JPH0244107A - Automatic switching device for water feeding pump - Google Patents

Automatic switching device for water feeding pump

Info

Publication number
JPH0244107A
JPH0244107A JP19274388A JP19274388A JPH0244107A JP H0244107 A JPH0244107 A JP H0244107A JP 19274388 A JP19274388 A JP 19274388A JP 19274388 A JP19274388 A JP 19274388A JP H0244107 A JPH0244107 A JP H0244107A
Authority
JP
Japan
Prior art keywords
flow rate
pump
turbine
water supply
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19274388A
Other languages
Japanese (ja)
Inventor
Kazumichi Inahashi
稲橋 和通
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP19274388A priority Critical patent/JPH0244107A/en
Publication of JPH0244107A publication Critical patent/JPH0244107A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To enable automatic switching of a feed pump in a short time in a state that a fluctuation in a flow rate of feed is suppressed to a minimum by a method wherein a switching change factor is corrected according to a feed flow rate deviation between an increase amount of water fed with the aid of a turbine-driven feed pump and a decrease amount of water fed with the aid of a motor-driven feed pump. CONSTITUTION:A deviation between an actual feed flow rate signal 20 and a feed demand set signal 21 from a boiler master system is determined by an adder 25, and a proportional and integrating computation is effected by a feed controller 26 to determine a flow rate demand value. In the case of a turbine-driven feed pump, a deviation between a flow rate demand value and a pump outlet flow rate (check valve flow rate) signal 27 is determined by an adder 28, and proportional and integrating computation is effected by a flow rate control device 29. This controller output is inputted to a turbine controller 30. An output from the turbine controller 30 is provided as a signal by means of which a steam regulating valve 32 to control a flow rate of low pressure steam extracted from a main turbine 3 is opened and closed, and the number of revolutions of a turbine 31 for driving a feed pump is controlled. Meanwhile, in the case of a motor-driven feed pump, a feed regulating valve 9 is directly controlled by a means of an output from a flow rate controller 33.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は給水ポンプ自動切替装置に係り、特に火力発電
所等における蒸気発生器に用いるのに最適な給水ポンプ
自動切替装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an automatic water pump switching device, and particularly to an automatic water pump switching device that is most suitable for use in a steam generator in a thermal power plant or the like.

〔従来の技術〕[Conventional technology]

従来の装置は特公昭63−685号公報に記較のように
蒸気発生装置(例えばボイラ)の給水ポンプはタービン
駆動及びモータ駆動のごとく異なる駆動方式の複数のポ
ンプで構成されている。蒸気発生装置の出力が少ないと
きには、主にモータ駆動給水ポンプ(M−RFP)が使
用され、出力上昇過程でタービン駆動給水ポンプ(T−
RFP)に切替える。従来、この切替操作は運転員の手
動操作によりなされていた。タービン駆動給水ポンプは
、タービン回転数によって給水ポンプ流量を制御する。
In a conventional system, as described in Japanese Patent Publication No. 63-685, a water supply pump for a steam generator (for example, a boiler) is composed of a plurality of pumps with different drive systems such as turbine drive and motor drive. When the output of the steam generator is low, the motor-driven feed water pump (M-RFP) is mainly used, and in the process of increasing the output, the turbine-driven feed water pump (T-RFP) is used.
RFP). Conventionally, this switching operation was performed manually by an operator. A turbine-driven water pump controls the water pump flow rate based on the turbine rotation speed.

このタービン回転数の上昇率を大きくすると、急激に流
量が増加して、ボイラ給水流量が増加する。ボイラでは
、ボイラ・タービン主機保護上の要求から給水の変動が
厳しく制限されており、偏差が規定値以上になるとボイ
ラ・タービンがトリップするインターロックが働く、ま
た、給水低下に対してもボイラの空焚き保護上の要求か
らボイラトリップのインターロックが働く。したがって
、給水ポンプの切替操作は、経験をつんだ運転員によっ
て注意深く、長時間をかけておこなわれていた。
When the rate of increase in the turbine rotational speed is increased, the flow rate increases rapidly and the boiler feed water flow rate increases. Fluctuations in water supply to boilers are strictly limited due to requirements for protecting the boiler and turbine main engines, and an interlock is activated that trips the boiler and turbine when the deviation exceeds a specified value. Boiler trip interlocks are activated due to dry firing protection requirements. Therefore, the switching operation of the water supply pump was performed carefully and over a long period of time by experienced operators.

これに対して、近年、給水ポンプを入手によらず自動的
に切替える装置が提案されており1例えば第2図に示す
方式がある。
In response to this, in recent years, devices have been proposed that automatically switch the water supply pump regardless of its availability; for example, there is a system shown in FIG. 2.

ボイラ1で発生した蒸気は主蒸気配管2を通りタービン
3に導入され、図示しない発電機を駆動したのち、復水
器4に送られ水に戻される。この復水は、低圧復水ポン
プ5.高圧復水ポンプ6により昇圧され、タービン駆動
給水ポンプ(T−BFP)7およびモータ駆動給水ポン
プ(M−BFP)8により更に高圧され、給水管10を
介してボイラ1に給水される。通常、給水ポンプには、
タービン駆動給水ポンプ2台とモータ駆動給水ポンプ1
台の計3台が用いられる。タービン始動時においては、
モータ駆動給水ポンプ8が運転され、タービンが20%
出力程度になった時点でタービン駆動給水ポンプ7が運
転される。加算器2では、ボイラの給水流量が設定値か
ら減算される。この出力は、主制御器13の制御信号と
なる。
Steam generated in the boiler 1 is introduced into the turbine 3 through the main steam pipe 2, drives a generator (not shown), and is then sent to the condenser 4 and returned to water. This condensate is pumped by low pressure condensate pump 5. The pressure is increased by the high-pressure condensate pump 6 , the pressure is further increased by the turbine-driven water pump (T-BFP) 7 and the motor-driven water pump (M-BFP) 8 , and water is supplied to the boiler 1 via the water supply pipe 10 . Typically, water pumps include
2 turbine-driven water pumps and 1 motor-driven water pump
A total of three machines are used. When starting the turbine,
The motor-driven water pump 8 is operated and the turbine is at 20%
When the output level is reached, the turbine-driven water supply pump 7 is operated. Adder 2 subtracts the boiler feed water flow rate from the set value. This output becomes a control signal for the main controller 13.

