒸気流量検出器と、前記水位検出器、前記
給水流量検出器及び前記蒸気流量検出器の各測定
信号に基づいて第1信号を出力する給水制御手段
と、起動並列制御時において前記水位検出器から
出力された水位測定信号に対応して一定割合で増
加する信号と前記水位検出信号が所定の上限値に
達した時に前記増加信号を所定レベルに保持して
得られる信号とのいずれかを第2信号として出力
し、しかも停止解列制御時において前記水位測定
信号に対応して得られる一定割合で減少する信号
と前記水位検出信号が所定の下限値に達した時に
前記減少信号を一定レベルに保持して得られる信
号とのいずれかを第2信号として出力する起動停
止制御手段と、前記第1及び第2信号のいずれか
を選択して出力する切替手段と、前記切替手段に
て選択された信号に基づいて前記タービンの回転
数を制御する手段とを備えたことを特徴とする原
子炉給水制御装置。 2 原子炉に設けられた水位検出器と、タービン
にて駆動される複数の給水ポンプが並列に設置さ
れた給水配管に設けられてしかも前記原子炉に導
かれる給水流量を測定する第1給水流量検出器
で、前記原子炉内で発生した蒸気を導く主蒸気管
に設けられた蒸気流量検出器と、前記水位検出
器、前記第1給水流量検出器及び前記蒸気流量検
出器の各測定信号に基づいて第1信号を出力する
給水制御手段と、起動並列制御時において前記水
位検出器から出力された水位測定信号に対応して
一定割合で増加する信号と前記水位検出信号が所
定の上限値に達した時に前記増加信号を所定レベ
ルに保持して得られる信号とのいずれかを第2信
号として出力し、しかも停止解列制御時において
前記水位測定信号に対応して得られる一定割合で
減少する信号と前記水位検出信号が所定の下限値
に達した時に前記減少信号を一定レベルに保持し
て得られる信号とのいずれかを第2信号として出
力する起動停止制御手段と、前記第1及び第2信
号のいずれかを選択して出力する切替手段と、前
記切替手段にて選択された信号に基づいて前記タ
ービンの回転数を制御する手段と、一台の前記給
水ポンプを通過する給水流量を測定する第2給水
流量検出器と、前記給水ポンプから吐出された給
水を前記給水ポンプの吸引側に戻す配管に設けら
れた再循環弁と、前記第2給水流量検出器の出力
信号に基づいて前記再循環弁の開度を制御する手
段とを備えたことを特徴とする原子炉給水制御装
置。 3 原子炉に設けられた水位検出器と、タービン
にて駆動される複数の給水ポンプが並列に設置さ
れた給水配管に設けられてしかも前記原子炉に導
かれる給水流量を測定する第1給水流量検出器
で、前記原子炉内で発生した蒸気を導く主蒸気管
に設けられた蒸気流量検出器と、前記水位検出
器、前記第1給水流量検出器及び前記蒸気流量検
出器の各測定信号に基づいて第1信号を出力する
給水制御手段と、起動並列制御時において前記水
位検出器から出力された水位測定信号に対応して
一定割合で増加する信号と前記水位検出信号が所
定の上限値に達した時に前記増加信号を所定レベ
ルに保持して得られる信号とのいずれかを第2信
号として出力し、しかも停止解列制御時において
前記水位測定信号に対応して得られる一定割合で
減少する信号と前記水位検出信号が所定の下限値
に達した時に前記減少信号を一定レベルに保持し
て得られる信号とのいずれかを第2信号として出
力する起動停止制御手段と、前記第1及び第2信
号のいずれかを選択して出力する切替手段と、前
記切替手段にて選択された信号に基づいて前記タ
ービンの回転数を制御する手段と、一台の前記給
水ポンプを通過する給水流量を測定する第2給水
流量検出器と、前記給水ポンプから吐出された給
水を前記給水ポンプの吸込側に戻す配管に設けら
れた再循環弁と、前記第2給水流量検出器の出力
信号に基づいて前記再循環弁の開度を制御する手
段と、前記再循環弁開度制御手段の出力信号に基
づいて前記切替手段から出力された信号を補償
し、補償された信号を前記タービン回転数制御手
段に出力する手段とを備えたことを特徴とする原
子炉給水制御装置。
[Claims] 1. A water level detector provided in a nuclear reactor and a plurality of water supply pumps driven by a turbine are installed in a water supply pipe installed in parallel, and the flow rate of water supplied to the nuclear reactor is controlled. Measurements of a feed water flow rate detector to be measured, a steam flow rate detector installed in a main steam pipe that guides steam generated in the reactor, the water level detector, the feed water flow rate detector, and the steam flow rate detector water supply control means that outputs a first signal based on the signal; a signal that increases at a constant rate in response to the water level measurement signal output from the water level detector during start-up parallel control; and a water level detection signal that is set to a predetermined upper limit. A signal obtained by holding the increase signal at a predetermined level when the increase signal reaches a predetermined level is output as a second signal, and at a constant rate obtained in response to the water level measurement signal during stop and release control. a start/stop control means for outputting either a decreasing signal or a signal obtained by holding the decreasing signal at a constant level when the water level detection signal reaches a predetermined lower limit value as a second signal; and a switching means for selecting and outputting one of the second signals and a means for controlling the rotation speed of the turbine based on the signal selected by the switching means. Control device. 2. A first water supply flow rate that is installed in a water supply pipe in which a water level detector installed in the reactor and a plurality of water supply pumps driven by a turbine are installed in parallel, and that measures the flow rate of water supplied to the reactor. The detector detects each measurement signal of a steam flow rate detector provided in a main steam pipe that guides steam generated in the nuclear reactor, the water level detector, the first feed water flow rate detector, and the steam flow rate detector. water supply control means that outputs a first signal based on the start-up parallel control; a signal that increases at a constant rate in response to the water level measurement signal output from the water level detector during start-up parallel control; and a water level detection signal that increases when the water level detection signal reaches a predetermined upper limit value. When the increase signal reaches a predetermined level, either one of the signals obtained by holding the increase signal at a predetermined level is outputted as a second signal, and the water level decreases at a constant rate obtained in response to the water level measurement signal during stop and release control. a start/stop control means for outputting either the signal or a signal obtained by holding the decrease signal at a constant level when the water level detection signal reaches a predetermined lower limit value as a second signal; a switching means for selecting and outputting one of the two signals, a means for controlling the rotation speed of the turbine based on the signal selected by the switching means, and a means for controlling the feed water flow rate passing through one of the water feed pumps. Based on the output signal of a second water supply flow rate detector to be measured, a recirculation valve provided in a pipe that returns the water discharged from the water supply pump to the suction side of the water supply pump, and the second water supply flow rate detector. A nuclear reactor feed water control device comprising: means for controlling the opening degree of the recirculation valve. 3. A water level detector installed in the reactor and a plurality of water supply pumps driven by a turbine are installed in a water supply pipe installed in parallel, and a first water supply flow rate is provided to measure the flow rate of water supplied to the reactor. The detector detects each measurement signal of a steam flow rate detector provided in a main steam pipe that guides steam generated in the nuclear reactor, the water level detector, the first feed water flow rate detector, and the steam flow rate detector. water supply control means that outputs a first signal based on the start-up parallel control; a signal that increases at a constant rate in response to the water level measurement signal output from the water level detector during start-up parallel control; and a water level detection signal that increases when the water level detection signal reaches a predetermined upper limit value. When the increase signal reaches a predetermined level, either one of the signals obtained by holding the increase signal at a predetermined level is outputted as a second signal, and the water level decreases at a constant rate obtained in response to the water level measurement signal during stop and release control. a start/stop control means for outputting either the signal or a signal obtained by holding the decrease signal at a constant level when the water level detection signal reaches a predetermined lower limit value as a second signal; a switching means for selecting and outputting one of the two signals, a means for controlling the rotation speed of the turbine based on the signal selected by the switching means, and a means for controlling the feed water flow rate passing through one of the water feed pumps. Based on the output signal of a second water supply flow rate detector to be measured, a recirculation valve provided in a pipe that returns the water discharged from the water supply pump to the suction side of the water supply pump, and the second water supply flow rate detector. means for controlling the opening degree of the recirculation valve, and compensating the signal output from the switching means based on the output signal of the recirculation valve opening degree control means, and transmitting the compensated signal to the turbine rotation speed control means. 1. A nuclear reactor water supply control device, comprising: means for outputting.
JP55133898A 1980-09-25 1980-09-25 Nuclear reactor feedwater control method Granted JPS5759196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55133898A JPS5759196A (en) 1980-09-25 1980-09-25 Nuclear reactor feedwater control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55133898A JPS5759196A (en) 1980-09-25 1980-09-25 Nuclear reactor feedwater control method