始動開始時には、計算機14が制御器15をオフとし制
御器16をオンに制御しているので、主制御器13によ
る制御は、給水調整弁9のみとなる。
At the start of startup, the computer 14 turns off the controller 15 and turns on the controller 16, so the main controller 13 only controls the water supply adjustment valve 9.

前述のように発電機出力が増大すると、計算機14は制
御器15をオンとし給水制御を給水制御弁9からタービ
ン制御器18に移してから、制御器】6をオフとする。
When the generator output increases as described above, the computer 14 turns on the controller 15, transfers water supply control from the water supply control valve 9 to the turbine controller 18, and then turns off the controller 6.

そこで、主制御器13の出力は関数発生器17に送られ
、制御パターンを発生する。関数発生器、17の出力は
タービン制御18に送られ、給水ポンプ7用のタービン
蒸気量を制御する。
Therefore, the output of the main controller 13 is sent to a function generator 17 to generate a control pattern. The output of the function generator, 17, is sent to a turbine control 18 to control the turbine steam rate for the feed water pump 7.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記、第2図に示すような従来の給水ポンプ切替え方式
では、計算機14が手動操作に代わってモータ駆動給水
ポンプとタービン駆動給水ポンプとを切替えるものであ
るが、これを発電機出力変化中に、タービン駆動用油気
条件等の種々制御特性に関する条件が変わる中で、給水
流量の変動を抑えて切替える必要がある。しかし、第2
図を詳細に展開して第3図のブロック図及び第4図の従
来の給水ポンプ切替装置の実施例の各部動作特性図から
分かるように、種々変化する特性を補正していないため
、給水流量の変動が抑えられない欠点がある。尚、第4
図では、図を見やすくするため負荷(給水)一定とした
In the conventional water pump switching method shown in FIG. 2 above, the computer 14 switches between the motor-driven water pump and the turbine-driven water pump instead of manual operation. As conditions related to various control characteristics such as turbine drive oil and air conditions change, it is necessary to suppress fluctuations in the water supply flow rate when switching. However, the second
As can be seen from the block diagram in Figure 3 and the operating characteristic diagram of each part of the conventional water pump switching device example in Figure 4, the water supply flow rate is It has the disadvantage that it cannot suppress fluctuations. Furthermore, the fourth
In the figure, the load (water supply) is assumed to be constant to make the figure easier to read.

すなわち、従来の切替制御は、均圧制御後に、所定変化
率でしかも上限を制限した上昇信号をタービン駆動給水
ポンプ制御系に出力しタービン駆動給水ポンプからの給
水量を増加させると同時に、この上昇信号と対応した減
少信号をモータ駆動給水ポンプ系に出力しモータ駆動給
水ポンプからの給水量を減少させる切替制御系であり、
給水流量の変動が減少するように考慮されているが、ま
だ下記理由で変動を充分抑えられない。
In other words, in conventional switching control, after pressure equalization control, an increase signal with a predetermined rate of change and a limited upper limit is output to the turbine-driven water feed pump control system to increase the amount of water supplied from the turbine-driven water pump, and at the same time It is a switching control system that outputs a reduction signal corresponding to the signal to the motor-driven water supply pump system to reduce the amount of water supplied from the motor-driven water supply pump,
Efforts have been made to reduce fluctuations in the water supply flow rate, but fluctuations have not yet been sufficiently suppressed for the following reasons.

1)タービン駆動給水ポンプ制御系とモータ駆動給水ポ
ンプ制御系とでは制御信号対流量特性が異なり、−走度
化率の上昇信号をタービン駆動給水ポンプ制御系に出力
し、この上昇信号に対応した減少信号をモータ駆動給水
ポンプ制御系に出力するのでは給水流量の変動が生じて
しまう。
1) The control signal vs. flow rate characteristics are different between the turbine-driven water supply pump control system and the motor-driven water supply pump control system. If the decrease signal is output to the motor-driven water supply pump control system, fluctuations in the water supply flow rate will occur.

2)2台のタービン駆動給水ポンプと1台のモー夕駒動
給水ポンプの813台を発電機出力要求値に合わ」(゛
、種々組合性により各負荷帯で負荷変化中に切替えるた
め5夕・−ビン駆動給水ポンプの駆動用油気蒸餐1のエ
ンタルピ・−が定まらず、結果的+:″、切替毎に8制
御器号対流散特性が異なり、1)の理1102:′、よ
り給水流量の変動が生じでしまう。
2) Adjust the 813 units of 2 turbine-driven water feed pumps and 1 motor-driven water feed pump to the required generator output value.・-The enthalpy of the oil vapor vapor 1 for driving the bottle-driven water supply pump is not determined, and as a result, the convection-diffusion characteristics of the 8 controllers differ for each switch, and from the principle 1102:' of 1) Fluctuations in the water supply flow rate will occur.

、′3)給水ポンプには通常、締切運転によるポンプ過
熱防止の目的で給水再循環弁:3/1..35が設けら
れ、給水ポンプ吸込流量が一定値以上確保Σj1.るよ
うにしでいる。これらの弁34.35はポンプ吸込Jf
、吸借%36.37を取り込みオン・オフまたは連続制
御機能を有゛づる再循環流量制御器38.39によって
制御される51.′0の弁の切替制御中(、−おける開
閉にむいτlj、再循環流量が突変り、、給水流量変動
が生ずン)が5、この時でもこのg勅を助長するように
切替制御を行い、給水流量の変動が拡大してしま)。
, '3) A water supply pump is usually equipped with a water recirculation valve to prevent the pump from overheating due to shut-off operation: 3/1. .. 35 is provided to ensure that the water supply pump suction flow rate is above a certain value Σj1. I'm trying to do that. These valves 34.35 are the pump suction Jf
, 51.37, which is controlled by a recirculation flow controller 38.39 with on/off or continuous control function that takes in %36.37. During the switching control of the valve '0 (the recirculation flow rate suddenly changes due to opening/closing at -), the switching control is performed to promote this g-force. (This may increase fluctuations in the water supply flow rate.)

本発明の目的は切替時の給水変動を抑え、各種切替条件
でも良好に切替えできる給水ポンプ切替装量を提供ずろ
二とであ?)、 〔課題を解決する)tめの手段〕 本発明は、上記目的を達成4゛るため1、二、均圧制#
後に、給水流量偏差により切替変化率を制限し′/−上
昇信号をタービン駆動給水ポンプ制御系に出力ター・ビ
ン駆!IJ給水ポンプからの給水量も・増加?5ゼると
同時に、このL昇信号とは別の給水流量偏差により切替
変化率を制限しへ減、ル・Gl ””j kモー・タ1
駆動給水ポンプ制御系11.″出力しモ〜り即動給水ポ
ンプからの給水量を減少!5ぜるζり量制御とする、二
とにより、達成さ狂る。
The purpose of the present invention is to provide a water supply pump switching capacity that suppresses water supply fluctuations at the time of switching and allows good switching under various switching conditions. ), [Tth means for solving the problem] In order to achieve the above object, the present invention has the following features: 1., 2.
Afterwards, the switching change rate is limited by the feedwater flow rate deviation, and a '/- rise signal is output to the turbine-driven feedwater pump control system. Has the amount of water supplied from the IJ water pump also increased? 5, at the same time, the switching change rate is limited by a feed water flow rate deviation different from this L increase signal, and the rate of change is reduced to 1.
Drive water pump control system 11. ``Decrease the amount of water supplied from the instant-acting water supply pump by outputting the output! 5. Controlling the amount of water leakage.

〔作用〕[Effect]

本発明においては5夕・−ピノ駆!1.iJ給♂にポン
プL、−よる給水増加量どモータ駆動給水欺とを、給水
流量偏差により切替変化率を制限1.切替制御するよう
に動作する。それによって、給水流量の変動は。
In the present invention, five evenings - Pino Kakeru! 1. 1. Limit the switching rate of change depending on the water supply flow rate deviation, such as increase in water supply by pump L and - to iJ supply♂ and motor-driven water supply decoupling. Operates to control switching. As a result, fluctuations in water supply flow rate.

この給水流量偏差により切替変化率を制限するようにな
るので、変動を抑えることができイ)。
This water supply flow rate deviation limits the switching rate of change, so fluctuations can be suppressed (a).

〔実施例〕〔Example〕

jメ下1本発明の一実施例を第1図により説明す第1図
は本発明による給水ポンプ自動切替装置の−・実施例を
示すブロック図である。これは5蒸領1発生装置にボイ
ラを採用した例であり、その蒸気流路及び給水系の構成
は第2図のシステムど同一である7 ボイラ給水制御系は、実給水流M漬汁20とボイラマス
タ系からの給水要求設定信号21との偏差を加算器25
により求め、給水制御器2G(1こより、比例・積分演
算を行い、流量要求値となる。
An embodiment of the present invention will be explained with reference to FIG. 1. FIG. 1 is a block diagram showing an embodiment of the water pump automatic switching device according to the present invention. This is an example in which a boiler is adopted as the 5-distillation region 1 generator, and the configuration of its steam flow path and water supply system is the same as the system shown in Figure 2.7 The boiler feed water control system has an actual feed water flow of M An adder 25 calculates the deviation between the water supply request setting signal 21 and the boiler master system.
The water supply controller 2G (1) performs proportional and integral calculations to obtain the required flow rate value.

この流量要求値は、各ポンプ流量を独自に制御するサブ
ループ制御系の設定値どなる。すなわち、タービン駆動
給水ポンプの場合には、この流量要求値とポンプ出口流
Jt(逆止弁流量)信号27との偏差を加W器28で求
め、流量制御器「28)で比例・積分演算を行う8この
制御器出力がタービン制御器30に与えられる。タービ
ン制御器30の出力は、tタービン3から油気I7た低
圧黒傷、の流量を制御する蒸気加減弁32を開開する信
号として与えられ6給水ポンプ駆動用ター・ビン3】の
回転数が制御される。他方、モータ駆動給水ポンプの場
合には、流通制御器:33の出力で、給水調整弁9を直
接制御する。
This flow rate request value is the set value of the subloop control system that independently controls the flow rate of each pump. That is, in the case of a turbine-driven feed water pump, the deviation between this flow rate request value and the pump outlet flow Jt (check valve flow rate) signal 27 is determined by the W adder 28, and the flow rate controller "28" performs proportional/integral calculations. 8 This controller output is given to the turbine controller 30. The output of the turbine controller 30 is a signal to open and open the steam control valve 32 that controls the flow rate of the low pressure black gas from the turbine 3. On the other hand, in the case of a motor-driven water pump, the feed water regulating valve 9 is directly controlled by the output of the flow controller 33.

なお、図示していないタービン駆動給水ポンプI3の流
量制御系及びポンプの構成は、第J−図のそれぞれのポ
ンプAど同じであり、これらの流量制御器は給水制御器
26の出力の流量要求値を取り込んでいろ。
The flow rate control system and pump configuration of the turbine-driven feed water pump I3 (not shown) are the same as those of each pump A in FIG. Take in the values.

タービン駆動給水ポンプは定格給水流級の55%、モー
タ駆動給水ポンプは27.5%の容軟ヲ有し、発電機出
力50 ”−100%の範囲では、ター・ビン駆動給水
ポンプが2台使用され、モータ駆動給水ポンプ1台は、
バッグアップどし、て待機している。
The turbine-driven feed water pump has a capacity of 55% of the rated feed water flow class, the motor-driven feed water pump has a capacity of 27.5%, and in the range of generator output 50''-100%, two turbine-driven feed water pumps are used. One motor-driven water pump is used.
I'll pack up my bag and wait.

一方、ボイラ起動過程においてはター・ビン駆動蒸気が
得られないため、モータ駆動給水ポンプが使用される。
On the other hand, during the boiler startup process, since turbine-driving steam is not available, a motor-driven water pump is used.