Publications (2)

Publication Number Publication Date
JPS5759196A JPS5759196A (en) 1982-04-09
JPS6240603B2 true JPS6240603B2 (en) 1987-08-28

Family

ID=15115678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55133898A Granted JPS5759196A (en) 1980-09-25 1980-09-25 Nuclear reactor feedwater control method

Country Status (1)

Country Link
JP (1) JPS5759196A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179601U (en) * 1986-04-30 1987-11-14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62179601U (en) * 1986-04-30 1987-11-14

Also Published As

Publication number Publication date
JPS5759196A (en) 1982-04-09

Similar Documents

Publication Publication Date Title
US4651530A (en) Method and apparatus for feed-water control in a steam generating plant
JPS6240603B2 (en)
JP3302788B2 (en) Turbine control unit and reactor isolation cooling system control system
JP4589279B2 (en) Non-condensable gas discharge device for condenser and non-condensable gas discharge control method for condenser
JPH10122506A (en) Controller for water supply of steam generator
JPH0610404B2 (en) Steam turbine controller
JPS6232393A (en) Turbine controller for nuclear reactor plant
JPS59218998A (en) Reactor feedwater device
JPS6172905A (en) Minimum flow controller for pump
JPS6128881B2 (en)
JPS58214703A (en) Method of controlling feed pump
JPS60117002A (en) Controller for feedwater to nuclear reactor
JPH0243881B2 (en)
JPS6246107A (en) Water-level controller
JPS6363760B2 (en)
JPH0367078A (en) Preventive device for overflow in water supply
JP2965607B2 (en) Steam turbine controller
JPS62112099A (en) Nuclear reactor isolation cooling system controller
JPS6280405A (en) Feedwater controller for nuclear reactor
JPS629106A (en) Controller for steam generating plant
JPS61246502A (en) Feedwater controller
JPH0244107A (en) Automatic switching device for water feeding pump
JPH0222360B2 (en)
JPS58178105A (en) Control system of feedwater
JPS6355309A (en) Device for controlling steam turbine