ずなわぢ、 発電機出力  0=20% 8M−BFP  を台20
−50% :丁−BFP  1−台50−・−1,00
% :T−Rト′P2.台のように運転される。
Zunawaji, generator output 0=20% 8M-BFP 20 units
-50%: 1-BFP 50-・-1,00
%: T-Rt'P2. It is driven like a machine.

従って、発電機出力約20%以上において、モータ駆動
給水ポンプから、タービン駆動給水ポンプへの切替えが
必要であり、また、約50%出力以上において、2台目
のタービン駆動給水ポンプの起動、併入が必要である。
Therefore, when the generator output is about 20% or more, it is necessary to switch from the motor-driven water feed pump to the turbine-driven water pump, and when the generator output is about 50% or more, it is necessary to start the second turbine-driven water feed pump. input is required.

このための切替えを行う構成が、第1図に示す制御部1
00であり、モータ駆動給水ポンプからタービン駆動給
水ポンプへの切り替えは、(1)昇速制御、(2)均圧
制御、(3)切替制御の3つに分けることができる。
The configuration that performs switching for this purpose is the control unit 1 shown in FIG.
00, and switching from a motor-driven water supply pump to a turbine-driven water supply pump can be divided into three types: (1) speed increase control, (2) pressure equalization control, and (3) switching control.

ここでは、各制御段階を次のように定義する。Here, each control stage is defined as follows.

(1)昇速制御・・・タービン駆動給水ポンプを所定の
昇速率で所定の回転数まで速度上昇させること。
(1) Speed-up control: Raising the speed of the turbine-driven water supply pump to a predetermined rotational speed at a predetermined speed-up rate.

所定の回転数とは、定格回転数以下で、ポンプ出口逆止
弁を通してボイラへの給水がなされることがないだけの
充分なポンプ吐出圧力となる回転数(定格の約1/2) (2)均圧制御・・・昇速制御終了後、ポンプ吐出圧力
をポンプ吐出ヘシダ圧力に近づけること。両者の差圧が
0になったときに終了する。
The predetermined rotation speed is the rotation speed (approximately 1/2 of the rated speed) at which the pump discharge pressure is sufficient to prevent water from being supplied to the boiler through the pump outlet check valve, but is below the rated rotation speed. ) Pressure equalization control: After the end of speed increase control, bring the pump discharge pressure close to the pump discharge pressure. The process ends when the differential pressure between the two becomes 0.

(3)切替制御・・・ボイラ給水流量に寄与するポンプ
流量の分担を一方のポンプからの他のポンプに切替える
こと。
(3) Switching control: Switching the share of the pump flow rate that contributes to the boiler feed water flow rate from one pump to another.

次に、各制御段階を詳細に説明する。Next, each control stage will be explained in detail.

(1)昇速制御 昇速制御設定器101の出力はスイッチ102S1を介
して積分器103に与えられ積分される。
(1) Speed-up control The output of the speed-up control setter 101 is given to the integrator 103 via the switch 102S1 and integrated.

この積分出力はリミッタ104で所定積分値以内に制限
され、タービン制御器30に設けられた速度変換機40
に出力される。リミッタ104の出力は昇速信号C1と
なる。タービン制御器30は、タービン駆動給水ポンプ
7のタービン31への蒸気を加減し、タービン駆動給水
ポンプ7を所定の昇速率で所定の回転数まで速度上昇さ
せる。
This integral output is limited within a predetermined integral value by a limiter 104, and a speed converter 40 provided in the turbine controller 30
is output to. The output of the limiter 104 becomes the speed-up signal C1. The turbine controller 30 adjusts the amount of steam supplied to the turbine 31 from the turbine-driven water supply pump 7 to increase the speed of the turbine-driven water supply pump 7 to a predetermined rotational speed at a predetermined rate of increase.

(2)均圧制御 前記昇速制御終了後、給水ポンプ出口ヘッダ圧力とター
ビン駆動給水ポンプ7の吐出圧力との差圧を差圧検出器
105で検出し、スイッチ106S!、リミッタスイッ
チ107.信号変換器108゜補償器109を介して高
値優先回路110に入力する。高値優先回路110の出
力Cz’  は加算器122でバイアス111と加算さ
れ(T−BEP)/(M−BFP)切替信号Czとなり
、タービン駆動給水ポンプ流量制御系の加算器28に印
加される。
(2) Pressure equalization control After the speed increase control is completed, the differential pressure between the water supply pump outlet header pressure and the discharge pressure of the turbine-driven water supply pump 7 is detected by the differential pressure detector 105, and the switch 106S! , limiter switch 107. The signal converter 108 is input to the high value priority circuit 110 via the compensator 109. The output Cz' of the high value priority circuit 110 is added to the bias 111 in an adder 122 to form a (T-BEP)/(M-BFP) switching signal Cz, which is applied to an adder 28 of the turbine-driven feed water pump flow rate control system.

差圧検出器105の信号は逆止弁41の通過流量がOの
場合は正であるが、流量が発生すると負になるため、負
の値をカットし、均圧制御を継続させるために用いられ
る。リミッタ107の上下限値はともに正の値に設定し
である。
The signal from the differential pressure detector 105 is positive when the flow rate passing through the check valve 41 is O, but becomes negative when a flow rate occurs, so it is used to cut the negative value and continue pressure equalization control. It will be done. The upper and lower limit values of the limiter 107 are both set to positive values.

すなわち、差圧検出器105の出力信号は、吐出ヘッダ
圧力からポンプ吐出圧力を引いた値であるから、均圧制
御の前半では、正の値からOに近づくことになる。ポン
プ吐出逆止弁14を開き、ここを通過する流量が発生す
るようになると、タービンポンプ吐出圧力の方が吐呂ヘ
ッダ圧力よりも高くなり、差圧が負の値に変わる。リミ
ッタ107の下限値を正の値を設定するのは、仮に負の
値になれば、タービン駆動給水ポンプ速度が低下して、
均圧の逆操作となり、また、差圧がOに近づくと、切替
信号Cx’  もOに近づき、タービン駆動給水ポンプ
の均圧制御の進行が停滞し、迅速な操作を達成できなく
なるから、これらの不都合を回避するためである。なお
、信号変換器108は圧力信号を制御系信号に変換する
ゲインを定めるものである。
That is, since the output signal of the differential pressure detector 105 is a value obtained by subtracting the pump discharge pressure from the discharge header pressure, the output signal approaches O from a positive value in the first half of pressure equalization control. When the pump discharge check valve 14 is opened and a flow rate passing therethrough is generated, the turbine pump discharge pressure becomes higher than the spout header pressure, and the differential pressure changes to a negative value. The reason why the lower limit value of the limiter 107 is set to a positive value is that if it becomes a negative value, the speed of the turbine-driven water supply pump will decrease.
This is a reverse operation of pressure equalization, and when the differential pressure approaches O, the switching signal Cx' also approaches O, the progress of pressure equalization control of the turbine-driven water pump becomes stagnant, and rapid operation cannot be achieved. This is to avoid the inconvenience of Note that the signal converter 108 determines a gain for converting a pressure signal into a control system signal.

(3)切替制御 第5図に示すように、給水流量偏差信号22によりプロ
グラム的に切替変化率を制限された。切替変化率設定器
201の信号は、スイッチ13S3゜積分器114.リ
ミッタ115を経て切替信号C3となり、モータ駆動給
水ポンプ流量制御系の入力加算器116に負の値で加算
され、一方、個別制限プログラムにより変化率を制限さ
れた。切替変化力設定器202の信号はスイッチ135
a。
(3) Switching Control As shown in FIG. 5, the switching change rate is programmatically limited by the water supply flow rate deviation signal 22. The signal from the switching rate of change setter 201 is sent to the switch 13S3° integrator 114. It passes through the limiter 115 and becomes the switching signal C3, which is added as a negative value to the input adder 116 of the motor-driven water supply pump flow rate control system, while the rate of change is limited by the individual limit program. The signal of the switching force setting device 202 is sent to the switch 135.
a.

積分器203.リミッタ204を経て切替信号C4とな
り、両ポンプの切替がなされる。
Integrator 203. A switching signal C4 is generated through the limiter 204, and both pumps are switched.

給水ポンプ自動切替を開始する条件としては、給水流量
20%以上でモータ駆動給水ポンプ8が1−台運転中で
あり、タービン駆動給水ポンプ7のタービン31の起動
準備が完了し℃いるものどする。給水制御系は、給水制
御器26.流麗制御器29.33どもすべて自動になっ
ており、スイッチ81% 321 S 3とも開かれて
いる。夕・−ビン駆動給水ポンプ流量制御器290入力
加算器28には給水制御2Gの出力(給水要求値)20
%があり、流!信号27は0であるから、バイアス11
1は一20%が印加され、加算器28の出力は0となっ
ており、流量制御器29の出力も0である7一方、モー
タ駆動給水ポンプ側の加算器1−161:は給水制御2
6からの信号20%があり、流量信号42は20%であ
り、給水調整弁9はある開度に制御され整定状態にある
The conditions for starting automatic water pump switching are that the water supply flow rate is 20% or more, one motor-driven water pump 8 is in operation, and the turbine 31 of the turbine-driven water pump 7 is ready for startup. . The water supply control system includes a water supply controller 26. All of the flow controllers 29.33 are automatic, and switches 81% and 321S3 are also open. The output of the water supply control 2G (water supply request value) 20 is input to the input adder 28 of the bottle-driven water supply pump flow rate controller 290.
There is a percentage, flow! Since signal 27 is 0, bias 11
1 is applied with -20%, the output of the adder 28 is 0, and the output of the flow rate controller 29 is also 0.7 On the other hand, the adder 1-161 on the motor-driven water supply pump side is the water supply control 2
There is a signal of 20% from 6, the flow rate signal 42 is 20%, and the water supply regulating valve 9 is controlled to a certain opening degree and is in a stable state.

第1図実施例の各部動作特性(炉水位、制御イ5号、流
量)を第6図に示す。
The operating characteristics of each part (reactor water level, control No. 5, flow rate) of the embodiment shown in FIG. 1 are shown in FIG.

この第6図を参照して、第1図実施例の動作を更に具体
的に説明する。
Referring to FIG. 6, the operation of the embodiment shown in FIG. 1 will be described in more detail.

なお、第6図にC2゜を示してないのは、C2が02′
  に加算器122でバイアス製付加した値であるから
、C2′  をシフトさせた信号であり、波形自体は、
C2’  ど変わらないので、繁雑を避けるためである
Note that C2° is not shown in Figure 6 because C2 is 02'
Since this is the value added by the bias adder 122 to C2', it is a signal obtained by shifting C2', and the waveform itself is as follows.
This is to avoid complexity since there is no change in C2'.

(1)昇速制御 まず、スイッチ102S1 を手動yは自動で投入する
と、昇速信号C1が一定の割合で増加してリミッタ】、
04の上限値まで」ユ昇し、均圧制御が行なわれる。こ
れによって、給水ポンプ駆動用タービン31の回転数が
上昇し、一定回転数どなる。
(1) Speed-up control First, when the switch 102S1 is turned on manually or automatically, the speed-up signal C1 increases at a constant rate and becomes a limiter.
The pressure is increased to the upper limit value of 04, and pressure equalization control is performed. As a result, the rotation speed of the water supply pump driving turbine 31 increases and becomes constant.

二の回転数は定格の60%程度であり、この回転数では
7ボンブ吐出圧力は出口ヘッダ圧力よりも低く、ポンプ
吐出流量はすべて、再循環弁34を通って流れている。
The second rotational speed is about 60% of rated, and at this rotational speed the seven bomb discharge pressure is lower than the outlet header pressure and all pump discharge flow is flowing through the recirculation valve 34.

クー・ビン制御系;30では、速度変換器40の出力が
、図示しない高速度リミッタの上限値に達すると、流量
制御器29の六方信号により制御可能どなるように構成
されている5、したがって、昇速信号C1は高速度リミ
ッタの−J二限値よりも若干高い値にしでおけば良く、
昇速率設定器101の値は望ましいタービンム昇沫皐に
設定すればよい。
The Ku Bin control system 30 is configured such that when the output of the speed converter 40 reaches an upper limit value of a high speed limiter (not shown), it can be controlled by the hexagonal signal of the flow rate controller 29. The speed increase signal C1 should be set to a value slightly higher than the -J2 limit value of the high speed limiter.
The value of the speed increase rate setter 101 may be set to a desired turbine speed.

(2)均圧制御 タービン回転数が約60%に整定した時点で。(2) Pressure equalization control When the turbine speed has settled to about 60%.

スィッチ10eSz&手動又は投入する。スイッチ1−
06が投入されると、タービン+Ei、動給水ポンプの
吐出圧力はヘッダ圧力に対して相当に低1いレベルにあ
るので差圧検出器1−05は差圧信号を出し、リミッタ
107のL限値以上に瞬時に上昇する、信号変換器1.
08の出力はC1oδのようにステップ状に上昇するが
、補償9】09の伝達関数が一次遅れであるから、実際
の信号の立ち一+Zりが鈍く、C2′  のような特性
となる。この信号(騰・は高値優先回:洛110の出力
C2,′  である、すなわち、リミッタIJ−5の出
力信号C2’  が高値信号として選択される。給水ポ
ンプ駆動用タービン31が信号CX1.’  により徐
々に昇速六j15、タービ゛、)駆動給水ポンプ吐出圧
力が十昇づ−るので、差圧検出器105の出力である差
圧信号が;瑣少し、c 21  信号も低下しでくる。
Switch 10eSz & manually or turn on. Switch 1-
When 06 is turned on, the discharge pressure of the turbine +Ei and the dynamic feed water pump is at a considerably lower level than the header pressure, so the differential pressure detector 1-05 outputs a differential pressure signal, and the L limit of the limiter 107 is activated. Signal converter that instantly rises above the value 1.
The output of 08 rises stepwise like C1oδ, but since the transfer function of compensation 9 and 09 is a first-order lag, the actual signal rises and falls slowly, resulting in a characteristic like C2'. This signal (Teng) is the high value priority cycle: the output C2,' of the Raku 110, that is, the output signal C2' of the limiter IJ-5 is selected as the high value signal. As the speed increases, the discharge pressure of the water supply pump driven by the turbine gradually increases, so the differential pressure signal that is the output of the differential pressure detector 105; and the c21 signal also decreases a little. .

、′:、の差圧が小さくなっても、−・定の昇速をt−
1わぜ/二)必要かあ)す、既b、−述べたリミッタ]
、 O7(7)−1’限値が効果的に働く。また、この
ような夕・−ビン駆動給水ポンプ吐出部の差圧が大きい
どきにF速率を大きくとり、差圧が小さいとき昇速率を
小さくすることは、均圧完了にともなって発生釘る逆止
弁通過流進呈の増大を抑λ、均圧制御を短時間で達成す
るために非常に有効である。
, ′: Even if the differential pressure of
1) Is it necessary? - Already mentioned limiter]
, O7(7)-1' limit works effectively. In addition, increasing the F speed rate when the differential pressure at the discharge part of the bottle-driven water supply pump is large and decreasing the speed increase rate when the differential pressure is small will cause the opposite effect to occur as pressure equalization is completed. This is very effective in suppressing the increase in the flow passing through the stop valve and achieving pressure equalization control in a short time.

(3)切替制御 タービン駆動給水ポツプの吐出部差圧が0となる点で、
逆止弁41が開き、流量が発生12でくる。
(3) At the point where the differential pressure at the discharge part of the switching control turbine-driven water supply pot becomes 0,
The check valve 41 opens and the flow rate is generated at 12.

この時点で均圧制御完了とみな[21,′:の差圧Oま
たは逆止弁流量が発生した時又は)φ止弁が開いた二と
によりスィッチS3を手動または自動により投入する。
At this point, it is assumed that the pressure equalization control has been completed, and the switch S3 is turned on manually or automatically when the differential pressure O or check valve flow rate occurs or when the φ stop valve opens.

切替信号C4は切替変化率設定器202の111号を積
分し、リミッタ204の上限値まで至る給水偏差による
割合で増加する(’B号である。
The switching signal C4 integrates No. 111 of the switching change rate setter 202 and increases at a rate according to the water supply deviation up to the upper limit value of the limiter 204 (No. 'B').

一方、モータ即動給水ポンプ流量制御系に対しては、切
替信号C8は切替変化率設定器1,12の信号を積分し
、リミッタ1 i−5の上限値まで至る、給水偏差によ
る割合で増加する信号となり、加算器1.3.6の入力
が負となり、−CSS信子が印加されるので、モータ駆
動給水ポンプ流量は直ちに減少を開始する。一方、ター
ビン駆動給水ポンプ流量制御系に対しては、C4信号が
補償器109の出力信号C2′  より大きくなる時点
1.からC8が選択されて、 Cz’  はランプ状の
上昇信号となる。スイッチS3が閉じてからt、1 ま
での時間は、均圧制御の加速を受けてタービン駆動給水
ポンプの逆止弁流量が流れ出すので、給水流量は、僅か
に増加する。この加速によるタービン駆動給水ポンプ流
量増加を考慮して、均圧制御を連続的かつ流量変動が少
なく切替えるのに、高値優先回路110が役立ち、いわ
ゆるバンプレス切替となる。
On the other hand, for the motor instant water supply pump flow rate control system, the switching signal C8 integrates the signals of the switching change rate setters 1 and 12, and increases at a rate according to the water supply deviation until it reaches the upper limit of limiter 1 i-5. Since the input of the adder 1.3.6 becomes negative and the -CSS signal is applied, the flow rate of the motor-driven water supply pump immediately starts to decrease. On the other hand, for the turbine-driven feed water pump flow rate control system, the point 1 when the C4 signal becomes larger than the output signal C2' of the compensator 109. C8 is selected from , and Cz' becomes a ramp-like rising signal. During the time from when the switch S3 is closed until t,1, the flow rate of the check valve of the turbine-driven water supply pump begins to flow due to the acceleration of the pressure equalization control, so the water supply flow rate increases slightly. In consideration of the increase in the flow rate of the turbine-driven water supply pump due to this acceleration, the high value priority circuit 110 is useful for switching the pressure equalization control continuously and with little flow rate fluctuation, resulting in so-called bumpless switching.

t1以降は第3図中段のような切替信号により、給水流
量にはほとんど変動を与えることなく、モータ駆動給水
ポンプ流量が減少し、タービン駆動給水ポンプ流量が増
加して切替が実行される。モータ駆動給水ポンプ流量が
Oになったとき、モータ駆給水ポンプの図示しないモー
タしゃ断器をしゃ断させ、切替えを完了する。
After t1, the switching signal as shown in the middle part of FIG. 3 causes the motor-driven water feed pump flow rate to decrease and the turbine-driven water feed pump flow rate to increase, with almost no fluctuation in the water feed flow rate, and switching is executed. When the motor-driven water supply pump flow rate reaches O, a motor breaker (not shown) of the motor-driven water supply pump is shut off to complete the switching.

この切替中に第5図に示すように給水流量偏差信号22
によりプログラム的に切替変化率を制限する手段により
、給水変動を実測した結果、±2%(20t/h)以内
に収められることを確認した。切替変化率の設定は、タ
ービン駆動給水ポンプ制御系に対しては上昇変化率信号
C4の如く給水偏差が■正の場合はPi以上で所定変化
率R4から制限し、Pz以上で零とし、さらにモータ駆
動給水ポンプ制御系の減少変化率信号C3を所定変化率
RaからRatに増加することにより、■正の給水偏差
を、切替信号により補正する。
During this switching, as shown in FIG.
As a result of actually measuring the water supply fluctuation using means for programmatically limiting the switching rate, it was confirmed that it could be kept within ±2% (20 t/h). The switching rate of change is set for the turbine-driven water supply pump control system by limiting the rate of change from the predetermined rate of change R4 when the rate of change is above Pi when the feed water deviation is positive as shown in the rising rate of change signal C4, and setting it to zero when the rate of change is above Pz. By increasing the decreasing rate of change signal C3 of the motor-driven water supply pump control system from the predetermined rate of change Ra to Rat, the positive water supply deviation is corrected by the switching signal.

尚、O負の給水偏差の場合はこれとは逆となり。In addition, in the case of O negative water supply deviation, this is the opposite.

また、モータ駆動給水ポンプ制御系とタービン駆動給水
ポンプIIJ御系の制御信号対流量特性は異なり、個別
の変化率設定が必要となる。
Furthermore, the control signal versus flow rate characteristics of the motor-driven feedwater pump control system and the turbine-driven feedwater pump IIJ control system are different, and separate rate of change settings are required.

第1図の実施例によれば、次の効果が得られる。According to the embodiment shown in FIG. 1, the following effects can be obtained.

1)タービン駆動給水ポンプ制御系とモータ駆動給水ポ
ンプ制御系との切替、1台から2台のタービン駆動給水
ポンプ制御系への切替において、給水流量の変動を抑え
ることができる。
1) Fluctuations in the water supply flow rate can be suppressed when switching between a turbine-driven water supply pump control system and a motor-driven water supply pump control system, and when switching from one turbine-driven water supply pump control system to two turbine-driven water supply pump control systems.

2)1)の切替中の負荷変化、タービン駆動給水ポンプ
の駆動用油気蒸気のエンタルピー変化。
2) Load change during switching in 1), enthalpy change of oil/steam for driving the turbine-driven water pump.

再循環弁の開閉等による給水変動においても、その変動
を抑えるように切替変化率を簡単に自動設定(補正)で
きるので、予想できない悪い切替条件の場合でも短い時
間で滑らかに切替え可能である。
Even when the water supply fluctuates due to the opening and closing of the recirculation valve, the switching change rate can be easily automatically set (corrected) to suppress the fluctuation, so even in the case of unpredictable bad switching conditions, it is possible to smoothly switch in a short time.

3)均圧完了にともなって発生する逆止弁通過流量の増
大を、この給水流量偏差によって抑えることができるた
め、均圧完了前に切替制御にすることもでき、短時間で
切替が可能である。
3) Since the increase in flow rate passing through the check valve that occurs when pressure equalization is completed can be suppressed by this water supply flow rate deviation, switching control can be performed before pressure equalization is completed, and switching can be performed in a short time. be.

他の実施例1として、流量供給要求値と給水ポンプ吐出
流量との偏差が小さいときは通常の給水ポンプ切替変化
率より多きくし、切替を加速することにより切替を早く
完了することができる。
As another example 1, when the deviation between the flow rate supply request value and the water supply pump discharge flow rate is small, the water supply pump switching change rate is set higher than the normal water supply pump switching rate to accelerate the switching, thereby allowing the switching to be completed quickly.

また他の実施例2として、流量供給要求値と給水ポンプ
吐出流量との偏差により、プログラム設定した補正信号
を所定の変化率で変化する給水ポンプ切替信号に加算補
正することにより給水流量の変動を最少に抑えることが
できる。
As another example 2, fluctuations in the water supply flow rate are corrected by adding and correcting a correction signal set in a program to the water supply pump switching signal that changes at a predetermined rate of change, depending on the deviation between the flow rate supply request value and the water supply pump discharge flow rate. can be kept to a minimum.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、タービン駆動給水ポンプによる給水増
加とモータ駆動給水ポンプによる給水減少量とを給水流
量偏差に対応して切替変化率を補正することにより、給
水流量の変動を最少に抑えながら短時間に給水ポンプの
自動切替ができる給水ポンプ自動切替装置が得られる。
According to the present invention, by correcting the rate of change in switching between the increase in water supply by the turbine-driven water supply pump and the decrease in water supply by the motor-driven water supply pump in accordance with the deviation in the supply water flow rate, fluctuations in the supply water flow rate are minimized. A water pump automatic switching device capable of automatically switching the water pump at different times can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による給水ポンプ自動切替装置の実施例
を示すブロック図、第2図は従来の給水ポンプ切替方式
を示すブロック図、第3図は第2図の詳細ブロック図、
第4図は第3図実施例の各部動作特性図、第5図は本発
明による給水流量偏差に対する切替変化率設定を示す図
、第6図は本発明による第1図の各部動作特性図を示す
。 9・・・モータ駆動給水ポンプ給水調整域、22・・・
給水流量偏差、26・・・給水マスク制御器、29゜3
0・・・各給水ポンプ流量制御器、33・・・タービン
駆動給水ポンプ蒸気加減弁、201・・・タービン駆動
給水ポンプ流量制御系切替変化率設定器、202・・・
モータ駆動給水ポンプ流量制御系切替変化率設定器。 佑 1と1 イ)、3図
FIG. 1 is a block diagram showing an embodiment of an automatic water pump switching device according to the present invention, FIG. 2 is a block diagram showing a conventional water pump switching system, and FIG. 3 is a detailed block diagram of FIG. 2.
FIG. 4 is a diagram showing the operation characteristics of each part of the embodiment shown in FIG. show. 9...Motor-driven water supply pump water supply adjustment area, 22...
Water supply flow rate deviation, 26... Water supply mask controller, 29°3
0...Each water supply pump flow rate controller, 33...Turbine driven water supply pump steam control valve, 201...Turbine driven water supply pump flow rate control system switching change rate setting device, 202...
Motor-driven water supply pump flow rate control system switching change rate setting device. Yu 1 and 1 a), Figure 3

Claims (1)

【特許請求の範囲】 1、蒸気発生器に復水を供給するためのモータ駆動給水
ポンプ及びタービン駆動給水ポンプと、前記蒸気発生器
側の流量供給要求値と前記給水ポンプ吐出流量とにより
給水量を調節する制御系とからなる蒸気発生装置の熱出
力に応じて前記両ポンプを切替る給水ポンプ自動切替装
置において、 切替開始時にタービン駆動給水ポンプを所定回転数まで
昇速し、給水ポンプ出口ヘッダ圧力とタービン駆動給水
ポンプ吐出圧力を近づける均圧制御を行つた後に、上記
流量供給要求値と給水ポンプ吐出流量との偏差により変
化率を制限した上昇(下降)信号を前記タービン駆動給
水ポンプ系に出力しタービン駆動給水ポンプからの給水
量を増加(減少)させると同時に、前記上昇(下降)信
号とは別の給水流量偏差により変化率を制限した減少(
増加)信号を前記モータ駆動給水ポンプ制御系に出力し
モータ駆動給水ポンプからの給水量を減少(増加)させ
る切替制御器を備えたことを特徴とする給水ポンプ自動
切替装置。2、第1項において、流量供給要求値と給水
ポンプ吐出流量との偏差により給水ポンプ切替変化率を
加速したことを特徴とする給水ポンプ自動切替装置。 3、第1項において、流量供給要求値と給水ポンプ吐出
流量との偏差により給水ポンプ切替信号を補正すること
を特徴とする給水ポンプ自動切替装置。
[Scope of Claims] 1. The water supply amount is determined by a motor-driven water supply pump and a turbine-driven water supply pump for supplying condensate to the steam generator, a flow rate supply request value on the steam generator side, and a discharge flow rate of the water supply pump. In the feed water pump automatic switching device that switches both pumps according to the heat output of the steam generator consisting of a control system that adjusts After performing pressure equalization control to bring the pressure closer to the discharge pressure of the turbine-driven water supply pump, an increase (decrease) signal whose rate of change is limited by the deviation between the flow rate supply request value and the discharge flow rate of the water supply pump is applied to the turbine-driven water supply pump system. At the same time, the rate of change is limited by a feed water flow rate deviation different from the rise (fall) signal, and the rate of change is limited (
An automatic water pump switching device comprising: a switching controller that outputs an increase) signal to the motor-driven water pump control system to decrease (increase) the amount of water supplied from the motor-driven water pump. 2. The water pump automatic switching device according to item 1, characterized in that the water pump switching change rate is accelerated by the deviation between the flow rate supply request value and the water pump discharge flow rate. 3. The water pump automatic switching device according to item 1, wherein the water pump switching signal is corrected based on the deviation between the flow rate supply request value and the water pump discharge flow rate.
JP19274388A 1988-08-03 1988-08-03 Automatic switching device for water feeding pump Pending JPH0244107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19274388A JPH0244107A (en) 1988-08-03 1988-08-03 Automatic switching device for water feeding pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19274388A JPH0244107A (en) 1988-08-03 1988-08-03 Automatic switching device for water feeding pump

Publications (1)

Publication Number Publication Date
JPH0244107A true JPH0244107A (en) 1990-02-14

Family

ID=16296318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19274388A Pending JPH0244107A (en) 1988-08-03 1988-08-03 Automatic switching device for water feeding pump

Country Status (1)

Country Link
JP (1) JPH0244107A (en)

Similar Documents

Publication Publication Date Title
JPS6124601B2 (en)
JPH0333495A (en) Control device for condensate pump
JPH0244107A (en) Automatic switching device for water feeding pump
JP2892427B2 (en) Steam turbine controller
JP2000297608A (en) Control device for feed water pump of power station
JPH0337304A (en) Start of steam turbine generation plant provided with turbine bypass device
JP2749123B2 (en) Power plant control method and device
JPH0631813B2 (en) Turbine controller for nuclear reactor plant
JPH0539901A (en) Method and device for automatically controlling boiler
JP3784947B2 (en) Turbine speed control method
JPH03267509A (en) Control method of reheating steam turbine
JPS6239657B2 (en)
JP3781929B2 (en) Turbine controller
JP2554704B2 (en) Turbine controller
JPS63192905A (en) Main steam pressure control method for power generating plant
JP2645766B2 (en) Power recovery system for steam supply line
JPH1163403A (en) Steam delivering unit at start up of boiler
JPS63685B2 (en)
JPH09242508A (en) Method and device for stopping combined cycle plant
JP2001004790A (en) Water level controller of steam generating plant
JPS6326802B2 (en)
JPH04342806A (en) Steam turbine control device for combined power plant
JP2509676B2 (en) Mixed pressure turbine controller
JPH0241720B2 (en)
JPS629106A (en) Controller for steam generating plant